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Abstract

Whole slide scanning technology has enabled the generation of high-resolution images from complete tissue
sections. However, commonly used analysis software is often unable to handle the large data files produced.
Here, we present a method using the open-source software QuPath to detect, classify and quantify fluores-
cently-labeled cells (microglia and pericytes) in whole coronal brain tissue sections. Whole-brain sections from
both male and female NG2DsRed x CX3CR1

1/GFP mice were analyzed. Small regions of interest were selected
and manual counts were compared with counts generated from an automated approach, across a range of
detection parameters. The optimal parameters for detecting cells and classifying them as microglia or pericytes in
each brain region were determined and applied to annotations corresponding to the entire somatosensory and
motor cortices, hippocampus, thalamus, and hypothalamus in each section. 3.74% of all detected cells were clas-
sified as pericytes; however, this proportion was significantly higher in the thalamus (6.20%) than in other regions.
In contrast, microglia (4.51% of total cells) were more abundant in the cortex (5.54%). No differences were de-
tected between male and female mice. In conclusion, QuPath offers a user-friendly solution to whole-slide image
analysis which could lead to important new discoveries in both health and disease.
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Significance Statement

Quantification of cell number and distribution from whole tissue sections represents a difficult challenge in
biomedical research. Slide scanning microscopes generate high-resolution images of complete tissue sec-
tions but most common image analysis software packages struggle to cope with the large data files they
produce. We provide a method for quantifying pericyte and microglia cell numbers in whole-brain tissue
sections using QuPath, an open-source software designed specifically to overcome this challenging
roadblock.

Introduction
The mammalian brain is a large and complex organ with

numerous cell types. The parenchymal cells of the brain, in-
cluding neurons, microglia, astrocytes, oligodendrocytes,
and oligodendrocyte precursor cells (OPCs), coexist along-
side cells lining the walls of the ventricles (ependymal
cells), and cells forming the blood vessels of the brain
(endothelial cells, pericytes, and vascular smooth

muscle cells). Accurately determining the density and
spatial relationships between these different cell
types, in any given brain region, can provide clues to
the importance and functions of each cell type in both
health and disease.
Brain cells can be visualized by different forms of mi-

croscopy, including brightfield or fluorescence, following
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histologic or immunohistochemical processing of isolated
cells or tissue sections. The quantitative and spatial analy-
sis of cells has traditionally been limited by the field of
view of the microscope and the workload associated with
analysis of multiple fields of view, which can hinder the
detection of patterns across larger regions. Virtual mi-
croscopy technology, which enables the scanning of
whole microscope slides at high resolution, has
emerged in the last two decades to overcome these
limitations (Al-Janabi et al., 2012). Although whole
slide scanning has predominantly been adopted in the
field of diagnostic pathology, basic research laborato-
ries can also benefit from the analysis of different cell
types over large areas of tissue.
Whole slide scanning has, however, created a new

roadblock. The files generated by slide scanning micro-
scopes are large and difficult to handle for many common
image analysis programs, including open-source software
such as ImageJ and CellProfiler. To overcome this, re-
searchers resort to reducing image resolution (which can
reduce the accuracy of the analysis), sampling smaller re-
gions of interest (as a representative of the larger whole),
or painstakingly analyzing the whole by consecutively
imaging and analyzing small regions of interest. Recently,
the open-source application QuPath was specifically de-
veloped to better enable pathologists and researchers to
analyze whole slide images (Bankhead et al., 2017).
QuPath can integrate with ImageJ and other packages to
reuse carefully developed analysis tools and allows the
user to rapidly analyze high resolution images without re-
quiring expensive, specialized computing facilities and
without having to rely on sampling smaller regions of in-
terest. The initial application for QuPath was for tumor
identification and biomarker evaluation in cancer
(Bankhead et al., 2018; Humphries et al., 2018; Ledys
et al., 2018; Loughrey et al., 2018), but its extensible
platform provides the flexibility to analyze large and
complex images across a range of biomedical settings
(Bankhead et al., 2017). For example, the effective
identification of GFAP-positive astrocytes across
whole-brain sections recently provided a demonstra-
tion of the use of QuPath in neurologic microanatomy
(Finney et al., 2021). Here, we demonstrate the poten-
tial of QuPath to detect fluorescently-labeled brain
cells, in particular microglia and pericytes.
Both microglia and pericytes are distributed widely

throughout the brain and have important functions in
health and disease. Microglia, historically considered the

innate immune cells of the brain (Morris et al., 2013), are
unique to the CNS, with key roles in sculpting, maintaining
and modifying neural circuitry through their influence on
synaptic and structural plasticity (Colonna and Butovsky,
2017). Pericytes, a cell present throughout the CNS and
the periphery, have numerous roles in the brain including
the regulation of cerebral blood flow (Hall et al., 2014) and
the maintenance of the blood-brain barrier (Armulik et al.,
2010). The historical and contemporary research on both
cell types in health and disease have been extensively re-
viewed elsewhere (Morris et al., 2013; Sweeney et al.,
2016; Colonna and Butovsky, 2017; Brown et al., 2019;
Beard et al., 2020).
In this study, we have used QuPath to quantify the rela-

