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Increasing evidences have revealed that N6-methyladenosine (m6A) RNA methylation regulators participate in the tumorigenesis
and development of multiple tumors. So far, there has been little comprehension about the effects of m6A RNA methylation
regulators on lower-grade gliomas (LGG). Here, we systematically investigated the expression profiles and prognostic
significance of 36 m6A RNA methylation regulators in LGG patients from the TCGA and CGGA databases. Most of the m6A
RNA methylation regulators are differentially expressed in LGG tissues as compared with normal brain tissues and glioblastoma
(GBM) tissues. The consensus clustering for these m6A RNA methylation regulators identified three clusters. Patients in cluster
3 exhibited worse prognosis. In addition, we constructed an m6A-related prognostic signature, which exhibited excellent
performance in prognostic stratification of LGG patients according to the results of the Kaplan-Meier curves, ROC curves, and
univariate and multivariate Cox regression analyses. In addition, a significant correlation was observed between the m6A-related
prognostic signature and the immune landscape of the LGG microenvironment. The high-risk group exhibited higher immune
scores, stromal scores, and ESTIMATE scores but lower tumor purity and lower abundance of activated NK cells. Moreover, the
expression level of immune checkpoints was positively correlated with the risk score. To conclude, the current research
systematically demonstrated the prognostic roles of m6A RNA methylation regulators in LGG.

1. Introduction

Gliomas constitute the frequent intracranial malignant tumors,
showing significant heterogeneity with respect to tumor biolog-
ical behavior for different grade gliomas [1, 2]. Despite the less
malignancy of low-grade gliomas (LGG) compared with glio-
blastomas (GBM), tumor recurrence and malignant progres-
sion seem to be ineluctable for LGG patients even with the
standard treatments, including surgical resection, radiotherapy,
and chemotherapy [3]. So far, we have made a considerable
advance in understanding the genetic landscape of LGG, and
favorable treatment options remain insufficient. Hence, explor-
ing new prognostic biomarkers or treatment targets is of great
clinical significance for LGG patients.

RNA modification is an emerging field of epigenetics.
Among more than 150 RNA modifications, N6-methyladeno-
sine (m6A) constitutes the most frequent type in eukaryotes [4,
5] and is critically important for gene expression regulation [6,
7]. As a reversible and dynamic process, m6A RNAmethylation
is regulated by m6A RNA methylation regulators, including
methyltransferases, demethylases, andbindingproteins, namely,
“writers”, “erasers”, and “readers”, respectively. Increasing evi-
dences have suggested that m6A modification contributes to
the malignant biological behavior of multiple cancers [8, 9].
The prognostic value of m6A RNA methylation regulators has
also been confirmed in head and neck squamous cell carcinoma
[10], thyroid carcinoma [11], breast cancer [12], hepatocellular
carcinoma [13], gastric cancer [14], etc. However, no literatures
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have comprehensively evaluated the prognostic role of m6A
RNAmethylation regulators in LGG.

Here, the expression profile and prognostic significance
of 36 m6A RNA methylation regulators were systematically
evaluated in LGG using the data from The Cancer Genome
Atlas (TCGA) dataset and Chinese Glioma Genome Atlas
(CGGA) dataset. In addition, we constructed an m6A-related
prognostic signature with robust ability in predicting survival
outcomes of LGG patients.

2. Materials and Methods

2.1. Data Acquisition. Total 1013 LGG patients with RNA-seq
transcriptome data and corresponding clinicopathological fea-
tures were identified in public databases, including 423 cases
from the TCGAdataset and 590 cases from the CGGAdataset.
Patients without survival information or OS <30 days, or with-
out definitive histopathological diagnosis had been excluded
from further evaluation. These two datasets were used as the
training cohort (TCGA) and validation cohort (CGGA). The
RNA-seq transcriptome data of 160 GBM tissues and 1152
normal brain tissues were obtained from the TCGA dataset
and the Genotype-Tissue Expression (GTEx) database, respec-
tively. All RNA-seq transcriptome data were harmonized
using quantile normalization and SVAseq-based batch effect
removal [15]. The clinicopathological features of included
LGG patients were summarized in Table 1.

2.2. Screening of m6A RNA Methylation Regulators with
Differential Expression Profiles. According to published arti-
cles and reviews [16, 17], thirty-six m6A RNA methylation
regulators with obtainable expression data were identified
in the TCGA, CGGA, and GTEx datasets (Table 2). The
expression of these 36 m6A RNA methylation regulators
was compared in LGG tissues with normal brain tissues
and glioblastoma tissues and with different WHO grades.

