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Introduction

Migraine is one of the most common pain disorders.1 Pain has 
a conceptual multidimensional basis consisting of sensory-dis-
criminative, affective-motivational, and cognitive-evaluative 
components.2 In conjunction with the other components, ma-

nipulating the cognitive-evaluative component can influence 
pain; for example, coping strategies based on selective atten-
tion, such as distraction, sensory monitoring, and suppression, 
are used to reduce pain.3 Although migraine does not progress 
generally,4 progression of migraine is known and can be clas-
sified into clinical transformation, physiologic transformation, 
and anatomic progression.5

Several neuropsychological studies have evaluated the cog-
nitive-evaluative component in migraine patients. Although the 
results are controversial, migraineurs were reported to have 
cognitive dysfunctions in memory and attention,6,7 verbal per-
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Background and PurposezzNeuropsychological and neuroimaging studies both suggest that 
frontal lobe dysfunction is present in migraineurs. Since P3a abnormalities manifest in other 
diseases associated with attention problems, such as attention deficit hyperactivity disorder, we 
hypothesized that migraine patients have P3a abnormalities, particularly in the frontal region.

MethodszzEvent-related potentials were measured using a passive auditory oddball paradigm 
in 16 female migraineurs (aged 22.9±2.0 years, mean±SD) during the interictal period and in 
16 age-matched healthy females (22.6±2.0 years). The amplitudes and latencies were analyzed 
independently using repeated-measures analysis of variance. Nonparametric statistical testing 
using a cluster-level randomization method was performed to localize the abnormalities.

ResultszzThe mean P3a amplitude at frontal areas during the third trials was significantly low-
er in migraineurs (1.06 μV) than in controls (1.69 μV, p=0.026). P3a amplitudes were negative-
ly correlated with the duration of the migraine history (r=-0.618, p=0.014). Cluster-based non-
parametric statistical analysis showed that the amplitudes over left frontal areas were significantly 
lower in migraine patients than in controls.

ConclusionszzA reduced P3a amplitude of migraineurs reflects attentional deficits and frontal 
dysfunction. The negative correlation between P3a amplitude and the duration of the migraine 
history suggests that attentional deficits and frontal dysfunction are either the cause or the result 
of headache.	 J Clin Neurol 2013;9:43-50
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formance,8 orbitofrontal function,9 and executive function.10,11 
The brains of migraineurs are also known to have structural 
and functional abnormalities. Some functional neuroimaging st-
udies using voxel-based morphometry (VBM)11,12 and PET13,14 
have revealed cortical dysfunction in migraineurs, particularly 
in the frontal lobe. One study also found that the gray-matter 
volume reduced progressively as the headache duration and 
frequency increased,15 representing evidence of anatomic pro-
gression.

Physiologic transformation during migraine chronification 
may be revealed by event-related potentials (ERPs). The ERP 
components are related to underlying brain activities during 
specific cognitive processes. In contrast to neuroimaging tools, 
which have excellent spatial resolutions but relatively poor 
temporal resolutions, ERPs allow brain activity to be detected 
at millisecond-level resolution.16 Among the ERP components, 
the P3 component represents aspects of information process-
ing, such as attention allocation and decision making.17 P3 con-
sists of two subcomponents called ‘P3a’ and ‘P3b’,18 which 
have different scalp topographies and cortical sources. P3b is 
associated with attention and subsequent memory process, and 
is located at the temporal-parietal area,18 while P3a reflects the 
automatic allocation of attention, and shows a more anterior 
distribution (i.e., in frontocentral areas).19 Studies of P3a have 
revealed abnormalities in attention20,21 and executive function.22 
P3a could be a good component to investigate not only from 
the cognitive-evaluative aspect but also for detecting possible 
frontal dysfunction in migraineurs.