tive numbers of microglia and pericytes in whole coronal
brain tissue sections derived from transgenic mice ex-
pressing fluorescently-labeled microglia and pericytes.
We describe, for the first time, the use of QuPath to ana-
lyze images of whole mouse brain sections for fluores-
cently-labeled cells in an automated fashion. We also
highlight optimization processes that permit quantifica-
tion of microglia and pericytes under different imaging cir-
cumstances in different brain regions. Our approach can
be easily applied to any brain region or other tissue types,
or other fluorescently-labeled cells, and can be used to
quantify cell numbers in different disease states. This ap-
proach further enhances the capabilities of QuPath to an-
alyze whole-brain section fluorescence in an automated
fashion using evidence-based parameter selection.

Materials and Methods
Animals, tissue acquisition, and processing
All animal procedures were approved by the Animal

Ethics Committee, University of Tasmania (A0018608)
and conformed with the Australian National Health and
Medical Research Council (NHMRC) Code of Practice for
the Care and Use of Animals for Scientific Purposes, 2013
(eighth edition). Hemizygote NG2DsRed transgenic mice (The
Jackson Laboratory stock #008241) were backcrossed onto
a C57BL/6J background and crossbred with CX3CR1

GFP/GFP

transgenic mice (The Jackson Laboratory stock #005582,
C57BL/6J background) to produce NG2DsRed x
CX3CR11/GFP mice. Mice were group housed in Optimouse
caging on a 12/12 h light/dark cycle (lights on: 7 A.M. to 7
P.M.) with ad libitum access to standard chow andwater.
Eight 12-week-old male and female NG2DsRed x

CX3CR1
1/GFP mice weighing 18.7–30.3 g (Table 1) were

killed with a lethal intraperitoneal injection of pentobarbi-
tone (300mg/kg) and immediately transcardially perfused

Table 1: Descriptive statistics of animals and tissue

Male (n=3) Female (n=5) p value
Weight (g) 27.776 2.37 19.746 1.05 p=0.0005 ***
Age (d) # 87.676 2.52 85.006 0.00 p=0.2079 ns
Tissue slice
area (mm2)

42.176 0.86 42.036 1.25 p=0.8739 ns

All statistics are mean 6 SD. Male and female groups were compared with an
unpaired t test (# with a Welch’s correction when variances were inhomogene-
ous between groups); ***p, 0.001; ns, not significant.
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with 4% paraformaldehyde (PFA; pH 7.4). Whole brains
were harvested and postfixed in 4% PFA for 1.5 h, then
transferred to 30% sucrose in 1� PBS until they sank.
Whole brains were embedded in Cryomatrix embedding
resin (Shandon, catalog #6769006) and frozen at �80°C
until cryosectioning. 40 mm coronal sections were cut at
�18°C using a cryostat and placed free floating in 1�
PBS. Using the Allen Brain Atlas as a guide (Lein et al., 2007),
tissue sections �1.70 mm from bregma were mounted onto
microscope slides (Dako, catalog #K802021-2), allowed to
dry upright for 30min, washed for 5min in 1� PBS Tween
(0.1%), rinsed for 30 s in 1� PBS followed by 10 s in distilled
H2O, air dried for 5min, then coverslipped with Prolong Gold
antifade reagent with DAPI (Life Technologies, catalog
#P36935).

Image acquisition
Images were acquired using a VS120 Virtual Slide

System (Olympus). Whole slides were first scanned in the
DAPI channel (Excitation (Ex): 388 nm; Emission (Em):
448 nm) at 2� magnification and then the outlines of
whole coronal tissue sections were traced for scanning at
40� magnification. A focus-map (the highest density pos-
sible) was auto-generated across the entirety of each cor-
onal section and the plane of focus was automatically
determined based on the DAPI channel. DAPI (Ex:
388 nm; Em: 448 nm), DsRed (Ex: 576 nm; Em: 625 nm),
and GFP (Ex: 494 nm; Em: 530nm) signals were imaged in
the same focal plane. Optimum exposure times were ini-
tially determined manually and then kept consistent for all
images (DAPI, 50ms; DsRed, 100ms; GFP, 50ms). The .
vsi files generated were approximately 2 GB each in size.

Image analysis: computing and software
All image analysis was performed on a standard desktop

computer with an Intel Core i7-6700 processor and 16-GB in-
stalled memory running Windows 10 and QuPath-0.2.3.
Script development was aided by IntelliJ IDEA 2020.3.2
(Community edition). Analysis of exported data were per-
formed usingMicrosoft Excel and GraphPad Prism 9.0.2.
The method described here was based on the Multiplexed

Analysis Tutorial found in the QuPath online documentation
(Bankhead, 2020) with adaptations made for whole-brain
section analysis and the specifics of the tissue used here. An
overview of the analysis pipeline is shown in Figure 1.

Code accessibility
Source code for the scripts and classifiers used here is

freely available online at https://github.com/jo-maree/
qupath-scripts-2021. The groovy and json scripts (text
files) are available as Extended Data 1.