2.3. Consensus Clustering. Interactions among m6A RNA
methylation regulators were analyzed utilizing the STRING
database. Using the R package “ConsensusClusterPlus” [18],
distinct clusters of LGG patients were identified based on the
expression levels of 36 m6A RNAmethylation regulators. Prin-
cipal Component Analysis (PCA) was performed to confirm
the reliability of clustering results [19]. The differentially
expressed genes (DEGs) in different clusters were determined
(∣log 2FC ∣ >2 and adjusted p < 0:05) and functionally anno-
tated by the Gene Ontology (GO) analysis and the Kyoto Ency-
clopedia of genes and Genomes (KEGG) pathway analysis.

2.4. Construction and Validation of the m6A-Related Prognostic
Signature.Univariate Cox regression was performed to identify
the overall survival- (OS-) associated m6A RNA methylation
regulators (p < 0:05), which were subsequently incorporated
into the least absolute shrinkage and selection operator
(LASSO) Cox regression. A total of nine m6A RNA methyla-
tion regulators with LASSO coefficients were identified. The
calculation formula of risk score is shown below:

Risk score = 〠
n

i=1
Coef i ∗ xi: ð1Þ

where xi andCoef i refer to the expression level of selected m6A
RNA methylation regulator and corresponding LASSO coeffi-
cient, respectively. The median risk score was used for the
high-/low-risk grouping of LGG patients. The Kaplan-Meier
curve with log-rank test was generated by using the R package
“survminer” for the comparison of OS between the high- and
low-risk groups. The ROC curve analysis was utilized to
evaluate the prediction accuracy of the m6A-related prognos-
tic signature via the R package “timeROC”. All these tests
were performed simultaneously in the training and valida-
tion cohorts.

2.5. Establishment and Evaluation of a Nomogram. By
employing the R package “rms”, “regplot”, and “Hmisc”, a
nomogram was established based on the independent prog-
nostic indicators in the training cohort, which were deter-
mined through univariate and multivariate Cox regression
analyses. The availability of this nomogram was evaluated
by the C-indices [20] and calibration curves.

2.6. Evaluation of the Immune Landscape. The immune
scores, stromal scores, ESTIMATE scores, and tumor purity
of each LGG patients were calculated using the ESTIMATE

Table 1: Clinicopathological features of LGG patients in this study.

Characteristics

Training
cohort

Validation
cohort

TCGA
(n = 423)

CGGA
(n = 590)

Age (years)
<45 245 398

≥45 178 192

Gender
Female 189 250

Male 234 340

WHO grade
II 201 269

III 222 321

IDH status

Mutant 344 413

Wild type 77 138

NA 2 39

1p19q codeletion

Codel 141 180

Noncodel 282 370

NA 0 40

MGMT promoter
status

Methylated 351 284

Unmethylated 72 199

NA 0 107

Table 2: The thirty-six m6A RNA methylation regulators.

m6A RNA methylation regulators

Writes
METTL3, METTL14, WTAP, VIRMA, ZC3H13, CBLL1,

RBM15, RBM15B, METTL16, PCIF1

Erasers FTO, ALKBH5, ALKBH3

Readers

TRMT112, ZCCHC4, CPSF6, SETD2, HNRNPC,
RBMX, HNRNPA2B1, IGF2BP1, IGF2BP2, IGF2BP3,
YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3,
SRSF3, SRSF10, XRN1, FMR1, NXF1, PRRC2A,

EIF3B, EIF3H
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Figure 1: The expression profiles of m6A RNA methylation regulators across tissues. (a) The expression comparison of m6A RNA
methylation regulators between LGG and normal tissues. (b) The expression comparison of m6A RNA methylation regulators between
LGG and GBM tissues. (c) The expression comparison of m6A RNA methylation regulators between WHO grade II and III. ∗p < 0:05,
∗∗p < 0:01, ∗∗∗p < 0:001.
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Figure 2: Continued.
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algorithm via the R package “estimate” [21]. The abundance of
22 immune cells was calculated through the CIBERSORT
algorithm with 1,000 permutations [22]. Patients with CIBER-
SORT p ≥ 0:05 were excluded from the subsequent analysis.