We hypothesized that migraine patients have P3a abnormal-
ities, particularly in the frontal region, since previous neuropsy-
chological and neuroimaging studies have suggested the pres-
ence of frontal lobe dysfunction in migraineurs. Although Wang 
and Schoenen23 studied the P3a amplitude in migraine, they 
were unable to reveal the spatial distribution of these abnor-
malities because they measured P3a using only a single elec-
trode at the Cz location.

The aim of the present study was to elucidate possible ab-
normalities of P3a component, suggesting alterations of the 
cognitive-evaluative component in migraine, and to define spe-
cific brain regions of P3a abnormality in migraine by perform-
ing ERP studies using a passive auditory oddball paradigm 
with multichannel electroencephalography (EEG) recording 
covering the entire scalp. P3a abnormalities were correlated 
with clinical manifestations in order to identify their clinical 
significance.

Methods

Subjects
Female subjects who fulfilled the diagnostic criteria of mi-

graine with or without aura, according to the International Cla-
ssification of Headache Disorder (2nd edition),24 were initially 
considered for the present study. All patients underwent a stan-
dardized interview using a structured questionnaire and clinical 
neurological examinations by a neurologist (J.K.Y.). Clinical 
data were obtained by interview, and included 1) the duration 
of the migraine history, 2) the average number of headaches 
per month during the previous year, and 3) rating the most se-
vere headache experienced during the previous year using a vi-
sual analog scale (VAS).

The exclusion criteria were as follows: 1) taking prophylac-
tic medications for migraine, 2) a history of analgesic drug 
overuse, 3) general neurological or psychiatric disease, as de-
scribed by the Diagnostic and Statistical Manual of Mental 
Disorders (4th edition), 4) a history of drug abuse or depen-
dency, including that related to alcohol consumption and ciga-
rette smoking, 5) a history of mixed headache types, 6) a histo-
ry of a neurological disorder or abnormal findings on neuro-
logic examination, or 7) impaired auditory function. However, 
subjects who intermittently used rescue medications, such as 
acetaminophen, nonsteroidal anti-inflammatory drugs, and 
triptans, were not excluded.

Age-matched healthy female volunteers who responded to 
an advertisement at Korea University participated in the study 
as controls. These volunteers were also interviewed using a st-
ructured questionnaire and examined by a neurologist (J.K.Y.). 
All of the participants provided informed consents in accor-
dance with the guidelines issued by the institutional review 
board of the Korea University Medical Center after they had 
been informed about the study procedures.

EEG recordings
EEG recordings were made using 27 electrodes placed on the 
scalp in accordance with the international 10-20 system, but 
with extended coverage of the lower temporal region (F9/10, 
T9/10, and P9/10). The reference electrode was Pz, impedanc-
es were kept below 5 kΩ, and the bandpass filter setting used 
was 0.1-70 Hz with a sampling rate of 400 Hz. Two electrooc-
ulography channels (placed on the left and right outer canthi) 
were added to confirm eyeball movements and allow the relat-
ed electrooculography artifacts to be removed. Participants 
were seated in a comfortable chair and listened to auditory 
stimuli through earphones. All subjects were headache free for 
at least 72 hours both before and after the EEG data were ob-
tained (the latter time was verified by telephone interview).

Stimuli and procedures
Subjects were instructed to read a book and to ignore auditory 
stimuli during the task. The employed oddball paradigm was 
based on sequences of two tones: either a 1000-Hz standard 
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(p=0.8, n=960) tone followed by a 1030-Hz deviant (p=0.2, n= 
240) tone, or vice versa, with each tone starting on a random 
basis. The tone duration was 100 ms with rise and fall times of 
10 ms, and the interstimulus interval was 1000 ms. Each sub-
ject received three trials of an auditory oddball task containing 
a mixture of 400 tones. 

