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ABSTRACT

Prediction of peptide binding to major histocom-
patibility complex (MHC) molecules is a basis for
anticipating T-cell epitopes, as well as epitope
discovery-drivenvaccinedevelopment. In thehuman,
MHC molecules are known as human leukocyte
antigens (HLAs) and are extremely polymorphic.
HLA polymorphism is the basis of differential
peptide binding, until now limiting the practical use
of current epitope-prediction tools for vaccine devel-
opment. Here, we describe a web server, PEPVAC
(Promiscuous EPitope-based VACcine), optimized
for the formulation of multi-epitope vaccines with
broad population coverage. This optimization is
accomplished through the prediction of peptides
that bind to several HLA molecules with similar
peptide-binding specificity (supertypes). Specifically,
we offer the possibility of identifying promiscuous
peptide binders to five distinct HLA class I super-
types (A2, A3, B7, A24 and B15). We estimated the
phenotypic population frequency of these super-
types to be 95%, regardless of ethnicity. Targeting
these supertypes for promiscuous peptide-binding
predictions results in a limited number of potential
epitopes without compromising the population
coverage required for practical vaccine design con-
siderations. PEPVAC can also identify conserved
MHC ligands, as well as those with a C-terminus
resulting from proteasomal cleavage. The combina-
tion of these features with the prediction of promis-
cuous HLA class I ligands further limits the number
of potential epitopes. The PEPVAC server is hosted

by the Dana-Farber Cancer Institute at the site http://
immunax.dfci.harvard.edu/PEPVAC/.

INTRODUCTION

T-cells are the key component of the adaptive immune system,
playing a pivotal role fighting both infectious agents and can-
cer cells (1). T-cell-based immune responses are driven by
antigenic peptides (epitopes), presented in the context of
major histocompatibility complex (MHC) molecules (2).
Therefore, the prediction of peptides that can bind to MHC
molecules has become the basis for the anticipation of T-cell
epitopes (3). MHC molecules fall into two major classes,
namely MHC class I (MHCI) and MHC class II (MHCII).
Antigens presented by MHCI and MHCII are recognized by
two distinct sets of T-cells, CD8+ T and CD4+ T-cells, respect-
ively. Identification of T-cell epitopes is important for both
understanding disease pathogenesis and vaccine design. Thus,
the availability of computational methods that can readily
identify potential epitopes from primary protein sequences
has fueled a new paradigm in vaccine development that is
driven by this epitope discovery.

A major complication to this vaccine development approach
is the extreme polymorphism of the MHC molecules. In the
human, MHC molecules are known as human leukocyte anti-
gens (HLAs), and there are hundreds of allelic variants of the
class I (HLA I) and the class II (HLA II) molecules. These
HLA allelic variants bind distinct sets of peptides as MHC
polymorphism is the basis for peptide-binding specificity
(4), and are expressed at vastly variable frequencies in
different ethnic groups (5). This complexity suggests that a
large number of HLA molecules will have to be targeted
for peptide-binding predictions, requiring so many peptides
to elicit a broadly protective multi-epitope vaccine as to be
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impractical. Interestingly, groups of several HLA molecules
(supertypes) can bind largely overlapping sets of peptides
(6,7). The identification of these HLA supertypes facilitates the
epitope-based vaccine development for the following two
reasons: first, targeting of representative HLA alleles from
distinct supertypes allows the immune response to be stimu-
lated in a variety of genetic backgrounds; second, the selection
of promiscuous peptide binders to those alleles included
within a given supertype limits the number of peptides to
be considered without decreasing the spectrum of the immune
response.

In this paper, we describe aweb server, PEPVAC (Promiscu-
ous EPitope-based VACcine), that allows the prediction of pro-
miscuous epitopes to five HLA I supertypes: A2 (A*0201-07,
A*0209andA*6802),A3 (A*0301,A*1101,A*3101,A*3301,
A*6801andA*6601),A24 (A*2402andB*3801),B7 (B*0702,
B*3501, B*5101-02, B*5301 and B*5401) and B15 (A*0101,
B*1501_B62 andB1502). These supertypeswere defined using
a method based on the clustering of the predicted peptide-
binding repertoireofMHCmolecules (8).Thecombinedpheno-
typic frequency of these supertypes is >95% for five major
American ethnicities (Black, Caucasian, Hispanic, Native
American and Asian). Thus, targeting these supertypes with
epitope predictionswould potentially provide a population cov-
erage >95%, regardless of ethnicity.