2.7. Statistical Analysis. The preprocessing of RNA-seq tran-
scriptome data was performed using the PERL programming
language (version 5.32.0). The R software (version 4.0.2) was

applied for all statistical analyses and graph visualization.
The student t-test or one-way ANOVA test was utilized to
compare the continuous variables with normal distribution
between two groups or more than two groups. The Wilcoxon
test was performed to determine the differences between sub-
groups in the expression levels of m6A RNA methylation
regulators and the abundance of 22 immune cells. The
“Spearman” method was used to calculate the correlations
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Figure 2: Interaction among m6A RNA methylation regulators and consensus clustering of LGG patients in the TCGA cohort. (a) Protein-
protein interaction (PPI) network of m6A RNAmethylation regulators. Elements not connected to others are hidden. (b) Correlation of m6A
RNAmethylation regulators. (c) Consensus clustering matrix for optimal k = 3. (d) PCA of the RNA expression profile. (e) The Kaplan-Meier
curve for LGG patients in cluster 1/2/3. (f) 303 upregulated overlapping DEGs between clusters 3/1 and 3/2. (g) Gene Ontology biological
processes of upregulated overlapping DEGs. (h) KEGG pathway analysis of upregulated overlapping DEGs.
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Figure 3: Continued.
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between the expression of m6A RNA methylation regula-
tors and between the expression of immune checkpoints
and risk scores. Two-tailed p < 0:05 was considered statis-
tically significant.

3. Results

3.1. The Expression Profiles of m6A RNA Methylation
Regulators in LGG.Among 36m6A RNAmethylation regula-
tors, twenty-two upregulated genes and eleven downregu-
lated genes were identified in LGG tissues compared with
normal brain tissues (Figure 1(a)). Compared with GBM tis-
sues, the expression levels of 16 m6A RNA methylation
regulators were upregulated, while the expression levels of
15 m6A RNA methylation regulators were downregulated
in LGG tissues (Figure 1(b)). In addition, there were also
large variations in the expression profiles of m6A RNAmeth-
ylation regulators between different histological grades. A
total of 22 m6A RNA methylation regulators were differen-
tially expressed between WHO grade II and III (Figure 1(c)).
Altogether, these results suggested that the m6A RNAmethyl-

ation regulators may play a vital and particular role in the
tumorigenesis and progression of LGG.

The interactions among 36 m6A RNA methylation regu-
lators were presented in the protein-protein interaction (PPI)
network and coexpression analyses. Noticeably, “writers”
had a wide range of interactions with other m6A RNA meth-
ylation regulators, while “erasers” were less connected with
others (Figure 2(a)). Further coexpression analyses showed
most m6A RNA methylation regulators were positively cor-
related with other regulators, and negative coexpression
relationships were underrepresented (Figure 2(b)).

3.2. Three Clusters of LGG Patients with Distinct Prognosis.
According to the similarity in 36 m6A RNA methylation reg-
ulators expression and the proportion of ambiguous cluster-
ing measure, k = 3 was picked as the most appropriate value
in the TCGA cohort (Figure 2(c) and Supplementary
Figure S1). As a result, 423 LGG patients were categorized
into three clusters, called cluster 1 (n = 180), cluster 2
(n = 200), and cluster 3 (n = 43). PCA for total transcriptomic
data revealed prominent differences in distribution among
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Figure 3: Prognostic value of m6A RNA methylation regulators and construction of the m6A-related prognostic signature. (a) Overall
survival- (OS-) related m6A RNA methylation regulators in TCGA cohort. (b, c) LASSO analysis with minimal lambda value. (d) LASSO
coefficients of nine m6A RNA methylation regulators.
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Figure 4: Continued.
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three clusters, which confirmed the validity of consensus
clustering (Figure 2(d)). Then, the survival analysis showed
patients in cluster 3 had obviously shorter OS than those in
cluster 1 and cluster 2 (Figure 2(e)). To identify the different
biological processes in cluster 3 compared with cluster 1 and
cluster 2, a total of 303 upregulated overlapping DEGs were
identified in cluster 3 (Figure 2(f)) and were functionally
annotated by the GO and KEGG pathway analyses. The
results indicated that upregulated DEGs were enriched in an
extracellular matrix organization, regulation of vasculature
development, regulation of angiogenesis, and nuclear
division, which were malignancy-related biological processes
(Figure 2(g)). Then, the KEGG pathway analysis similarly
exhibited the significant enrichment of malignancy-related
pathways, including PI3K-Akt pathway, focal adhesion,
proteoglycans in cancer, and ECM-receptor interaction
(Figure 2(h)).

