

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202417355

METTL14-Induced M⁶A Methylation Increases G6pc Biosynthesis, Hepatic Glucose Production and Metabolic Disorders in Obesity

Qiantao Zheng, Xiao Zhong, Qianqian Kang, Zhiguo Zhang, Decheng Ren, Yong Liu and Liangyou Rui*

Supplementary Information

METTL14-induced m⁶A methylation increases G6pc biosynthesis, liver glucose production and metabolic disorders in obesity

Qiantao Zheng^{1,2}, Xiao Zhong^{1,3}, Qianqian Kang^{1,2}, Zhiguo Zhang^{1,2}, Decheng Ren⁴, Yong Liu⁵, Liangyou Rui^{1,2,6*}

¹Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA

²Elizabeth Weiser Caswell Diabetes Institute, University of Michigan, Michigan 48109, USA

³Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha 410008, China

⁴Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA

⁵College of Life Sciences, Wuhan University, Wuhan 430072, China

⁶Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA

Supplemental Figure 2. Embryonic and hepatocyte-specific deletion of *Mettl14* mitigates HFD-induced metabolic disorders. (A) Nuclear extracts of skeletal muscle and WAT were immunoblotted with the indicated antibodies. (B) ITT at 9 weeks of age (on chow diet and normalized to initial values). Male: *Mettl14^{tif}*: n=12, *Mettl14^{Δhep}*: n=10; female: n=12 per group. (C-E) *Mettl14^{tif}* and *Mettl14^{Δhep}* male and female mice were fed a HFD at 10 weeks of age. (C) Body weight (male: n=10 per group; female: n=9 for *Mettl14^{tif}* and n=8 for *Mettl14^{Δhep}*). (D-E) GTT, PTT, GLTT, and ITT were performed in male (D, n=9 for *Mettl14^{tif}* and n=8 for *Mettl14^{Δhep}*) and female (E, for GTT and GLTT, n=10 for *Mettl14^{tif}* and n=9 for *Mettl14^{Δhep}*, for PTT and ITT, n=12 for *Mettl14^{tif}* and n=10 for *Mettl14^{Δhep}*) from 9 to 10 weeks post HFD. Data are presented as mean ± SEM. *p<0.05, **p<0.01, ***p<0.001, two-way ANOVA with Šidák's multiple-comparison test (D-E).

Supplemental Figure 3. Hepatocyte-specific deletion of *Mettl14* ameliorates HFD-induced liver steatosis in males. (A-B) *Mettl14^{t/f}* and *Mettl14^{Δhep}* males (10 weeks) were fed a HFD for 10 weeks. (A) Liver mRNA levels were measured by qPCR and normalized to 36B4 levels (n=6 per group). (B) Liver extracts were immunoblotted with the indicated antibodies (n=5 per group). (C) Plasma ALT levels were measured between *Mettl14^{t/f}* and *Mettl14^{Δhep}* males on chow diet (9 weeks) (n=12 per group). (D) *Mettl14^{t/f}* males (8 weeks) were fed a HFD for 10 weeks and then transduced with AAV8-TBG-GFP or AAV8-TBG-Cre vectors. Plasma ALT levels were measured 6 weeks later (n=7 per group). (E-F) *Mettl14^{t/f}* females (8 weeks) were fed a HFD for 10 weeks

and then transduced with AAV8-TBG-GFP or AAV8-TBG-Cre vectors. **(E)** Representative H&E and Oil red O staining of liver sections (>3 pairs). Scale bar: 200 μ m. **(F)** Liver TAG levels (normalized to liver weight, n=6 per group). **(G-H)** *Mettl14^{thf}* and *Mettl14^{Δhep}* females (10 weeks) were fed a HFD for 10 weeks. **(G)** Representative H&E and Oil red O staining of liver sections (>3 pairs). **(H)** Liver TAG levels (normalized to liver weight, n=6 per group). *p<0.05, two-sided unpaired *t*-test.