Image analysis: project setup
A QuPath project was created to allow the application

of scripts and classifiers across multiple images. All .vsi
files were loaded with the image type set to “fluores-
cence”. QuPath does not hold the actual image files but
rather links to the original images, and so it was ensured
that the project file and original image files were never

separated. The project was duplicated to create separate
projects for optimization and postoptimization analysis.

Image analysis: channel names, colors, and classes
Appropriate channel colors and names (DAPI, DsRed,

GFP) were set for all images as a batch using the script
“Channels and colours.groovy” and classes were created
from these channel names using the “populate from
image channels” command (Fig. 2A). In our figures the
DAPI, DsRed, and GFP have been pseudo colored blue,
magenta, and green, respectively.

Optimization: selection of test annotations and
manual counting
QuPath has the functionality to analyze entire brain sec-

tions or smaller regions of interest, and different regions
of the brain may require different parameters for optimal
cell detection. To determine the optimal parameters for
our DAPI-positive nuclei detection and the GFP-positive/
DsRed-positive cell classifications across the brain, for
each image (n=8) a small annotation (300� 200 mm) was
drawn in each of six brain regions of interest: upper cortex
(layers 1–3), lower cortex (layers 4–6), hippocampus (in-
cluding dentate gyrus), hippocampus (including CA1/CA3
boundary), thalamus, and hypothalamus (Extended Data
Fig. 2-1). In each annotation area, the total number of
cells (DAPI-stained nuclei) and the number of DsRed-pos-
itive and GFP-positive cells were counted manually by an

Figure 1. Analysis pipeline. Flowchart summarising the steps
taken to optimize analysis parameters and then to detect and
classify fluorescently labeled cells in whole mouse brain sec-
tions in QuPath.
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experienced researcher (G.P.M.) using the points annota-
tion function of QuPath.

Optimization of cell detection parameters
In QuPath, fluorescent cell detection can be performed

using any channel but most commonly utilises a nuclear
stain such as DAPI to first detect all cells. The in-built Cell
Detection algorithm requires the selection of various pa-
rameters. It is possible to rigorously optimize each of
these parameters (i.e., pixel size, background radius, me-
dian radius, sigma, minimum area, maximum area, and
threshold) individually, or by mixing and matching differ-
ent settings for each, then comparing these settings to
manual counts to ensure accurate automated detection
of cells. Manually changing these parameters to test each
possible combination is time consuming, so we designed
a script capable of doing this automatically (“Optimisation
of cell detection.groovy”).
To illustrate the importance of optimizing cell detection pa-

rameters we present our optimization of one key detection
parameter: the DAPI intensity threshold. For simplicity, the
other cell detection parameters were kept to QuPath’s de-
faults, except for sigma=1.5 and cell expansion=2 mm (a cell
expansion allows for the detection of fluorescent labeling out-
side of the nucleus).

For each test annotation, DAPI intensity thresholds
were tested in increments of 25, beginning at 50, and end-
ing at 1000. The number of detected cells at each thresh-
old was compared with manual counts of DAPI-positive
cells through the calculation of % difference using the
equation below:

%Difference ¼ Ac�Mc
Mc

� �
� 100:

A % difference of 0 indicated that both automated (Ac)
and manual (Mc) counts were equal,.0 indicated that au-
tomated counts were higher than manual counts,,0 indi-
cated that automated counts were lower than manual
counts. These values were used to determine the optimal
threshold for each region of the brain.

Optimization of fluorescent intensity thresholds for
cell classification
After optimizing the cell detection parameters, we opti-

mized the intensity threshold parameters for classifying
detected cells as DsRed-positive or GFP-positive. The in-
built positive cell detection plugin was applied to the
same small annotations used for optimizing DAPI cell

Figure 2. Stages of QuPath analysis on whole mouse brain sections. A, Imported image following correction of channel colors. B,
Initial tissue detection (left) and following subtraction of large vessels and edges (right). C, Brain regions intersected with detected
tissue. D, Overlay of detected nuclei (gray) on tissue. E, High-magnification view of a region of the thalamus (indicated by box in D).
F, With annotation boundaries in cyan and detected nuclei outlined in magenta (DsRed), green (GFP), and gray (other). Scale bars: 5
mm (A–D) and 10 mm (E–F). DAPI, GFP, and DsRed signal are colored blue, green, and magenta, respectively. Extended Data Figure
2-1 shows an example of the placing of annotations for manual cell counting.
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detection. Here, the DAPI threshold for nuclear detection
was set to the previously determined optimum for each spe-
cific brain region while the threshold (measuring the mean
value in the cell) was tested using a script (“Optimisation of
cell classification.groovy”): first for DsRed (thresholds be-
tween 200 and 550 in increments of 25) and then for GFP
(thresholds between 100 and 450 in increments of 25).
As with DAPI detection, the number of DsRed-positive

and GFP-positive cells detected at each threshold was
compared with the manual counts (with visual verification)
to determine the optimal DsRed and GFP thresholds for
each brain region.

