
Proteomes 2013, 1, 109-127; doi:10.3390/proteomes1020109 

 

proteomes 
ISSN 2227-7382 

www.mdpi.com/journal/proteomes 

Review 

Proteomic Workflows for Biomarker Identification Using  

Mass Spectrometry — Technical and Statistical Considerations 

during Initial Discovery 

Dennis J. Orton 
1
 and Alan A. Doucette 

2,
*  

1
 Department of Pathology, 11th Floor Tupper Medical Building, Room 11B, Dalhousie University, 

Halifax, NS B3H 4R2, Canada; E-Mail: dennis.orton@dal.ca 
2
 Department of Chemistry, Room 212, Chemistry Building, Dalhousie University, Halifax,  

NS B3H 4R2, Canada 

* Author to whom correspondence should be addressed; E-Mail: alan.doucette@dal.ca;  

Tel.: +1-902-494-3714; Fax: +1-902-494-1310. 

Received: 27 June 2013; in revised form: 22 August 2013 / Accepted: 22 August 2013 /  

Published: 27 August 2013 

 

Abstract: Identification of biomarkers capable of differentiating between pathophysiological 

states of an individual is a laudable goal in the field of proteomics. Protein biomarker 

discovery generally employs high throughput sample characterization by mass 

spectrometry (MS), being capable of identifying and quantifying thousands of proteins per 

sample. While MS-based technologies have rapidly matured, the identification of truly 

informative biomarkers remains elusive, with only a handful of clinically applicable tests 

stemming from proteomic workflows. This underlying lack of progress is attributed in 

large part to erroneous experimental design, biased sample handling, as well as improper 

statistical analysis of the resulting data. This review will discuss in detail the importance of 

experimental design and provide some insight into the overall workflow required for 

biomarker identification experiments. Proper balance between the degree of biological vs. 

technical replication is required for confident biomarker identification.  
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1. Introduction 

Having moved into an era of molecular medicine, high throughput „omics‟ screening methods are 

being used to decipher informative, disease specific markers promising effective treatment strategies 

for individualized treatments. With improved gene-based technologies now enabling rapid and  

cost-effective genome sequencing, researchers are now looking to the proteome as accurate and 

responsive predictors of the pathophysiological state of an individual. Proteome workflows to identify 

biomarkers capable of diagnosis [1,2], prognosis [3–5], or classification of disease [5,6], primarily 

center on high-throughput technologies involving mass spectrometry (MS) or microarray technology. 

These platforms are capable of identifying and profiling the abundance patterns of hundreds to 

thousands of proteins within a single experiment [7,8], providing a “snapshot” in time of the 

pathophysiological state of an individual. However, despite the maturing technologies for proteome 

profiling, identification of clinically relevant biomarkers remains elusive.  

Since the mid-1990s, research in the area of MS-based proteome analysis is growing exponentially 

in conjunction with the search for novel disease biomarkers. Figure 1 summarizes the yearly PubMed 

search results according to the keywords “proteome” or “proteome and biomarker” and highlights the 

increasing popularity of the field. This explosion of growth has been made possible by technological 

advances [9–16], permitting quantitative protein analysis in a high throughput manner (Figure 1).  

A vast number of cell types, diseased tissues, and biological fluids on both clinical samples, as well as 

in vitro or in vivo experimentation have been profiled in an effort to bring biomarkers to the clinical 

setting. Problematically, despite numerous claims of success, no test derived using MS-based proteomic 

techniques is currently FDA approved. Acknowledging the dynamic complexity of any proteome, this 

lack of validated biomarkers is ultimately attributed to flaws in experimental design [17,18], the use of 

biased or inconsistent methodology [19,20], or inadequate statistical analyses [21–23]. Innate errors in 

biomarker discovery experimentation, coupled with irreproducible results in some high- profile cases, have 

delayed progress and shaken confidence in the field of biomarker research [24–27].  

Figure 1. (Top) The number of PubMed search results as a function of year; (Bottom) The 

growth in number of publications corresponds directly to the application of numerous 

technologies and methods [9–16] used to improve throughput and sensitivity. 