EEG data preprocessing
EEG data were analyzed using EEGLAB version 6.03b25 and 
Fieldtrip,26 and an open-source toolbox operated in the MAT-
LAB environment (version 7.01, MathWorks, Natick, MA, 
USA). EEG data were re-referenced to the average reference, 
and the bandpass filter was set at 0.5-50 Hz. Epochs were then 
extracted using a time window from -200 to +800 ms relative 
to stimulus onset. Baselines were corrected by subtracting the 
root-mean-square values of prestimulus intervals from entire 
epoch lengths.

ERP latencies and amplitudes were measured relative to the 
prestimulus baseline period. The ERP negative peak that ap-

peared between 75 and 125 ms after an auditory stimulation 
was used to define the N1 component, while the positive peak 
between 140 and 190 ms, the negative peak between 200 and 
250 ms, and the positive peak between 255 and 395 ms were 
used to define the P2, N2, and P3a components, respectively 
(Figs. 1 and 2A).

Statistical analysis
The amplitudes and latencies of all ERP components were an-
alyzed independently using repeated-measures analysis of vari-
ance (ANOVA) with a mixed design. The within-subject vari-
ables were stimulus (two values: deviant and standard), trial 
(three values: first, second, and third), location 1 (three values: 
frontal, central, and parietal), and location 2 (three values: left, 
middle, and right), while the between-subject variable was 
group (migraine vs. control). Significant results were further 
analyzed using Bonferroni’s post-hoc analysis. Correlations 
between ERP amplitudes and latencies and durations of the 
headache history (years), headache frequencies (attacks/mon-

Fig. 1. Grand average event-related potential responses to standard and deviant auditory stimuli recorded from 21 electrodes. Red lines repre-
sent plots from migraineurs, and blue lines plots from controls. Solid lines represent plots for deviant tones, and dotted lines those for standard 
tones.
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th), and severities of pain (VAS score, from 0 to 10) were ana-
lyzed by Pearson’s test.

To confirm the statistical results and to extend topographic 
differences in parasagittal head areas to the entire head, ERP 
data from all electrodes and from each time frame were sub-
jected to cluster-based nonparametric statistical tests using 
Fieldtrip.27 The type I error rate of multiple comparisons was 
controlled using a nonparametric randomization test incorpo-
rating the cluster-level randomization method, which identifies 
electrodes showing significant differences between migraine 
patients and controls. This method uses the cluster that differs 
the most between the two groups to calculate a critical value 
for statistical significance, under the null distribution for this 
test statistic, using a permutation method (the Monte Carlo ap-
proximation). Statistical significance was accepted for p val-
ues of <0.05 throughout the study.

Results

Demographic characteristics
Sixteen migraine patients (3 of whom had migraine with aura) 
and 16 healthy controls participated in this study. The mean 
age did not differ between patients (22.9±2.0 years, mean±SD) 
and control subjects (22.6±2.0). The duration of the migraine 
history in the patient group was 6.8±4.1 years. The migraine 
frequency was 6.1±7.5 attacks per month, and the headache 

severity (as scored on the VAS) was 6.8±1.1.

ERP components
Because we used a passive oddball paradigm in this study, re-
action times and correct response rates were not obtained. ERP 
waveforms from 21 electrodes and ERP components are sh-
own in Fig. 1. The latencies and amplitudes of the N1, P2, and 
N2 components did not differ between standard and deviant 
tones. 

Analysis of the P3a component
The mean P3a amplitude at frontal areas (F3, Fz, and F4 elec-
trodes) during the third trial was significantly lower in mi-
graineurs (1.06 μV) than in controls (1.69 μV, p=0.026) (Fig. 2). 
Because the P3a component was produced only by deviant 
tones, repeated-measures ANOVAs did not include the effect 
of ‘stimulus’.

The amplitudes of P3a showed significant main effects for 
‘location 1’ and ‘location 2’ (Table 1). There were marginal in-
teractions between ‘location 1’ and ‘group’ (F1.27,37.98=3.00, p= 
0.082) and between ‘trial’ and ‘group’ (F2,60=2.47, p=0.093), 
and no ‘location 1’×‘group’ or ‘trial’×‘group’ interactions in 
the post-hoc analysis. Latencies of the P3a component did 
not show any significant effects.