Image analysis: annotation of brain regions
For each image in the analysis project, the brush tool was

used to draw annotations for the somatosensory and motor
cortex (hereon referred to as ‘cortex’), hippocampus, thala-
mus and hypothalamus in both left and right hemispheres
using the Allen Mouse Brain Atlas as a guide (Lein et al.,
2007). The selected regions in the left and right hemispheres
were merged to form a single annotation for each region and
each annotation was named appropriately using the “set
properties” dialog box. Two scripts were used to assist this
process: “Save Annotations.groovy” exports the annotations
for the first image to a file which can then be imported back
into the remaining images with “Import Annotations.groovy”.
Annotations for each image were individually adjusted using
the brush tool to fit the specific anatomy of each section.

Image analysis: tissue and vessel detection
For each tissue section, the tissue area was defined

using a pixel classifier based on the average value of the
three channels at high resolution with a Gaussian prefilter,
smoothing sigma=2.0 and threshold=50 and an annotation
created with a minimum area of 1,000,000 mm2 and a mini-
mum hole size of 1000 mm2. This annotation was eroded by
40mm (using “expand annotations” set to�40 mm) to reduce

the effects of tissue processing artefacts around the edge of
the tissue, and fragments ,10,000 mm2 were removed
(using “remove fragments and holes”). In order to exclude
large DsRed-positive vessels, likely reflecting DsRed-positive
vascular smooth muscle cells, rather than capillary pericytes,
a second pixel classifier was created using the DsRed chan-
nel at high resolution with a Gaussian prefilter, smoothing
sigma=2.0 and threshold=400. An annotation was created
from this classifier with a minimum size of 150 mm2 and a
minimum hole size of 1000 mm2. Next, the “Vessels” annota-
tion was subtracted from the “Tissue” annotation. A script
was created to incorporate the pixel classifiers and automate
these steps (“Tissue Dectection.groovy"”) and run as a batch
for the project (Fig. 2B). Finally, the intersection between the
detected tissue (minus large vessels) and the predefined
brain region annotations was calculated using the script
“Intersect ROIs.groovy” (Fig. 2C).

Image analysis: detection and classification of cells
To accommodate the need for different color thresholds

in different brain regions, a specific composite object
classifier was created for each brain region and saved in
the QuPath project’s “object_classifiers” folder.
Finally, cell detection and classification was combined into

a single script to run for the whole project (“Cell Detection
and Classification.groovy”), using the predetermined DAPI,
DsRed, and GFP thresholds for each region (Fig. 2D).
Examples of cell detections are shown in Figures 2E,F, and 3.

Image analysis: export of measurements
Annotation measurements, including area and number

of detections, were exported for each brain region using
QuPath’s measurement exporter.

Statistical analysis
All statistical analyses were performed using GraphPad

Prism 9.0.2. The parametric tests outlined below were

Figure 3. Examples of detected cells. DsRed-positive pericytes are indicated with arrows, GFP-positive microglia with arrowheads.
Each cell detected using DAPI staining is shown as an inner ring (nucleus) and outer ring (2 mm expansion) colored according to
classification (magenta, DsRed-positive; green, GFP-positive; brown, DsRed-positive and GFP-positive; gray, DsRed-negative and
GFP-negative). A–C, Appropriately classified cells. D, The pericyte is classified appropriately, but the microglia is not detected be-
cause of the nucleus being out of the plane of the section. E, A microglia and pericyte that are in close contact and were not able to
be separated by the nuclear detection leading to a dual classification. F, The pericyte is appropriately classified, but some DsRed
fluorescence has overlapped with a microglia to cause a dual classification. This figure illustrates two of the possible reasons for
cells to be dual-classified; however, overall occurrence of dual-classified cells is low (see Fig. 5B). Scale bars: 5 mm.
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only undertaken if data passed normality assessment
using the Shapiro–Wilk test. Where data did not pass nor-
mality, a ROUT test to detect outliers was conducted, and
where an outlier was detected, this datapoint and linked
datapoints were removed. Whole animal and tissue slice
measurements were compared with unpaired t tests with
a Welch’s correction was used if variances were inhomo-
geneous (see Table 1). The correlation of manual counts
compared with automated counts was performed using
the Pearson’s correlation coefficient. Cell counts were
compared between brain regions by repeated measures
one-way ANOVA with post hoc Tukey’s multiple compari-
son tests. For the repeated measures ANOVA, the
Geisser–Greenhouse correction was applied to account
for variation in sphericity. Sex effects on cell counts were
tested with repeated measures two-way ANOVA. A
p, 0.05 was considered statistically significant.

Results
Animal and tissue characteristics
Brain slices for analysis were taken from three male and

five female mice. While male mice were significantly heav-
ier than the female mice, there was no difference in the
area of the tissue slices analyzed (Table 1).