Peptides binding to HLA I molecules are potential CD8+

T-cell epitopes. In vivo, the C-terminus of these antigenic
epitopes results from the selective proteolysis of cytosolic
proteins mediated by the proteasome (9). The proteasome is
thus important for determining these epitopes. Therefore, PEP-
VAC has also been implemented with an algorithm for the
identification of those peptides containing a C-terminus that is
likely to be the result of proteasomal cleavage. Finally, PEP-
VAC also allows the prediction of conserved epitopes from
sequences with variability masked. The combination of these
two features serves in both refining the predictions of T-cell
epitopes and limiting the number of potential epitopes.

Prediction of peptide-MHCI binding

The peptide-binding mode of MHCI molecules differs from
that of MHCII (10–12), and as result, the prediction of
peptide-MHCII binding is less reliable than that of peptide-
MHCI binding. Thereby, we have focused here in the predic-
tion of MHCI ligands, a class that is specifically recognized by
CD8+ cytotoxic T lymphocytes. Peptides binding to a specific
MHCI molecule are related by sequence similarity, and thus
we use position-specific scoring matrix (PSSM) from aligned
MHCI ligands as the predictors of peptide-MHCI binding in
combination with a dynamic algorithm. PSSMs are also
known as profiles and weight matrices and have previously
been shown to be adequate tools for the prediction of peptide-
MHC binding (13–16). PSSMs are derived from block align-
ments of MHCI ligands that are of the same length. Such a
restriction guarantees proper structural alignment of ligands
and subsequent accuracy of the peptide-binding predictions
(13,14). Given that MHCI-ligands are usually of nine residues
in length, PSSMs used in this study are for the prediction of
ligands of that same size (nine residues). Accuracy of the
prediction of peptide-MHCI binding using PSSMs varies
depending on threshold and the targeted MHCI molecule.

On average, however, ROC analyses of the predictions at
different thresholds result in AUC values (Area Under ROC
Curve) above 0.8, indicating that these PSSMs are very good
for predictors of peptide-MHCI binding. Furthermore, >80%
of known CD8+ T-cell epitopes can be predicted at a 2%
threshold from their protein sources.

Supertypes: identification and population coverage
analysis

We defined HLA I supertypes through clustering of predicted
MHC peptide-binding repertoires (8). In brief, the core of the
method consists of the generation of a distance matrix whose
coefficients are inversely proportional to the peptide binders
shared by any two HLA molecules (Figure 1). Subsequently,
this distance matrix is fed to a phylogenic clustering algorithm
to establish the kinship among the distinct HLA peptide-
binding repertoires. Figure 2 shows a phylogenic tree built
upon the peptide-binding repertoire of 55 HLA I molecules,
using a Fitch and Margoliash clustering algorithm (17). We
defined supertypes (Figure 2) as groups of HLA I alleles with
>20% peptide-binding overlap (pairwise between any pair of
alleles). The supertypes identified in this study include the A2,
A3, B7, B27 and B44 supertypes previously identified by
Sidney et al. (16). Furthermore, we have also identified
three new supertypes, BX, B15 and B57 (Figure 2). The cumu-
lative phenotypic frequency (CPF) of these supertypes is shown
in Table 1. CPF was calculated using the gene and haplotype
frequencies reported for five distinct American ethnic groups
including Blacks, Caucasians, Hispanic, North American

Figure 1. Strategy to define HLA I supertypes. HLA I supertypes are identified
by clustering their peptide-binding repertoire (8). The method consists of four
basic steps. (i) Predict the peptide-binding repertoire (i, j sets in figure) of each
HLA I molecule from the same random protein using the relevant PSSMs in
combination with the RANKPEP scoring algorithm (13). (ii) Compute the
number of common peptides between the binding repertoire of any two
HLA I molecules. (iii) Build a distance matrix whose coefficients are inversely
proportional to the peptide-binding overlap between any pair of HLA I
molecules. (iv) Use a phylogenic clustering algorithm to compute and visualize
HLA I supertypes (clusters of HLA I molecules with overlapping peptide-
binding repertoires).