Fig. 2B shows that the amplitude of P3a in the frontal elec-
trodes was asymmetric in migraineurs and symmetric in con-

Fig. 2. Voltage topographic scalp maps 
of the P3a component (B) and of event-
related potential (ERP) differences be-
tween patients and normal controls at 
260-280 ms after deviant tones (C). Red 
denotes a positive and blue a negative 
potential. Significant electrodes are high-
lighted, shown by cluster-based nonpar-
ametric statistical analysis (p<0.05). The 
P3a component is indicated by a rect-
angle on the grand average ERP plot at 
the Fz electrode (A).
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trols. Cluster-based nonparametric statistical analysis showed 
that the mean amplitude over left frontal areas was significant-
ly lower in migraine patients than in controls at 260-280 ms 
after deviant tones (Fig. 2C).

Repeated-measures ANOVA with the group (migraineurs 
vs. controls) as the between-subject variables and the trial (first 
vs. second vs. third) and electrodes (F3 vs. Fz vs. F4) as the 
within-subject variables revealed a significant ‘trial’×‘group’ 
interaction (F2,60=3.20, p=0.048) (Table 2). A significant differ-
ence between P3a amplitudes in patients and controls was ob-
served only in the third trial of the experiment. Post-hoc analy-
sis showed that the P3a amplitude for the third trial was lower 
in migraineurs (1.06 μV) than in controls (1.69 μV, p=0.026) at 
the frontal electrodes (F3, Fz, and F4) (Fig. 3). We also com-
pared the P3a amplitude for the third trial between migraineu-

rs and controls at each electrode (F3, Fz, and F4). At the F3 and 
Fz electrodes, the P3a amplitudes for the third trial were signif-
icantly lower in migraineurs than in controls (1.05±0.68 vs. 
1.76±1.05 μV, p=0.031; and 1.03±0.79 vs. 1.81±0.98 μV, p= 
0.019; respectively) At the F4 electrodes, the P3a amplitudes for 
the third trial did not differ between migraineurs and controls.

Correlation between ERP data and  
clinical features
Correlation analysis showed that P3a amplitudes at the Fz elec-

Fig. 3. P3a amplitudes of successive blocks at frontal areas (F3, 
Fz, and F4 electrodes). Mean P3a amplitudes only significantly 
differed between controls and migraineurs during the third block 
(p=0.026).
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Table 2. Analysis of variance for amplitudes of event-related po-
tentials in P3a component at frontal area (F3, Fz, F4)

Source
Amplitude

df* F p-value
E† 1.46 1.58 0.220 
E†×G‡ 1.46 0.37 0.627 
B§ 2.00 0.81 0.449 
B§×G‡ 2.00 3.20 0.048 
E†×B§ 2.77 1.57 0.206 
E†×B§×G‡ 2.77 0.68 0.555 
G‡ 1.00 1.94 0.174 

*Degree of freedom, †Electrodes: F3 vs. Fz vs. F4, ‡Group: mi-
graine vs. control, §Block: 1st vs. 2nd vs. 3rd.

Table 1. Analysis of variance for amplitudes and latencies of event-related potentials in P3a component

A. Using location 1 (frontal vs. central vs. parietal)

Amplitude Latency
df* F p-value df* F p-value

L1† 1.27 24.19 <0.001 2.00 1.43 0.248 
L1†×G‡ 1.27 3.00 0.082 2.00 2.29 0.110 
B§ 2.00 0.75 0.475 2.00 0.56 0.573 
B§×G‡ 2.00 2.47 0.093 2.00 2.01 0.143 
L1†×B§ 2.75 0.19 0.006 4.00 0.28 0.889 
L1†×B§×G‡ 2.75 2.14 0.067 4.00 1.29 0.278 
G‡ 1.00 0.98 0.330 1.00 0.07 0.787 