Optimization
After running the QuPath Cell Detection algorithm

through our custom script, we compared manual cell

counts from 300� 200mm annotations in six different re-
gions to the number of DAPI-positive nuclei detected by
the algorithm across multiple different DAPI intensity
thresholds (summarized in Fig. 4A; for individual compari-
sons, see Extended Data Fig. 4-1). Optimal DAPI-thresh-
olds (Extended Data Fig. 4-1, arrows) were selected as
the thresholds which provided the greatest accuracy (i.e.,
closest mean to manual counts) and least variability (i.e.,
smallest SD), with a preference for undercounting (false
negatives) rather than overcounting (false positives). For
the cortex, thalamus and hypothalamus, the optimal
threshold was determined to be 150, while the hippocam-
pal regions required lower thresholds between 50 and
100 for accurate cell detection. For the hippocampus, we
ideally required a threshold that would be applicable to
the whole region (i.e., including CA1/CA3 and DG in the
same analysis). We therefore chose a threshold of 75 for
the entire hippocampus, which provided accurate counts
in both regions. For each brain region, the number of cells
detected using the optimized DAPI thresholds signifi-
cantly correlated to number of cells counted manually
(Fig. 4D; Extended Data Fig. 4-2).
Next, we used another custom script to iteratively apply

QuPath’s positive cell detection algorithm, using the DAPI
thresholds optimized for each brain region, to test multi-
ple DsRed and GFP intensity thresholds. As with the opti-
mization of DAPI thresholds, we compared these to
manual counts to determine the optimal thresholds for
DsRed-positive and GFP-positive cell detection in each
region (summarized in Fig. 4B,C; for individual

Figure 4. Optimization of cell detection and classification thresholds. Counts generated by QuPath’s cell detection/positive cell de-
tection algorithm were compared with manual cell counts to generate a % difference (dotted line at 0%) with a range of intensity
thresholds across six brain regions for (A) DAPI, (B) DsRed, and (C) GFP (n=8, mean 6 SD). Insets show more detail at thresholds
where the percentage difference crosses zero. For DsRed and GFP, data for thresholds with SDs over 200 have been excluded
from the graphs to more clearly visualize the optimum threshold for each brain region. Extended Data Figure 4-1 shows intensity
threshold analyses for annotations of individual brain regions. Example correlations of automated counts to manual counts for the
thalamus using the final optimized values for (D) DAPI, (E) DsRed, and (F) GFP. Extended Data Figure 4-2 includes correlation charts
for all optimized brain regions. Correlations between automated and manual counts were calculated using the Pearson’s correlation
coefficient (r). **p , 0.01, ***p , 0.001, ****p , 0.0001.
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comparisons, see Extended Data Fig. 4-1). Again, thresh-
olds (Extended Data Fig. 4-1, arrows) were selected for
accuracy, low variability, and with a preference for false
negatives. The number of cells detected using the opti-
mized DsRed and GFP thresholds correlated to the num-
ber of DsRed-positive and GFP-positive cells counted
manually (Fig. 4E,F; Extended Data Fig. 4-2).
The final optimized thresholds for each channel and re-

gion are listed in Table 2. Note, these optimized thresh-
olds are only applicable to our specific tissue and would
be expected to vary in each laboratory based on the tis-
sue processing methodology and imaging parameters.

Cell detection and quantification in different brain
regions
Following the optimization of cell detection parameters

on small annotations, we applied our cell detection
script with specific object classifiers to each region of
interest within our coronal sections (one section per
animal, n = 8). Automated cell detection (based on
DAPI staining) was performed on each region of inter-
est in each brain section (Fig. 5A). The total number of
cells per area differs significantly between brain re-
gions (one-way ANOVA, p = 0.004).
Across all regions tested, 3.74% (60.90%) detected

cells were classified as DsRed-positive (pericytes), 4.51%
(61.23%) were classified as GFP-positive (microglia), and
0.17% (60.07%) were classed as positive for both DsRed
and GFP (Fig. 5B). One reason for the classification of a
subset of cells as positive for both markers is the close
proximity of some pericytes to microglia, making it diffi-
cult for the automated analysis to distinguish individual
cells that have overlapping DsRed and GFP fluorescence
(Fig. 3E,F). Given the small numbers, these cells were ex-
cluded from further analysis.
The proportion of total DAPI-positive cells that were

identified as DsRed-positive or GFP-positive differed sig-
nificantly between brain regions. The thalamus had a sig-
nificantly higher proportion of DsRed-positive pericytes
(6.206 1.54%) compared with the other brain regions as-
sessed (cortex: 2.68 6 1.02%, p=0.0062; hippocampus:
1.77 6 0.81%, p ,0.0001; and hypothalamus: 2.37 6
0.32%, p=0.0014; Fig. 5C). The cortex had a significantly
higher proportion of GFP-positive microglia (5.54 6
0.94%) than other brain regions assessed (hippocampus:
4.05 6 2.07%, p=0.0597; thalamus: 3.99 6 1.91%,
p=0.0311; and hypothalamus: 3.23 6 0.66%, p=0.0001;
Fig. 5E). A similar pattern of regional differences was evi-
dent when cells counts were expressed as cells/mm2 of
tissue area (Fig. 5D,F).