Supplemental Figure 4. METTL14 does not directly alter insulin and glucagon signaling. (A-B) *Mettl14^{tf}* male mice were fed HFD for 10 weeks and then transduced with AAV8-TBG-Cre or AAV8-TBG-GFP vectors. Six weeks later (on HFD), mice were fasted overnight and

stimulated with insulin (1 unit/kg) for 5 min or with glucagon (15 µg/kg) for 15 min. Liver extracts were immunoblotted with the indicated antibodies. Phosphorylation of AKT or CREB was normalized to total AKT or CREB levels, respectively (n=3 mice per group). **(C)** *Mettl14^{thf}* and *Mettl14^{Δhep}* mice were fed an HFD for 10 weeks, fasted overnight, and stimulated with glucagon. Liver CREB phosphorylation was assessed by immunoblotting. **(D)** C57BL/6J male mice (on chow diet) were transduced with GFP or METTL14 adenoviral vectors. Two weeks later, mice were fasted overnight and stimulated with glucagon (15 µg/kg) for 15 min. Liver extracts were immunoblotted with the indicated antibodies. Phosphorylation of CREB was normalized to total CREB levels (n=3 mice per group). Data are presented as mean ± SEM. *p<0.05, **p<0.01, ***p<0.001, two-way ANOVA with Šidák's multiple-comparison test.

Supplemental Figure 5. METTL14 promotes HGP through G6pc. (A) C57BL/6J mouse primary hepatocytes were transduced with METTL14 or GFP adenoviral vectors for 48 h. Cell extracts were immunoblotted with antibodies against METTL14 or p85 (loading control). (B-D) *Mettl14th* male mice were fed HFD for 10 weeks, and then transduced with AAV8-TBG-Cre (n=3) or AAV8-TBG-GFP vectors (n=3). Eight weeks later, livers were isolated for RNA-seq analysis. (B) KEGG pathways based on GO analyses of upregulated and downregulated genes. (C) A volcano plot of the upregulated and downregulated genes. G6pc transcript was marked. (D) Gene expression heatmap. (E) Primary hepatocytes were purified from *Mettl14^{t/f}* and *Mettl14*^{Δhep} mice at 9 weeks of age. Hepatocyte extracts were immunoblotted with antibodies against G6pc and p85. G6pc levels were normalized to p85 levels (n=3 mice per group). (F-G). Males (8 wks old) were transduced with the indicated AAV vectors and fed a normal chow diet. (F) Liver extracts were immunoblotted with anti-G6pc antibody. G6pc levels were normalized to p85 levels (n=3 mice per group). (G) GTT was performed 4 wks after AAV transduction. *Mettl14^{t/f}*, AAV-GFP: n=7, *Mettl14^{Δhep}*, AAV-GFP: n=5, *Mettl14^{Δhep}*, AAV-G6pc: n=6. AUC: area under curve. a.u.: arbitrary unit. (H) *Mettl14^{t/t}* males were fed a HFD for 10 weeks and then transduced with AAV8-TBG-GFP or AAV8-TBG-Cre vectors. Six weeks later, m⁶A levels in G6pc, Acc1, Fasn, Acly and Scd1 transcripts were measured in the liver using m⁶A-RIP (n=3 mice per group). Data are presented as mean ± SEM. *p<0.05, **p<0.01, ***p<0.001, two-sided unpaired *t*-test (E, H) and one-way ANOVA with Tukey's multiple-comparison test (F-G).

Supplemental Figure 6. METTL14 m⁶A-dependently increases G6pc biosynthesis. (A) Primary hepatocytes were isolated from $Mettl14^{t/f}$ and $Mettl14^{\Delta hep}$ males at 8 weeks of age. Newly-synthesized and OPP-tagged p85 protein was measured by anti-p85 antibody in OPP

assays and normalized to p85 input (n=3 mice per group). (B). Primary hepatocyte culture (C57BL/6J males) was transduced with METTL14 or GFP adenoviral vectors for 24 h and subjected to OPP assays (normalized to G6pc input, n=3 per group). (C) Primary hepatocyte cultures were prepared from C57BL/6J males and transduced with METTL14 or GFP adenoviral vectors for 24 h. Newly-synthesized and OPP-tagged p85 protein was measured by anti-p85 antibody in OPP assays and normalized to p85 input (n=3 mice per group). (D-E) Huh7 hepatocytes were cotransfected with METTL14 and G6pc plasmids. 12 h later, cells were treated with STM2457 (5 µg/ml) (DMSO as control) for 36 h. Cell extracts were immunoblotted with anti-HA antibody. HA-G6pc levels were normalized to p85 levels (n=3 per group). (F) The m⁶A sites in *G6pc* mRNA. The number indicate the m⁶A position (TSS: +1). Blue color shows the mutated m⁶A in $G6pc^{\Delta 5A}$ mRNA. TSS: transcription start site. (G) Huh7 hepatocytes were cotransfected with *METTL14* and *G6pc or G6pc*^{$\Delta 5A$} plasmids for 2 days, and cell extracts were immunoblotted with the indicated antibodies. (H) Huh7 hepatocytes were cotransfected with *METTL14* and *HA-G6pc or HA-G6pc*^{∆5A} plasmids. 36 h later, OPP assays were performed to measure G6pc translation. OPP-marked G6pc levels were normalized to inputs (n=3 per group). Data are presented as mean ± SEM. *p<0.05, **p<0.01, ***p<0.001, one-way ANOVA with Tukey's multiple-comparison test.