B. Using location 2 (left vs. middle vs. right)

Amplitude Latency
df* F p-value df* F p-value

L2ll 1.53 5.66 0.011 1.40 2.27 0.131 
L2ll×G‡ 1.53 0.24 0.730 1.40 0.85 0.398 
B§ 2.00 0.75 0.475 2.00 0.56 0.573 
B§×G‡ 2.00 2.47 0.093 2.00 2.01 0.143 
L2ll×B§ 2.70 1.33 0.272 4.00 0.44 0.779 
L2ll×B§×G‡ 2.70 0.96 0.410 4.00 0.49 0.741 
G‡ 1.00 0.98 0.330 1.00 0.07 0.787 

*Degree of freedom, †Location 1: frontal vs. central vs. parietal, ‡Group: migraine vs. control, §Block: 1st vs. 2nd vs. 3rd, llLocation 2: left 
vs. middle vs. right.
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trode were negatively correlated with the duration of the mi-
graine history (r=-0.618, p=0.014) (Fig. 4). P3a amplitudes at 
the F3 electrode also showed a tendency to be negatively cor-
related with the duration of the migraine history (r=-0.461, 
p=0.084). The headache frequency and the most severe head-
ache episode (as scored on the VAS) during the previous year 
were not correlated with P3a amplitudes or latencies.

Discussion

This study used a passive auditory oddball paradigm to com-
pare cognitive ERP responses between migraine patients and 
control subjects. Our main findings are that migraine patients 
showed a lower P3a amplitude in the left frontal area compared 
to the controls, and that this was negatively correlated with the 
duration of the migraine history.

P3a is known to be related to involuntarily captured atten-
tion and orienting responses.18 Therefore, the reduced P3a am-
plitude in our study might be consistent with previous neuro-
psychological findings of dysfunction in involuntary attentio-
nal shift.28-30 We also analyzed the location of the reduced P3a 
amplitude, which revealed decreases in the frontal area. This 
result supports previous studies showing frontal lobe dysfunc-
tion in migraineurs, such as executive dysfunction,10,11 decre-
ased gray-matter density in the frontal cortex shown by VBM,11 
and decreased EEG alpha activity in the frontal cortex shown 
by low resolution brain electromagnetic tomography.31 Pain is 
known to be modulated by attentional mechanisms during 
parallel cognitive processing, which involves the frontal cor-
tex.32 The frontal cortex may exert top-down influences on 
the periaqueductal gray matter and posterior thalamus to in-
hibit pain perception.33-35 Therefore, frontal dysfunction might 
also produce abnormal pain perception, making migraineurs 
susceptible to triggers such as various sensory stimuli.

While P3a in control subjects was maximal over the fronto-
central region with bilateral symmetry, migraine patients show-
ed an asymmetric P3a distribution (lower in the left frontal re-

gion), which is similar to the findings of a fMRI study.36 A 
recent low resolution brain electromagnetic tomography study 
also found that the EEG absolute power, localized to the left 
hemisphere, decreased with increasing headache intensity.37 
Furthermore, impaired verbal memory6 and poor verbal per-
formance8,38 in migraineurs are also indicative of left hemi-
spheric dysfunction. Thus, it seems that the left frontal lobe 
might be more vulnerable in migraineurs, although the under-
lying mechanism is unclear.

We found that the P3a amplitude was negatively correlated 
with the duration of the migraine history. Similarly, recent stud-
ies involving VBM12 and PET14 and neuropsychological eval-
uations7,10 showed that structural and functional declines in 
the cerebral cortex were negatively related to the duration of 
the migraine history. As stated above, frontal and attentional 
dysfunction may result in abnormal pain perception; in other 
words, frontal and attentional dysfunction represented by a re-
duced P3a amplitude seems to cause abnormal pain process-
ing. This explanation is based on the attentional control of 
pain, since migraine is also a pain disorder. Coping strategies 
such as distraction, sensory monitoring, and suppression are 
used to reduce pain.3 Patients with chronic pain are thought to 
have problems with attention or information processing, which 
produces maladaptive behaviors such as catastrophizing cog-
nition, resulting in chronification of pain. Since the reduced 
P3a amplitude in migraineurs in our study also represent ab-
normalities of attention and information processing, an ab-
normal frontal P3a might also contribute to the chronification 
of migraine. 