No statistical differences were identified between male
and female mice for any of the cell detection or classifica-
tion measures described (Extended Data Fig. 5-1).

Discussion
In this study, we have detailed an automated method

to identify fluorescently labeled nuclei, microglia and
pericytes in high-resolution images using QuPath. To
validate our approach we compared automated nuclei,
pericyte and microglia counts to manual counts. The ap-
proach we describe offers an unbiased, replicable
method to quantitate nuclei and cell numbers across
large fluorescently labeled tissue sections, drastically re-
ducing the time taken to obtain cell counts. Below we
discuss the importance of optimizing the QuPath cell de-
tection parameters for each project. Furthermore, we
highlight limitations in our QuPath methodology and we
discuss other useful features of QuPath beyond those
we have assessed in this work.
QuPath represents a significant advance in biomedical

image interpretation by enabling batch analysis of large
(.2 GB), pyramidal image files produced by slide scanners
in a scriptable, open-source environment on a standard
desktop computer, without the need to downsample or
limit analysis to small regions of interest. Since its release
in 2017, over 700 publications have used QuPath, the vast
majority of which have analyzed tissue sections stained
with chromogenic immunohistochemistry. Previous publi-
cations have described the use of QuPath to assess the
staining intensity or cell number of specific cell types within
the brain including astrocytes (Finney et al., 2021), micro-
glia (Bevan et al., 2018; Morriss et al., 2020), and neurons
(van Olst et al., 2021). These studies utilized chromogenic
immunohistochemistry and so could not perform analyses
of multiple cell types on single tissue sections. QuPath also
has the capability to analyze tissue labeled with fluorescent
markers, a feature which offers a number of advantages in-
cluding higher dynamic range and easier multiplexing,
leading to better identification of colocalized targets and al-
lowing the user the ability to determine spatial relationships
between different cell types. It also enables quantification
of cells expressing genetically-encoded fluorescent pro-
teins, which can offer advantages over fluorescent immu-
nohistochemistry. Here, we provide the first investigation
utilizing QuPath to detect multiple types of fluorescently-la-
beled cells in mouse brain tissue sections, specifically peri-
cytes expressing DsRed and microglia expressing GFP. In
addition, we provide a series of scripts that automate the
process of optimizing crucial detection parameters in a
systematic, transparent, and unbiased way.
When using automated approaches for cell detection

and quantification it is prudent to optimize the auto-
mated cell detection parameters for each individual
project because of differences in staining protocols,
image acquisition and regional differences in staining
intensity in subregions of a tissue sample (Roeder et
al., 2012). In QuPath, detection parameters may be opti-
mized empirically by adjusting individual parameters
until the detected cells match those observed by the re-
searcher, or can be determined using a more systematic

Table 2: Optimized intensity thresholds for cell detection
and classification by brain region

DAPI DsRed GFP
Cortex 150 375 250
Hippocampus 75 350 225
Thalamus 150 325 200
Hypothalamus 150 400 250
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approach, as we have employed in this study. As a proof
of principle, we undertook a detailed optimization of the
fluorescence intensity thresholds required for accurate
detection of cells in all three channels. To expedite this
process, we designed a custom script to enable rapid test-
ing of multiple fluorescent intensity thresholds, without hav-
ing to manually alter them. Although the fluorescent signal
we analyzed was provided by genetically-encoded

fluorescent proteins providing a relatively clean signal,
immunofluorescence techniques with higher levels of back-
ground staining are also frequently utilized for cell detection.
Therefore, we designed the script to also test other cell de-
tection parameters available in QuPath, for example sigma
and background radius (a rolling-ball background reduction
measure), providing the user the ability to automate the pro-
cess of defining the optimal parameters for the analysis of

Figure 5. Detection and classification of cells. A, Total cells detected per mm2 tissue area in each brain region by DAPI nuclei stain-
ing. B, Percentage of cells by classification across all brain regions measured. DsRed-positive cells by brain region (C) as percent-
age of total cell detections and (D) per mm2. GFP-positive cells by brain region (E) as percentage of total cell detections and (F) per
mm2. Statistical analysis by repeated measures one-way ANOVA with post hoc Tukey’s multiple comparison test. All data passed the
Shapiro–Wilk test for normality except hypothalamus in C. An outlier was identified and removed from this group and data from the
same brain slice was removed across all brain regions, which subsequently passed normality. All data underwent the Geisser–
Greenhouse correction to account for variation in sphericity; *p, 0.05, **p,0.01, ***p, 0.001, ****p, 0.0001. Extended Data Figure 5-
1 shows detection and classification analyses comparing male and female mice with no statistically significant differences observed.
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their tissue of interest. This provides flexibility and advances
the capabilities of producing accurate assessment of cells in
fluorescently-labeled whole-brain sections.
The data we obtained using this approach (Fig. 4) en-