 

1

10

100

1000

10000

1996 2001 2006 2011

#
 P

u
b
M

e
d
 S

e
a
rc

h
 R

e
s
u
lt
s

Proteome & Biomarker

Proteome

MudPIT

(2001)

SILAC

(2002)

iTRAQ

(2004)

ESI/MALDI

(1989)

Nanospray

(1998)

ICAT

(1999)

SELDI

(2002)

Orbitrap

(2005)



Proteomes 2013, 1 111 

 

 

Scope of Review  

This review will discuss the current state of biomarker research, as well as the inherent challenges 

associated with proteomic technologies for identification of disease biomarkers. It should be noted that 

a biomarker discovery experiment extends beyond the analytical lab. For example, proper 

consideration must be given to the number (e.g., multiple patient samples or multiple samples from 

one patient) and type (e.g., proximal fluid or tissue) of samples to be taken for analysis, the method of 

sample collection (e.g., anesthetization of the patient or catheterization) and preservation (e.g., storage 

conditions or inclusion of protease inhibitors). Following discovery of a putative biomarker, a 

validation phase must be included to determine the efficacy (e.g., sensitivity and specificity) of the 

biomarker at the clinical level. Methods for validation of biomarkers have been reviewed [28,29] and 

introduction of a pipeline geared towards bringing proteomic biomarkers into routine clinical use have 

been suggested [30]. Most importantly, consideration of the points raised in this review must be given 

during all phases of the biomarker identification process. For example, standardization of collection 

methods and storage conditions will eliminate bias in the early stages of biomarker discovery, while 

implementation of the good experimental practices discussed below will reduce bias in data 

accumulation, allowing the greatest potential for identification of true biomarkers.  

Acknowledging that most reliable biomarker would arise from analysis of the „normal‟ state of a 

single individual compared with the „diseased‟ state of the same individual, this may not be possible.  

A lack of baseline comparisons, such as in paediatric populations, or knowledge of what sample to 

analyze, and what to search for make this form of biomarker discovery not feasible for the discovery 

phase. This review focuses on the fundamentals of experimental design and provides an in-depth 

analysis of common errors in biomarker discovery experiments that must be addressed prior to 

execution of the experiment.  

2. Sample Description 

2.1. Characteristics of an Ideal Biomarker 

The National Institute of Health defines a biomarker as a “…characteristic that is objectively 

measured and evaluated as an indicator of a normal biological process, pathogenic process, or 

pharmacologic responses to therapeutic intervention” [31]. With respect to biomarker discovery 

through genomic or proteomic approaches, the indicating characteristic may be gene(s) or protein(s) 

that present quantifiable changes in expression across a clinically obtainable sample. What constitutes 

an ideal biomarker depends heavily on the disease in question, though universal characteristics of the 

ideal biomarker are summarized in Table 1.  

The stringent requirements for ideal biomarkers presented in Table 1 imply the identification of a 

single gene or protein biomarker for a given disease to be extremely unlikely. To combat this issue, 

investigators often turn to panels of genes or proteins which together may provide sufficient 

information to differentiate test populations based on pathophysiological state [4–6,32]. The inclusion 

of multiple variables in the test population, however, can result in so called „overfitting‟ of the data, 

and limit the applicability of the test. Therefore, an efficient biomarker test should also express a 

property known as generalizability, which allows the test to be applicable to large, diverse populations. 
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Table 1. Universal characteristics of an ideal biomarker. 

Characteristic Description 

(1) Non-invasive collection 
Expression within a sample obtainable without  

discomfort to the patient 

(2) Readily available 
Presentation in an easily obtainable sample that is commonly 

obtained clinically such as blood or urine 

(3) High sensitivity 
Allows early detection of disease with little or no overlap between 

healthy and diseased patients 

(4) High specificity 
Present in the disease in question, with little or no overlap 

between comorbid conditions 

(5) Rapid response Changes rapidly in response to treatment 

(6) Risk stratification 
Provides prognostic information to the clinician, allowing 

classification of the disease along with diagnosis 

(7) Insight to disease Provides insight into the underlying mechanism of the disease 

2.2. Sources for Biomarker Identification 

The underlying hypothesis of biomarker experimentation is that pathophysiological changes in cells 

or tissue are reflected through gene or protein expression, preferably in a disease-specific fashion. 