3.3. Construction and Validation of the m6A-Related Prognostic
Signature. Based on the results of Univariate Cox regression,
fourteenm6A RNAmethylation regulators (RBM15, ALKBH5,
ALKBH3, ZCCHC4, SETD2, HNRNPA2B1, IGF2BP2,
IGF2BP3, YTHDC1, YTHDC3, YTHDF1, YTHDF2, SRSF10,
and EIF3H) were significantly associated with the OS of LGG
patients (Figure 3(a)). Subsequently, the LASSOCox regression
for those 14 m6A RNA methylation regulators was carried out
(Figures 3(b) and 3(c)). A total of 9 m6A RNAmethylation reg-
ulators (ZCCHC4, SETD2, IGF2BP2, IGF2BP3, YTHDF2,
RBM15, ALKBH3, EIF3H, and YTHDC1) stood out as the
bases of constructing the m6A-related prognostic signature
(Figure 3(d)). The risk score for each LGG patient was calcu-
lated by summing the product of the expression level of each

selected m6A RNA methylation regulator and corresponding
LAASO coefficient. The median risk score was applied to strat-
ify LGG patients into high-/low-risk groups.

The prognostic value of the m6A-related prognostic sig-
nature for LGG patients was evaluated in the TCGA cohort
and the CGGA cohort, respectively. The Kaplan-Meier
curves showed that patients in the high-risk group exhibited
shorter OS than those in the low-risk group (Figures 4(a) and
4(b)). The distribution plots of the risk score and survival sta-
tus revealed that the higher the risk score, the more deaths of
LGG patients (Figures 4(c) and 4(d)). Moreover, the high
accuracy of this m6A-related prognostic signature in predict-
ing 1-, 3-, and 5-year OS was confirmed by the area under the
receiver operating characteristic (ROC) curve (AUC). The
AUCs of 1-, 3-, and 5-year OS in the TCGA cohort were
0.882, 0.847, and 0.757, respectively (Figure 4(e)), and in
the CGGA cohort were 0.780, 0.768, and 0.753, respectively
(Figure 4(f)). Overall, the above results all agreed that the
m6A-related prognostic signature could accurately and stably
predict the survival outcome of LGG patients.

3.4. Associations between the Risk Score and Clinicopathological
Features.The levels of risk scores were compared between LGG
patients stratified by various clinicopathological features. The
results demonstrated that LGG patients with the clinicopatho-
logical features of age ≥45 years, more malignant histological
type (anaplastic oligodendroglioma/oligoastrocytoma), higher
WHO grade, IDH wide type, 1p19q noncodel, and MGMT
promoter unmethylated showed significantly higher levels of
risk score, while no risk score differences were observed
between patients satisfied by gender (Figure 5(a)). To deter-
mine whether the prediction power of the m6A-related
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Figure 4: Validation of the m6A-related prognostic signature. (a, b) The Kaplan-Meier curves for survival in the TCGA and CGGA cohorts.
(c, d) The distribution plots of the risk score and survival status in the TCGA and CGGA cohorts. (e, f) The receiver operating characteristic
(ROC) curve analyses of the prognostic FRLS in predicting 1-, 3-, and 5-year overall survival (OS) in the TCGA and CGGA cohorts.
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Figure 5: Correlation analysis between the m6A-related prognostic signature and clinicopathological features in the TCGA cohort. (a)
Different levels of risk scores in LGG patients stratified by age, gender, WHO grade, histology, IDH status, 1p19q codeletion, and MGMT
methylation status. (b) The Kaplan-Meier curves for subgroup survival analysis. A: astrocytoma; O: oligodendroglioma; AA: anaplastic
astrocytoma; AO: anaplastic oligodendroglioma/oligoastrocytoma. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001; ns: no significance.
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prognostic signature retains in various subgroups, we per-
formed subgroup survival analyses based on clinicopathologi-
cal features (Figure 5(b)). The worse OS was noted in the
high-risk groups regardless of age, gender, grade, and MGMT
promoter status. Furthermore, patients with higher risk still
had shorter OS than those with lower risk in the WHO
grade III, anaplastic astrocytoma, anaplastic oligodendroglio-
ma/oligoastrocytoma, IDH wide type, and 1p19q noncodel
subgroups, except for the WHO grade II, astrocytoma, oligo-
dendroglioma/oligoastrocytoma, IDH mutant, and 1p19q
codel subgroups.