abled us to determine that the fluorescent intensity
thresholds for cell detection were different in the various
subregions we analyzed in our coronal mouse brain
slices. This conclusion was reached by comparing the
automated counts at different thresholds to manual
counts, with the assumption that our manual counts
represent ground truth. Interestingly, the curves pro-
duced by changing fluorescence intensity thresholds
(Fig. 4; Extended Data Fig. 4-1) provide a useful insight
into the importance of careful optimization. This is par-
ticularly important when classifying cells that represent
a low proportion of the total cells present in a region.
The successful detection of DAPI-labeled nuclei was
relatively insensitive to changes in threshold intensity in
the cell detection parameters and thus variability was
consistent across the intensity thresholds we tested.
This is partly because of the number of cells counted
(50–150 per region of interest) and the fact that thresh-
olding is one of many factors contributing to cell detec-
tion within the algorithm. However, when changing the
threshold for the classification of detected cells as ei-
ther DsRed or GFP-positive, the small number of actual
positive cells (,15 per region of interest) and the fact
that intensity threshold is the only classification param-
eter used led to higher variability at lower thresholds
and convergence to zero (represented by �100% differ-
ence in Fig. 4A–C) at higher thresholds.
We have not yet determined why different subregions

required different intensity thresholds for accurate cell
detection in our coronal mouse brain sections. This
could be a biological feature of the tissue. For instance,
microglia in the thalamus may express a different level of
CX3CR1-GFP than cells in the cortex, therefore requiring
a different intensity threshold for accurate quantification.
Alternatively, it could be a technical artifact. For exam-
ple, the edges of the tissue often have higher back-
ground fluorescence than regions in the middle of the
tissue, thereby requiring a higher intensity threshold to
avoid false positives. Whatever the cause, the finding
that different subregions of interest required different
cell detection parameters highlights the importance of
optimizing detection parameters in each experiment, es-
pecially when attempting to compare cell numbers from
region to region.
The classification of cells with expression of two sepa-

rate fluorescent proteins in a single section raises the pos-
sibility some cells may be “dual-classified,” that is, a
single cell may be detected as expressing both markers
(Fig. 3E,F). Whether these are truly cells expressing both
markers, or whether this is merely an artifact of the imag-
ing and analysis process, will depend on the markers in
question. In our study we did not expect DsRed and GFP
to colocalize as NG2 and CX3CR1, considered markers of
pericytes and microglia in the brain, respectively, have
not, to the best of our knowledge, been reported to coloc-
alize in the same cells in the healthy adult brain. There is

one report of NG2-positive OPCs being engulfed by
CX3CR1-GFP-positive amoeboid microglia in the corpus
callosum of developing mouse brains (Nemes-Baran et
al., 2020). Furthermore, there are reports suggesting peri-
cytes may differentiate into microglia in disease states
and thereby begin expressing microglial markers (Özen et
al., 2014; Sakuma et al., 2016). Conversely, others have
reported expression of NG2 in microglia (Zhu et al., 2016;
Huang et al., 2020). In our tissue however, a visual inspec-
tion of the rare dual-classified DsRed and GFP-positive
cells revealed these were individual DsRed and GFP-posi-
tive cells with nuclei that were in close proximity (Fig. 3E,
F), preventing the automated cell detection from separat-
ing the nuclei and consequently classifying them as the
same cell. Although these dual classified cells were a rare
occurrence, the inability of QuPath (and other automated
cell detection programs) to accurately segregate close
nuclei remains one of the limitations of automated cell
counting. This limitation is best overcome by manual cell
counting approaches, such as stereology.
We quantified microglia and pericytes in several brain

regions, observing some significant differences between
regions. Microglia are thought to account for;10% of the
total number cells in the human brain and ;5–10% in the
mouse brain, although these numbers vary across brain
regions (Lawson et al., 1990; von Bartheld et al., 2016).
These numbers are consistent with our study where we
found 4.51% of total cells were microglia, with the highest
prevalence of GFP-positive microglia in the cortex. The
precise percentage of cells that are microglia in mouse
brains has rarely been quantified. Recently, Dos Santos
and colleagues reported that microglia represent ;6% of
all cells in the mammalian cerebral cortical gray matter,
after pooling data from 30 species (Dos Santos et al.,
2020). For mice specifically, one previous study reported
F4/801 microglia accounted for ;5–12% of the total
number of cells in the mouse brain, depending on the re-
gion analyzed (Lawson et al., 1990). In particular, Lawson
et al. (1990) found ;5% of cells in the cerebral cortex
were F4/801 microglia, which compares favorably to our
data from the cortex (5.54% of total cell detections). The
small differences between our studies and others may be
accounted for by the precise anatomic regions analyzed,
our use of the CX3CR1 promoter to drive GFP expression
in microglia, differences in tissue processing, quantifica-
tion methodologies and the strain of mouse we used
(C57/BL6).
The precise percentage of brain cells that are pericytes