Supplemental Figure 7. YTHDF1 m⁶A-dependently increases G6pc synthesis. Huh7 cells were cotransfected with *METTL14*, *YTHDF1* and *HA-G6pc* or *HA-G6pc*^{Δ5A} plasmids for 2 days, and cell extracts were immunoblotted with the indicated antibodies.

Target gene	Modification type	Genomic location	Source	Support datasets
G6pc	m6A	chr11:101258448(+)	RMBase	<u>GSM908344</u>
G6pc	m6A	chr11:101258497(+)	RMBase	<u>GSM908344</u>
G6pc	m6A	chr11:101258518(+)	RMBase	<u>GSM908344</u>
G6pc	m6A	chr11:101258535(+)	RMBase	<u>GSM908344</u>
G6pc	m6A	chr11:101258570(+)	RMBase	<u>GSM1828595</u> , <u>GSM908344</u>

G6pc	m6A	chr11:101258638(+)	RMBase	<u>GSM1828595, GSM908344</u>
G6pc	m6A	chr11:101258695(+)	RMBase	<u>GSM1828595,</u> <u>GSM908344</u>
G6pc	m6A	chr11:101258704(+)	RMBase	<u>GSM1828595</u> , <u>GSM908344</u>
G6pc	m6A	chr11:101258787(+)	RMBase	<u>GSM908344</u>
G6pc	m6A	chr11:101258827(+)	RMBase	<u>GSM908344</u>
G6pc	m6A	chr11:101261543(+)	RMBase	<u>GSM908344</u>
G6pc	m6A	chr11:101261569(+)	RMBase	<u>GSM908344</u>
G6pc	m6A	chr11:101267130(+)	RMBase	<u>GSM908344</u>
G6pc	m6A	chr11:101267248(+)	RMBase	<u>GSM1828595, GSM908344</u>
G6pc	m6A	chr11:101267259(+)*	RMBase	<u>GSM1828595, GSM908344</u>
G6pc	m6A	chr11:101267341(+)	RMBase	<u>GSM1828595, GSM908344</u>
G6pc	m6A	chr11:101267349(+)	RMBase	<u>GSM1828595, GSM908344</u>
G6pc	m6A	chr11:101267411(+)	RMBase	<u>GSM908344</u>
G6pc	m6A	chr11:101267600(+)*	RMBase	<u>GSM1828595</u> , <u>GSM908344</u>
G6pc	m6A	chr11:101267670(+)*	RMBase	<u>GSM1828595</u> , <u>GSM908344</u>
G6pc	m6A	chr11:101267677(+)*	RMBase	<u>GSM1828595, GSM908344</u>
G6pc	m6A	chr11:101267695(+)	RMBase	<u>GSM1828595, GSM908344</u>
G6pc	m6A	chr11:101267820(+)	RMBase	<u>GSM1828595, GSM908344</u>
G6pc	m6A	chr11:101268025(+)	RMBase	<u>GSM1828595</u>
G6pc	m6A	chr11:101268102(+)	RMBase	<u>GSM1828595</u>
G6pc	m6A	chr11:101268317(+)	RMBase	<u>GSM1828595</u> , <u>GSM908344</u>
G6pc	m6A	chr11:101268373(+)	RMBase	<u>GSM1828595</u> , <u>GSM908344</u>
G6pc	m6A	chr11:101268404(+)	RMBase	<u>GSM1828595</u> , <u>GSM908344</u>

Table S1. Liver m⁶A-seq datasets and RM2Target analysis. * Also identified by the SRAMP Prediction Server.