3.5. Establishment and Evaluation of a Nomogram Based on
Independent Prognostic Indicators for OS. To identify the
independent prognostic indicators for OS, the OS-related
factors identified by univariate Cox regression analyses were
subsequently analyzed using multivariate Cox regression.
The signature-based risk score was an independent prognos-
tic indicator for OS in both TCGA and CGGA cohorts (both
p < 0:001; Figures 6(a) and 6(b)). Then, a nomogram was

established based on the independent prognostic indicators
(age, 1p19q, and Risk score) in the TCGA cohort
(Figure 7(a)). The C-indices of this nomogram were 0:73 ±
0:06 in the TCGA cohort and 0:75 ± 0:04 in the CGGA
cohort. The calibration plots showed a perfect fit between
the actual and nomogram-predicted probability of 1-, 3-,
and 5-year OS in both cohorts (Figures 7(b) and 7(c)). Of
importance, these results indicated that the nomogram had
the potential to develop into a quantitative tool to predict
the prognosis of LGG patients.

3.6. Correlation between the m6A-Related Prognostic Signature
and the Immune Landscape of LGG Microenvironment. In the
TCGA cohort, the high-risk group showed significantly higher
immune, stroma, and ESTIMATE scores and lower tumor
purity compared with the low-risk group (Figure 8(a)).
Moreover, the risk score was correlated with the expression
of immune checkpoints, including PD-1, PD-L1, CTLA-4,
LAG-3, TIM-3, B7H3, and IDO1 (Figure 8(b)). Besides, dif-
ferent extents of immune cell infiltrations were observed in

(a)

(b)

Figure 6: (a) Univariate and multivariate Cox regression analyses in the TCGA cohort. (b) Univariate and multivariate Cox regression
analyses in the CGGA cohort.
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the high-risk group with lower abundance of activated
NK cells, monocytes, resting mast cells, activated mast
cells, and eosinophils but higher abundance of CD4+
memory resting T cells, M1-type macrophages, resting
mast cells, and neutrophils (Figure 8(c)). These results
confirmed a tight correlation between the m6A-related
prognostic signature and the immune landscape of the
LGG microenvironment.

4. Discussion

As more and more m6A RNA methylation regulators have
been identified, the important roles played by m6A modifica-
tion in cancers are being gradually unveiled. At present, the
roles of individual genes in tumorigenesis of glioma via medi-
ating m6A modification are the focus of intense research
efforts. METTL3 regulates the proliferation, migration, and
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invasion of glioma cells by inhibiting PI3K/Akt signaling
pathway [23]. ALKBH5 maintains tumorigenicity of GBM
stem-like cells by sustaining FOXM1 expression and cell pro-

liferation program [24]. Inhibiting the expression of FTO
enhances the effect of temozolomide on glioma [25]. Accord-
ing to most relevant researches, no distinction was made for
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Figure 8: Correlation of the m6A-related prognostic signature with the immune landscape of LGG microenvironment in the TCGA cohort.
(a) The comparison of immune scores, stromal scores, ESTIMATE scores, and tumor purity between the high- and low-risk groups. (b) The
correlation between the risk score and the expression levels of immune checkpoints. (c) The abundance of 22 immune cells in the high- and
low-risk groups. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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the different WHO grades of glioma, or GBM tended to
receive more attention. Although LGG has a relatively low
degree of malignancy compared with GBM, the high rate of
postoperative recurrence and malignant progression should
not be underestimated. Given the heterogeneity between
LGG and GBM in tumor biological behavior, there is a need
to comprehensively evaluate the prognostic role of m6A RNA
methylation regulators in LGG.