Biomarker discovery experiments aim to exploit these changes for clinical testing. A range of omics 

technologies [33–39] can be applied to investigate changes in in vitro or in vivo models of disease, or 

to profile clinical (human) samples to uncover biomarkers. Therefore, careful consideration of the 

source of biomarker must be given prior to experimentation. The choice of sample generally depends 

on the method of analysis, but also the disease in question. Table 2 summarizes the innate advantages 

and disadvantages of various sample sources. A brief discussion of common sample sources and their 

application to biomarker discovery is provided below.  

Table 2. Summary of various sources of biomarkers for discovery platforms. 

Source Advantages Disadvantages 

In vitro cell culture 

Easy to obtain; no ethics; abundant 

sample quantity; good for 

characterizing cell-specific responses 

Lack of heterogeneity; may not 

represent clinically relevant 

results 

Tissue biopsy/core sample 

Accessibility to samples stored  

long term; direct comparison to 

standard diagnosis; tissue-level 

representative profiling 

Potential for sample degradation; 

require large validation datasets; 

invasive sample collection 

Urine/blood 

Easy to obtain; express  

representative protein and gene 

expression of a large number  

of cell types 

Low marker concentration; high 

sample complexity; technically 

difficult to detect 

Proximal fluid (e.g.,  

Nipple aspirate, bile, 

prostate, etc…) 

Representative of the tissue 

microenvironment over blood/urine; 

may provide more sensitive results 

More difficult to obtain than 

blood/urine; potentially 

extremely invasive (e.g., CSF) 
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In vitro disease models provide a simplified sample source for researchers to elucidate a cell-specific 

physiological response to disease or treatment. A model culture system has the benefit of limiting 

several confounding variables which plague clinical samples by controlling test conditions which 

optimize the model. Cell culture models are common to study the response of a particular cell type to 

various stimuli [40], as seen for drug toxicity studies, or studying gene knockdown effects. Though 

useful as early high throughput screening studies, in vitro models likely do not reflect the complexity 

of the disease by excluding the heterogeneity of cells affected by the disease, as well as the 

heterogeneity of the afflicted population. In vitro models employing high throughput „-omics‟ methods 

are therefore more commonly reserved for holistic, semi-quantitative assessments of changes in protein 

or gene expression profiles [41,42].  

Tissue biopsies and core samples are a common source for clinical diagnosis through microscopic 

evaluation following a number of staining techniques, but can also provide a source for biomarker 

research. Biopsies can provide researchers with direct access to diseased tissues, and therefore 

potential biomarkers, making them the most relevant source for biological information during 

biomarker experimentation. Moreover, because biopsies constitute the traditional route for 

pathological characterization of many diseases, methods for sample collection, storage, and analysis 

are now standardized and routine. This offers a potential route to integrate tissue biopsies into 

biomarker identification platforms. Previously, the fixation and staining processes required for 

standard pathological assessment prevented coupling to standard proteomic methodologies. More 

recently, methods have been established which allow direct proteomic analysis of tissue samples 

following processing (fixation, embedding, sectioning, staining) [43]. As a result, biomarker researcher 

may access thousands of banked tissue samples collected over extended periods, vastly expanding the 

number of samples available for analysis [43,44]. Extrapolating from the analysis of tissue banks, a 

secondary advantage is provided through multi-year follow-up analyses of a given patient, which can 

evaluate the predictive value of a biomarker. Banked samples are perhaps the only effective strategy to 

investigate rare diseases, which could take years to compile sufficient samples for true evaluation of 

effective biomarkers. 

Despite the benefits of biopsy analysis, access to the sample by the researcher is restricted - perhaps 

rightfully so. Obtaining the sample from a patient is not trivial, and has the potential to introduce 

complications such as infection that could lead to decreased quality of life for the patient. This is 

especially true if the diseased tissue is present in a sensitive or difficult to access area, which makes 

collection of appropriate samples a key source of error. Combined with other sources of error which 

may be introduced by the researcher conducting the analysis, the use of less invasive sources of 

biomarkers has become a more common strategy for discovery purposes. 