is more difficult to compare as the quantification of peri-
cytes has not traditionally been included in most brain cell
counting studies (von Bartheld et al., 2016). It is estimated
that endothelial cells, which form blood vessels and on
which pericytes reside, account for ;30% of non-neuro-
nal cells in the brain, and non-neuronal cells account for
;50% of all brain cells (von Bartheld et al., 2016).
Considering pericytes provide extensive coverage of en-
dothelial cells (Berthiaume et al., 2018), and that there is
an approximate ratio of one pericyte for every three endo-
thelial cells in the brain (Pardridge, 1999), this equates to
;5% of all cells in whole-brain sections that are possibly
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pericytes. This is consistent with our study where 3.71%
of all cells were detected as pericytes, albeit with the ca-
veat that a small proportion of the NG2-positive cells in
our tissue are possibly OPCs (i.e., NG2 glia). In our study,
the thalamus was found to have over twice the proportion
of DsRed-positive cells compared with the other brain re-
gions assessed. This may be because of the mouse thala-
mus having an increased vascular volume compared with
other brain regions (Xiong et al., 2017), which could reflect
the high amount of information that gets transmitted
through the thalamus into other brain regions (Sherman
and Guillery, 2002). Therefore, pericytes may play an ac-
tive role in providing energy supply to this important brain
region.
The relative number and spatial distribution of both mi-

croglia and pericytes can be drastically altered in disease
states. Pericyte dysfunction and death are implicated in
the pathogenesis of various brain diseases including
stroke (Hall et al., 2014) and Alzheimer’s disease (Nortley
et al., 2019), while microglia can readily migrate and alter
their morphology and function in disease states (Bachiller
et al., 2018). Therefore, the development of rapid and reli-
able tools like QuPath to quantify alterations in these cell
populations will enhance our understanding of these cells
in both health and disease.
Although our manual and automated cell counts were

highly correlated, cell detection with QuPath is not yet
perfect, as illustrated by the examples in Figure 3. For
both GFP and DsRed fluorescent proteins, some false
positives were detected because of high fluorescence
from out-of-focus cells, cells adjacent to areas of high
background, when a cell process was overlaying a DAPI-
positive nucleus, or, in the case of DsRed, when a cell
was present on a large vessel and therefore not repre-
senting a pericyte. Measures that could be used to miti-
gate these effects include using thinner brain sections,
imaging in more than one plane and z-stacking, and im-
proving classification to exclude large vessels and areas
of high background. While false positives and negatives
may limit the accuracy of automated cell counts, this may
be an acceptable trade-off where it is impractical to man-
ually count vast numbers of cells. However, we recom-
mend that researchers using automated cell detection
approaches, such as the one detailed here, compare the
outcomes to an area that has been manually counted, be-
cause if these issues are not overcome, automated cell
detection should not replace current gold standard man-
ual cell counting techniques such as stereology.
Here, we have followed a simple cell classification

workflow to demonstrate the potential of QuPath as a re-
search tool. We largely avoided intersample and intra-
sample variability in fluorescence quality through our use
of genetically-encoded fluorescent protein expression, al-
lowing the use of fluorescence intensity thresholding for
our analysis. However, variability of cell counts between
individual brain slices was evident (Fig. 5), and additional
optimization steps could be further employed to reduce
this variability and improve the accuracy of automated
cell detection. Potential approaches include the use of a
second slice from each animal, an iteration of the

algorithm with a second threshold, or using a particular
area as a reference for sensitivity normalization. However,
this will require additional computational time and human
input to perform. Another parameter that could be consid-
ered includes the use of cell morphology to confirm a pos-
itive cell detection, particularly as pericytes and microglia
have such strikingly different morphology. Alternatively, a
center of mass approach for each nuclear detection to de-
termine DsRed-positivity or GFP-positivity may prevent
the impact of areas or sections with high cell density and
overlapping nuclei and cell bodies, but this limits the area
required for colocalization and impairs the ability to detect
cells if the fluorescent signal lies outside of the center of
the nucleus. More refined results may be possible using
the machine learning algorithms that are built into
QuPath. These trainable algorithms are likely to be partic-
ularly useful for creating classifiers capable of identifying
cells positive for specific markers in tissue with varying
degrees of immunofluorescent staining/imaging quality in
different biological samples, for example differing levels
of background artefacts such as age-related lipofuscin
autofluorescence and large DsRed-positive vessels. In
addition, QuPath interacts with ImageJ (among other
packages), opening increased possibilities for analysis
outside the simple methods shown here. Even within our
workflow, QuPath generates more data than we have
presented. For each detected cell, numerous other pa-
rameters are automatically measured including nuclear
size and shape, and XY coordinates that can be used for
further spatial analysis. Some of these analyses are al-
ready built into QuPath and others could be scripted as
required or the data exported for analysis elsewhere.
Further development of this methodology could include
automating the analysis of tissue sections that have
been imaged across multiple planes.
In conclusion, QuPath offers a user-friendly solution to

whole-slide image analysis which will decrease reliance
on down-sampling and region of interest analysis. Our
novel scripts provide an automated workflow enabling
the quick and efficient detection of both pericytes and
microglia in the mouse brain. This pipeline enabled the
detection of significant differences in microglial and peri-
cyte cell numbers in different brain regions. The work-
flows we employed, and other functions within QuPath,
make this a reliable automated image analysis tool for
cell counting in fluorescently-labeled tissue that could
lead to important new discoveries in both health and
disease.
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