In this study, a total of 36 m6A RNA methylation regula-
tors were selected, most of which were found to be differen-
tially expressed in LGG tissues compared with normal
brain tissues and GBM tissues. There were large differences
in the expression levels of m6A RNA methylation regulators
even between WHO grade II and III. The differential expres-
sion profiles inspired us to further explore the role of m6A
RNA methylation regulators in LGG. Afterwards, three clus-
ters of LGG patients were identified through consensus clus-
ter analysis based on the expression levels of 36 m6A RNA
methylation regulators. The PCA and survival analysis con-
firmed the significant discrimination among the three clus-
ters. Cluster 3 had worse survival outcomes and was closely
related to malignancy-related biological processes and signal-
ing pathways. Subsequently, an m6A-related prognostic sig-
nature was constructed. The Kaplan-Meier curves, ROC
curves, and univariant and multivariant Cox regression
analyses verified that this prognostic signature performed
excellently in prognostic stratification of LGG patients. Fur-
thermore, a nomogram for 1-, 3-, and 5-year OS were estab-
lished based on the signature-based risk score combining age
and 1p19q codeletion status. The C-indices and calibration
plots suggested that this nomogram has the potential to be
an effective assessment tool to identify personalized mortality
risk for LGG patients. Finally, we uncovered the differential
immune landscape between risk subgroups by comparing
the immune, stromal, and ESTIMATE scores; tumor purity;
expression levels of immune checkpoints; and abundance of
immune cells.

The m6A-related prognostic signature contained nine
m6A RNA methylation regulators, seven of which are
“readers” (ZCCHC4, SETD2, IGF2BP2, IGF2BP3, YTHDF2,
EIF3H, and YTHDC1) and the other two are “writers”
(RBM15) and “erasers” (ALKBH3), respectively. Among
these critical genes, several have been investigated to be
associated with glioma. SETD2, a highly mutated gene, con-
tributes to the tumorigenesis of high-grade glioma [26].
IGF2BP3 promotes glioma cell migration by enhancing the
translation of RELA/p65 [27]. YTHDF2, phosphorylated and
stabilized by EGFR/SRC/ERK, is required for cholesterol dys-
regulation, cell proliferation, invasion, and tumorigenesis of
GBM [28]. However, there have been few reports focusing
on LGG. Little information has been available regarding
whether the m6A RNA methylation regulators contribute to
the heterogeneity between LGG and GBM in tumor biological
behavior, drug resistance, and prognosis. Therefore, we expect
that our findings help to identify the prognostic m6A RNA
methylation regulators in LGG and provide insights into their
potential roles in LGG tumorigenesis and progression.

Tumor microenvironment (TME) has been identified as
an essential regulatory role in the occurrence and progression

of tumors [29]. It has been reported that LGG patients with
high immune scores or high stromal scores had a poor prog-
nosis [30–32]. Emerging evidence confirmed that the dysreg-
ulation of m6A RNA methylation regulators contributes to
the heterogeneity of TME [12, 33, 34]. Up to now, the impact
of m6A RNA methylation regulators on the immune land-
scape of the LGG microenvironment remains unclear.
Firstly, this study found that LGG patients in the high-risk
group had higher immune scores, higher stromal scores,
higher ESTIMATE scores, and lower tumor purity than those
in the low-risk group. Nowadays, immunotherapy, repre-
sented by immune checkpoint blockades (PD-1/L1), has
been one of the most promising treatment strategies against
various cancers. Interestingly, a positive correlation between
the risk score and expression level of immune checkpoints
was discovered. Thus, the risk stratification based on the
m6A-related prognostic signature might help predict the effi-
cacy of immune checkpoint blockades. As a critical part of
the complex TME, immune cells have been identified to be
associated with the tumor biological behavior and prognosis
[35–37]. The results showed a lower abundance of activated
NK cells, a major tumor killer cell type, in the high-risk
group. Taken together, our findings suggested that m6A
RNA methylation regulators partly participate in TME regu-
lation of LGG and might provide new insights into the
immunotherapy for LGG.

Undeniably, some limitations of our study should be
pointed out. Firstly, the m6A-related prognostic signature
was constructed and validated with retrospective data from
public databases. Using prospective data to assess its clinical
utility would be more convincing. Secondly, this study only
focused on the transcriptome data, other data types like
methylation, single nucleotide polymorphism (SNP), copy
number variation (CNV), and protein level were not covered.
In addition, due to the lack of experimental evidences, this
study was not able to assess the role and molecular mecha-
nism of individual regulators in depth. Further in vivo and
in vitro experiments are essential to explore the regulatory
mechanism of m6A RNA methylation regulators in LGG.

5. Conclusion

All in all, the present study systematically investigated the
expression pattern, prognostic value, and effect on the immune
landscape of m6A RNA methylation regulators in LGG. We
identified three clusters that stratified the prognosis of LGG
patients. Anm6A-related risk signature was capable to precisely
predict the prognosis of LGG patients and was correlated with
the immune landscape of the LGG microenvironment. We
hope that our findings provide comprehensive evidence for
subsequent research about m6A modification in LGG.
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