Nucleic Acids Research, 2005, Vol. 33, Web Server issue W139



Natives and Asians (18). CPF represents the population cov-
erage that would be provided by a vaccine composed of epi-
topes restricted by the alleles included in the supertype. The
A2, A3 and B7 supertypes have the largest CPF in the five
studied ethnic groups, close to 90%, irrespective of ethnicity.
To increase the population coverage to >95%, regardless of
ethnicity, it is necessary to include at least two more super-
types. Specifically, the supertypes A2, A3, B7, B15 and A24/
B44 represent the minimal supertypic combinations with the

indicated population coverage. Alleles belonging to each of
these supertypes are shown in Figure 2 and Table 1.

PEPVAC web server

Following the HLA I supertypic analysis as discussed, we have
implemented a tool for the prediction of promiscuous peptide
binders to a set of supertypes with a CPF >95%, irrespective of
ethnicity. We named this tool PEPVAC, and it is Online at the

Figure 2. HLA I peptide-binding overlap and supertypes. The Figure shows an unroot dendrogram built after clustering the overlap between the peptide-binding
repertoire of the indicated HLA I molecules. Peptide-binding repertoires of HLA I molecules were obtained from a random protein (1000 amino acids) using the
relevant PSSMs at a 2% peptide-binding threshold. This dendrogram reflects the relationship between the peptide-binding specificities of HLA I molecules. HLA I
alleleswith similar peptide-binding specificities branch together in groups or clusters. The closerHLA I alleles branch, the larger is the overlap between their peptide-
binding repertoires. Supertypes (shadowed with different colors) consist of groups HLA I alleles with at least a 20% peptide-binding overlap (pairwise between any
pair of alleles).

Table 1. Cumulative phenotype frequency of defined supertypes

Supertype Alleles Blacks (%) Caucasians (%) Hispanics (%) North American natives (%) Asians (%)

A2 A*0201-7, A*6802 43.7 49.9 51.8 52.4 44.7
A3 A*0301, A*1101, A*3101,

A*3301, A*6801, A*6601
35.4 46.9 41.5 40.7 47.9

B7 B*0702, B*3501, B*5101-02,
B*5301, B*5401

45.9 42.2 40.5 52.0 31.3

B15 A*0101, B*1501_B62, B1502 13.06 37.80 16.75 27.26 21.04
A24 A*2402, B*3801 15.5 17.28 25.85 41.94 35.0
B44 B*4402, B*4403 10.4 27.7 17.15 14.4 10.1
B57 B5701-02, B5801, B*1503 19.2 10.3 5.9 5.8 16.5
ABX A*2902, B*4002 7.4 11.3 19.1 16.3 16.3
B27 B*2701-06, B*2709, B*3909 2.3 4.8 5.1 16.9 4.7
BX B*1509, B*1510, B*39011 3.1 0.7 4.2 7.8 4.1

Cumulative phenotype frequency was obtained using the HLA I gene and haplotype frequencies published by Cao et al. (18) corresponding to the indicated five
American ethnic groups.Method for computing the cumulative phenotype frequency considered the disequilibrium linkage between theHLA-Aand -B gene andwas
based on that reported by Dawson et al. (21).
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site http://immunax.dfci.harvard.edu/PEPVAC/ hosted by the
Molecular Immunology Foundation/Dana-Farber Cancer
Institute. The web interface to PEPVAC is divided into several
sections that facilitate intuitive use (Figure 3A). Main features
of the web server are discussed bellow.

Input and limitations. In PEPVAC, input query to carry epi-
tope predictions is entered in the GENOME section
(Figure 3A). Input consists of a single or various protein
sequences in FASTA format. Only the standard 20 amino
acid residues are considered. There are several translated gen-
omes from pathogenic organisms that can be selected as
inputs. More useful, a user-provided local file containing a
set of protein sequences can be uploaded to the server using the
choose/browse bottom. PEPVAC can also process files with
protein sequences, in which the variable sites have been
masked with a dot ‘.’ symbol. In that case, peptide-binding
predictions will be carried out only over consecutive stretches
of nine or more residues. Sequences with variable positions
masked according to the Shannon entropy variability metric
(4,19) can be obtained at the site http://immunax.dfci.harvar-
d.edu/bioinformatics/Tools/sva.html. Currently, there is a limit

of 200 sequences and 50 000 symbols that can be processed per
request. If such limits are exceeded, the server will return an
error.

