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Perhaps the most well-known model of pathophysiology with 
proven clinical utility for chronic disease was the minimal 
model of glucose homeostasis developed by Bergman et al.1 
I recently watched Dr Bergman present his renowned work to 
an audience of young bioengineers at the University of Cali-
fornia, San Diego. One student was not sure how to charac-
terize the study and asked Dr Bergman whether his work was 
“systems biology.” The philosophical inclination of the current 
generation of biologically inclined engineers who are matricu-
lating in a biological science environment that is data rich was 
palpable. At the very least, we have witnessed a paradigm 
shift in research driven by new technologies that has defined 
a mature field in some of our institutions of higher learning.

Before, and concurrently with, the aforementioned omics 
revolution, there has been a growth of systems pharmacol-
ogy models, the development of which has been driven by 
the need to recapitulate dynamic and complex patient pheno-
types.2 Many models with predictive value have been devel-
oped from medical research, with demonstrated tangible 
impacts on drug development from discovery through the 
clinical stage.3 Systems pharmacology models that mecha-
nistically simulate clinical phenotypes have been presented 
in the peer-reviewed literature with validation.2 However, 
there is arguably substantial utility for modeling approaches 
that are both compatible with omics data sets and ultimately 
mechanistically insightful with respect to quantifiable clinical 
end points (clinical phenotypes) in medical research and drug 
development. Separate research studies have demonstrated 
individual, concrete steps to model pathophysiology mecha-
nistically across scales, from detailed molecular mechanisms 
up to clinical outcomes for a simulated population, as will be 
discussed here and as shown in Figure 1.

Systems biology approaches have been applied to develop 
insights into alterations in molecular pathways and targets 
from omics data sets.2 For example, there are many illustra-
tive studies that model complete cellular metabolism in both 
healthy and pathological states.4 Although it is recognized 

that there are still gaps in the knowledge of all of the meta-
bolic conversions that occur in a human cell,4 metabolism 
is sufficiently well described to recreate functional cellular 
networks for many tissue types.3,4 Genome-scale models of 
metabolism (GEMs) have, therefore, served as frameworks 
for omics data integration and mechanistic interpretation 
that have been increasingly applied in medically relevant 
contexts.4 GEMs mechanistically model the conversion of 
thousands of metabolites through reactions and also contain 
mappings from transcripts to associated proteins, reactions, 
and metabolites for all of the known metabolic reactions in a 
cell. GEMs, therefore, facilitate the mechanistic integration of 
omics data and the impact of medically relevant interventions 
on the function of a cell’s metabolic network.3,4

Notably, despite their successful application, the scope 
of GEMs is necessarily limited. For example, incorporating 
the capability to predict the mechanistic impact of additional 
cellular processes, such as signaling and transcriptional reg-
ulation, at the genome scale in human tissues presents addi-
tional, significant challenges. Furthermore, network functions 
that have been successfully modeled with GEMs of human 
cells may not be best suited for the measures that are clini-
cally accessible or possess established clinical relevance. 
For example, GEMs directly model allowed rates of reaction 
or transport as flux. However, it is generally easier to mea-
sure the serum concentration for a panel of metabolites than 
to determine their rates of consumption and secretion from 
a given tissue. Recently, Krauss et al.5 developed an innova-
tive genome-scale modeling approach to recapitulate phe-
notypes that have been quantitatively measured in the clinic. 
Krauss et al.5 integrated a GEM with a physiologically based 
pharmacokinetic model to simulate the effect of hepatic met-
abolic network function on plasma metabolite concentrations. 
A key development that facilitated the integrated approach 
was the availability of HepatoNet1,6 a GEM developed spe-
cifically to model liver metabolism. HepatoNet1 was coupled 
with the consumption and production of metabolites in the 
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Systems pharmacology models capable of accurately recapitulating sophisticated patient phenotypes 
have enabled the investigation of mechanisms responsible for therapeutic efficacy. Although omics data 
sets are capable of characterizing the operation of subcellular networks, their utility in mechanistically 
predicting quantitative, clinically accessible outcome measures has been limited. Developing insights 
into clinical outcomes from omics data sets will benefit from modeling approaches that can integrate 
molecular networks mechanistically with simulations of patient pathophysiology across compartments 
and scales.
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appropriate compartment of the physiologically based phar-
macokinetic model. Krauss et al. demonstrated a number of 
applications of the integrated model, from the study of inborn 
errors of metabolism to drug-induced toxication. Notably, the 
integrated approach by Krauss et al. demonstrated a predic-
tion of the quantitative concentration profile of metabolites, 
such as ammonia and uric acid, in the plasma that was con-
sistent with clinical observations.