On the other hand the opposite explanation is also possible, 
with a reduced P3a amplitude resulting from migraine rather 
than being a cause of migraine. Eccleston’s hypothesis states 
that pain demands resources of attention.39 In this context, 
acute pain has been shown to reduce the P3 amplitude.40 An-
other study using fMRI showed that attention-specific net-
works can be modulated by pain.41 However, the migraineurs 
in our study showed a reduced P3a amplitude during the inter-
ictal state, and hence recurrent pain might have produced a con-
stant abnormality of brain. A recent study revealed cognitive 
impairment in children with migraine, and suggested that 
chronic, recurrent migraine attacks will result in cognitive im-
pairment.38 They postulated their hypothesis based on the corti-
cal42 and subcortical43 structures of migraineurs being affected 
by repeated activation of several cortical or subcortical neuro-
nal networks.

While migraine is generally not considered to be a progres-
sive disease, chronification of migraine can occur.4 One of the 
most important risk factors for migraine progression is the at-
tack frequency.44 Reduced frontal P3a, as a physiologic trans-
formation, might be a clinical marker for migraine progression 

Fig. 4. Correlation between frontal P3a amplitude and migraine 
duration.
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irrespective of whether this abnormality is the cause or result of 
chronic headache-reduced frontal P3a might actually be both 
the cause and the result, creating a vicious cycle leading to 
chronification of migraine. A recent epidemiologic study45 in 
Korea shows that the prevalence rate of migraine is 6.1% and 
the prevalence was highest in women aged 40-49 years and 
men aged 19-29 years. Also, the incidence rate is known to 
peak in young ages (ages of 10-11 years in boys and ages of 
14-17 years in girls).46,47 Therefore, early diagnosis and inter-
vention may be important to preventing any deterioration in 
cognitive functions or migraine chronification.

The absence of habituation is generally considered to be a 
consistent main finding of ERP studies in migraine pa-
tients,23,48-52 but this was not observed in migraine patients in 
some other studies.53-56 Furthermore, abnormal habituation has 
been reportedly found even in healthy controls.57,58 Polich et 
al.59 showed that P3 habituation could not be obtained during 
passive oddball paradigm. Similarly, our study also showed 
that P3a habituation was absent in the normal controls. In con-
trast, P3a amplitudes in migraineurs decreased across the trials 
(Fig. 3), indicating the presence of habituation; however, this 
phenomenon was not statistically significant. 

Our study revealed that the mean P3a amplitude during the 
third trial was significantly lower in migraineurs than in con-
trols, which suggests that migraineurs experience problems 
when cognitive stimuli are given repetitively for a sufficient-
ly long duration.

Some limitations of the present study require consideration. 
First, we did not measure ERPs in conjunction with neuropsy-
chological investigations. However, our patients were young 
and it was assumed that a neuropsychological study would 
have revealed at least normal cognitive function in them. Sec-
ond, the small cohort limited the ability to examine the effects 
of gender and age and the differences between migraine with 
aura and migraine without aura. Nevertheless, we took steps to 
ensure that the sample was as homogeneous as possible by 
choosing only young females, which undoubtedly reduced the 
impact of confounders on our analysis.

In conclusion, our study suggests that migraineurs have a 
reduced P3a amplitude in the frontal region, which suggests 
cognitive dysfunction. Furthermore, frontal P3a amplitudes 
were found to be negatively related to the duration of the ill-
ness, which further suggests that frontal dysfunction in mi-
graineurs results from repeated migraine attacks.
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