ANTIBODY	SOURCE	Cat#	Blot
METTL3	ABclonal	A8370	1:2000
METTL14	Sigma	HPA038002	1:2000
WTAP	ABclonal	A14695	1:1000

m ⁶ A	Cell Signaling Technology	56593	1:2000
pAKT (pThr308)	Cell Signaling Technology	2965	1:2000
pAKT (pSer473)	Cell Signaling Technology	4060	1:2000
AKT	Cell Signaling Technology	2920	1:2000
pCREB	Cell Signaling Technology	9198	1:2000
CREB	Cell Signaling Technology	4820	1:2000
G6PC	ABclonal	A21168	1:1000
p85	Home made	N/A	1:5000
Lamin A/C	Cell Signaling Technology	4777	1:2000
ACC1	Cell Signaling Technology	3676	1:2000
FASN	Cell Signaling Technology	3180	1:2000
ACLY	Cell Signaling Technology	4332	1:2000
SCD1	Cell Signaling Technology	2794	1:2000
HA	Home made	N/A	1:2000
Flag	Sigma	F1804	1:5000
FTO	Abcam	Ab94482	1:2000
ALKBH5	Proteintech Group	16837-1-AP	1:1000
YTHDF1	ABclonal	A23773	1:2000
YTHDF2	Cell Signaling Technology	71283	1:2000
YTHDF3	ABclonal	A8395	1:2000

Table S2. Antibody list

Genes	Forward		Reverse	
Mettl3	AGCAGGACTCTGGGCACTT		GCTTAGGGCCGCTAGAGGTA	
36B4	AAG	CGCGTCCTGGCATTGTCT	CCGCAGGGGCAGCAGTGGT	
Mettl14	GCT	TGCGAAAGTGGGGTTAC	AATGAAGTCCCCGTCTGTGC	
Wtap	GCT	TTGGAGGGAAAGTACAC	CATCTCCTGCTCTTTGGTTG	
Fto	AGA	ACCTGGTGGACAGGTCA	CTGGTGTCTCGATGTCCCAA	
Alkbh5	CTT	TGCTTCGGCTGCAAGTT	AATGTCCTGAGGCCGTATGC	
Acc1	CAG	GGACTATGTCCTGAAGCA	GGAATCCATTGTGGAGAGGA	
Fasn	TTG	ACGGCTCACACACCTAC	CGATCTTCCAGGCTCTTCAG	
Acly	CCTCAAGGACTTCGTCAAACA		GCCCATACTCCTTCCTAGCAC	
Scd1	AGGTGCCTCTTAGCCACTGA		CCAGGAGTTTCTTGGGTTGA	
G6pc	CCG	GTGTTTGAACGTCATCT	CAATGCCTGACAAGACTCCA	
Gcgr	CAC	CCTCTGCCCAGGTAATG	GCAGGAAATGTTGGCAGTGG	
Pck1	ATCATCTTTGGTGGCCGTAG		ATCTTGCCCTTGTGTTCTGC	
Pdk4	GCT	TGCCAATTTCTCGTCTC	CCTGCTTGGGATACACCAGT	
Cloning Primers		Sequences		
G6pc ^{∆5A} -1F		TCTACAATGCCAGCCTCCGGAAGTATTGTCTCATCACCATCTTCTT		
<i>G6pc^{∆5A}-</i> 2R		GTGTGACTGACCCAGGATCCGGGCTAGGC		
<i>G6pc</i> ^{∆5A} -3F		GGATCCTGGGTCAGTCACAAGAAGTCTTTGTA		
G6pc ^{∆5A} -4R		TTGATCCTAGACCTTTGCATGGCGGTTGAC		
<i>G6pc^{∆5A}-</i> 5F		ATGCAAAGGTCTAGGATCAACTAAAGCCTCTGAAAC		

<i>G6pc^{∆5A}</i> -6R	ACAGTGTGATTTTTATGTACAGTGGAGACTATCTGGAAGCAG
<i>G6pc^{∆5A}-</i> 7F	CTCCTGTGGTCTTTGGAGAAAGCTAAGAGATGGTG
<i>G6pc</i> ^{∆5A} -8R	TTCTCCAAAGACCACAGGAGGTCCACCCCTAG
G6pc-cloning-F	CAGCGGATCCACTAGTATGGAGGAAGGAATGAACATTCTCC
G6pc-cloning-R	GATTGGATCCAAGCTTGTGCTTGGTGTGGGTGAA
YTHDF1-cloning-F	CAGCGGATCCACTAGTATGTCGGCCACCAGCGTG
YTHDF1-cloning-R	TCGATAAGCTCTCGAGTCATTGTTTGTTTCGACTCTGCCG
YTHDF3-cloning-F	CAGCGGATCCACTAGTATGTCAGCCACTAGCGTGG
YTHDF3-cloning-R	TCGATAAGCTCTCGAGTTATTGTTTGTTTCTATTTCTCTCCCTAC

Table S3. Primer list