In analogy with population pharmacokinetic/pharmaco-
dynamic modeling, the evaluation of systems models at the 
population scale presents an additional, important step in 
both validating and using models as a decision-making tool 
when developing new medical treatments. The characteriza-
tion of diversity in a cohort of simulated patients has previ-
ously been reported in the context of selecting clinical trial 
end points and optimizing trial design.3 There have been a 
few published algorithms capable of linking the outcomes 
for simulated patients, often referred to as virtual patients, to 
clinical outcomes at the population scale.7–9 One primary ele-
ment has been to manipulate the prevalence of the simulated 
patients so that each simulated clinical measure, including 
the response to medicines, rate of disease progression, 
and additional simulated biomarkers, exhibits a quantita-
tively similar average and diversity as the real clinical pop-
ulation. One method to simulate population responses has 

been developed by Klinke7 for a model of type 2 diabetes, 
and the method takes advantage of the data available from 
the National Health and Nutritional Examination Survey III. 
One strength of the approach, which used direct fitting of the 
multidimensional distribution data from the National Health 
and Nutritional Examination Survey III, was that it allowed 
for a comprehensive validation of the simulated population’s 
multivariate diversity, including the correlation of clinical mea-
sures. A second approach to simulate population responses 
was used to develop simulated populations of drug-induced 
liver injury.8 Rather than adjusting weights after developing 
the simulated patients, this approach guides the creation of 
each individual simulated patient based on the comparison 
to available data for both the clinical outcomes and specified 
parameters. A third method for developing simulated popula-
tions was used to match the response of simulated patients 
from a model of rheumatoid arthritis to a number of large 
clinical trials of biologics.9 This approach enabled the assess-
ment of how changes in the prevalence of individual patients 
in the population would influence the observed mean effi-
cacy in a trial and the resulting impact on patient stratification 
biomarkers.

One important challenge that, if addressed, would 
enhance the utility of systems pharmacology models is an 
improvement in the ability to interface with the data sets of 

Figure 1  Large data sets can be used to guide mechanistic models and ultimately develop quantitative predictions of clinical 
phenotypes at the population level. Omics data may be used to inform network models directly, or instead, to inform data-driven methods 
to assess cellular states. The resulting predictions for cellular function (cellular “exhaustion,” dysfunctional or inactive pathways, etc.) can be 
used to inform simulations of physiologic phenotypes that can be assessed and quantified in a clinical setting. Calibration or validation of the 
simulated physiologic phenotypes has been performed with additional data sets such as molecular imaging data and mediator concentrations. 
Given alternate physiologic parameters or alterations in the underlying network, alternate clinical outcomes are predicted. Disease outcome 
data can then be used to calculate the prevalence of the modeled patient phenotypes. The results are a prediction for the frequency of 
occurrence of underlying mechanisms in the disease pathophysiology, a rich simulated data set to mine for markers, and a validated disease-
modeling platform that can be mechanistically altered to hypothesize and prioritize opportunities for therapeutic intervention. Portions adapted 
from refs. 3 and 9.
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increasing comprehensiveness that are becoming available. 
There will be much utility in the development of models that 
simulate clinical end points and can also be readily informed 
with omics data sets to address the effects of interventions 
on clinically quantifiable disease outcome measures given 
the available knowledge of molecular factors. The model 
developed by Krauss et al.5 is an excellent example, because 
their model simulates plasma metabolite concentrations and 
also contains the mappings that define the dependencies of 
hepatic metabolic reactions on messenger RNA transcripts 
and enzymes. In other words, Krauss et al. used a complete 
metabolic network reconstruction as a bridge to calculate cel-
lular metabolic pathway activity, which can in turn be used 
to interpret the implications of transcriptomics or proteomics 
data sets on plasma end points. Alternatively, systems mod-
els may be developed and refined to include critical pathways 
identified from data-driven approaches. There are clinical 
trials that have taken advantage of the results of mining 
patient data in their design. For example, the Biomarkers of 
Anti-TNF Treatment Efficacy in Rheumatoid Arthritis–Unre-
sponsive Populations (BATTER-UP) trial is currently evaluat-
ing an eight-gene classifier to predict the patients who will 
not respond to anti–tumor necrosis factor-α agents (http://
clinicaltrials.gov/, trial NCT01211678). Notably, the interpre-
tation of omics data sets to refine model scope is an impor-
tant step in the development of enhanced pharmacodynamic 
models.10 When effectively coupled to omics data sources, 
modeling patient physiology promises to lend insight into the 
mechanistic role for markers identified by systems biology 
methods in therapeutic responses and disease progression.

Published studies have, therefore, begun to illustrate the 
link from molecular systems biology models to dynamic, 
quantifiable clinical outcomes at the population level. The 
establishment of new, integrative disease-modeling plat-
forms that facilitate developing quantitative predictions for 
simulated patient outcomes from omics data sets will both 
fundamentally advance systems biology and improve medi-
cal research and drug development. However, the challenge 
of optimally deploying systems modeling to impact the devel-
opment of new medicines is twofold. As has been discussed, 
mechanistic systems models can be developed and intelli-
gently deployed to serve as a useful framework to interpret 
the content of omics data sets in the context of their functional 
implications. In addition, for maximum utility and confidence 

in model predictions, meaningful efforts to refine model 
parameters, pathways, and scope must also be performed. 
This requires prospectively developing quantitative hypoth-
eses, challenging them with new data sets and experiments, 
and subsequent model refinement. Using systems modeling 
approaches well, therefore, also requires the development of 
new experiments that have not been previously performed, 
which requires time and planning.10 Mechanistic simula-
tion and omics scientists are limited to available parameter 
and pathway information from databases and the literature, 
which may be inconsistent or incomplete. Life scientists must, 
therefore, also provide input into model development and 
refinement. Model development and revision are, therefore, 
best viewed as an active, nontrivial undertaking,3,10 requir-
ing concerted planning and efforts by preclinical and clinical 
scientists with varied expertise.
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