Supertypes and thresholds. The A2, A3, B7, B15 and A24
(Figure 2 and Table 1) supertypes have been chosen for pro-
miscuous peptide-binding predictions in PEPVAC. Only those
peptides that are predicted to bind to all the alleles included in
the supertypes are returned in the output (Figure 3B). Thresh-
old for the prediction of promiscuous peptide binders in PEP-
VAC has been fixed to provide a reduced and manageable set
of promiscuous peptide binders to each supertype. As an
example, predicted promiscuous peptides to the above five
supertypes from a genome, such as that of Influenza virus A
(4160 amino acids) distributed in 10 distinct open reading
frames, represent only 5.51% (254 9mer peptides) of all pos-
sible peptides (4617 9mer peptides).

Proteasome cleavage. In PEPVAC, predictions of supertypic
peptide binders are combined with the prediction of pro-
teasomal cleavage using probabilistic language models
derived from HLA I-restricted epitopes (14). Currently,
there are three optional models for proteasomal cleavage

Figure 3. The PEPVAC web server. (A) PEPVAC input page. The page is divided into several sections. E-MAIL, for obtaining the results via e-mail (optional).
GENOMES, where a selection of genomes from pathogenic organisms is available, as well as the possibility of uploading a user-provided genome. SUPERTYPES,
the supertypes A2, A3, B7, A24, and B15 are available for selection. Alleles targeted for peptide-biding predictions in each supertype are indicated. The minimum
population coverage of the selected supertypes is calculated on the fly and shownon the relevantwindow.PROTEASOMALCLEAVAGE, prediction of proteasomal
cleavage using three optimal language models is carried out in parallel to the peptide-biding predictions. (B) PEPVAC result page. An example result page where
theA3 supertypewas selected for peptide-binding predictions from the genomeof InfluenzaA virus (A/PR/8/34) is shown. The result page first displays a summary of
the predictions, followed by the predicted peptide binders to each of the selected supertypes (only A3 in the shown example). Peptides highlighted in violet contain a
C-terminal residue that is predicted to be the result of proteasomal cleavage. If the proteasomal cleavage filter is checked ON in the input page, only violet peptides
will be shown.
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that differ in their sensitivity/specificity ratio of the predictions
as discussed elsewhere (14). These models are selected within
the PROTEASOME CLEAVAGE section. Model 1 has the
highest sensitivity (�95%) and the lower specificity (�60%).
Conversely, Model 3 has the lowest sensitivity (65%) with the
largest specificity (80%). Model 2 has a sensitivity and spe-
cificity of�70%. Promiscuous peptide binders containing a C-
terminal end, predicted to be the result of proteasomal cleav-
age, are shown in violet in the result page (Figure 3B). In the
previous example with the Influenza virus A, the list of pro-
miscuous peptide binders to the five selected supertypes
decreases from 254 down to 170 peptides (3.7% of all 9mer
peptides from Influenza virus A genome) after considering
proteasomal cleavage usingModel 1. Furthermore, a combina-
tion of the predictions of peptide-MHCI binding and proteaso-
mal cleavage increases the specificity of the epitope predictions
by discarding predicted peptide-MHCI binders that are experi-
mentally unable to elicit CD8+ T-cell responses (20).

Output. The results page returned by PEPVAC is shown in
Figure 3B. This page first displays a summary of the predic-
tions, including the chosen selections, the number of predicted
peptides and the minimum population coverage provided by
the supertypic selection, followed by the predicted peptide
binders to each of the selected supertypes (only A3 in the
shown example). Peptides are predicted to bind to all alleles
included in the supertype, and appear ranked with regard to the
PSSMs of the first allele included in the supertype. Relevant
information about each sorted peptide includes its protein
source as well as its molecular weight.
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