Proximal fluids are obtained from the extracellular milieu of tissues and contain a wide range of 

soluble and secreted factors from cells within a tissue microenvironment [45]. Compared to blood, 

such fluids can provide researchers with a lower-complexity sample in a potentially non-invasive 

manner, with the added benefit of enriching the sample with proteins with particular relevance to the 

tissue of interest. Proximal fluids exist in a wide range of biological environments, some of which 

allowing easy, non-invasive access, while others may be more difficult to access, leading to more 

stringent ethical considerations for sample collection. Some proximal fluids that have been 

investigated for biomarkers include cerebrospinal, bronchoalveolar lavage, cervicovaginal, cyst, ascites 
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(abdominal fluid), nipple aspirate, amniotic, and blister, as well as bile, saliva, expressed prostatic 

secretion and seminal plasma, and pancreatic juice (reviewed by Teng et al. [45]).  

Blood and urine are by far the most commonly obtained biological samples in a clinical setting and 

therefore provide an excellent medium for biomarker research. While these samples can be considered 

proximal fluids themselves, they are generally used as systemic measures, as opposed to tissue-specific 

indicators (i.e., urine-based pregnancy test). Despite the simplicity of sample collection, biomarker 

identification from these samples has been especially lacking. Issues stemming from sample  

collection [46–48], storage [49,50], complexity, and protein concentration range [36,51] have been 

implicated in the lack of progress in the field [52]. Efforts to isolate and correct variables within each 

of these experimental parameters have begun to allow researchers to draw more informative 

conclusions from data obtained by these high throughput technologies [19,20]. 

Proteomic analysis of serum [36] and urine [53] have identified thousands of proteins expressing 

dynamic ranges up to 12 orders of magnitude, with the 22 most highly abundant proteins in serum 

making up approximately 99% of the total protein concentration [36]. In an effort to boost the 

sensitivity of proteomic analyses, a range of pre-fractionation methods have been developed. Gel 

electrophoresis [54,55], immunodepletion [56–58], and various forms of chromatography [59] have 

been employed to selectively exclude high abundance proteins from analysis, allowing visualization of 

a broader dynamic range. Despite improved fractionation strategies, the high sample complexity 

presents researchers with a daunting task when undertaking a biomarker discovery experiment 

employing these samples.  

Regardless of source, biological samples contain a complex array of proteins, nucleic acids, and cell 

signalling molecules, all of which have potential use as disease biomarkers. Figure 2 provides a brief 

overview of the relative complexity of the samples discussed above. Therefore, choosing the best 

method for biomarker discovery depends heavily on the disease in question, but also on the source of 

biomarker to be investigated.  

Figure 2. A schematic representation of potential sources of biomarkers. Less complex 

model systems provide a simpler starting point for biomarker investigation; however, the 

clinical utility of the analysis improves by transitioning to more complex model systems. 
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3. Sample Analysis 

3.1. Biomarker Discovery Experimental Design 

Effective experimental design requires formulation of a hypothesis, proper selection of a test group, 

and allocation of appropriate experimentation to draw unbiased conclusions that support or refute the 

proposed hypothesis [60]. The proposed hypothesis can be specific in nature, as seen for example 

when studying the effects of altered gene expression on the proliferation of a cell population. 

Conversely, as is common to biomarker experimentation, the hypothesis can be much broader in nature 

and query a large number of genes or proteins within a single experiment. These experiments are said 

to be „discovery-based,‟ where the hypothesis simply states that there are some quantifiable differences 

in the sample caused by a test condition, which distinguish between the test and control groups. High 

throughput methods may also be used to qualitatively assess global changes in gene or protein 

expression, such that a specific hypothesis can be formulated and tested in the classical sense [40,61]. 

No matter the goal of the biomarker experiment, careful planning and immaculate experimental design 

are of utmost importance.  

A number of biomarker studies have, through a wide range of experimental pitfalls, generated false 

results. Issues stemming from improper sample population selection [17], sample handling and  

storage [62], sequential sample analysis [63] and improper sample analysis [25] may have been averted 

with proper experimental design. Poor design often reveals promising results early in the study, which 

inevitably cannot be reproducible, or fail to support the hypothesis during subsequent validation. 

Avoiding bias in experimental design was addressed as early as 1937 when Sir Ronald Fisher proposed 

construction of an unbiased experimental procedure based on randomization, replication, and  

blocking [64]. Though fundamental to experimental design, such concepts are often overlooked in 

proteomic experiments. Additionally, prior to experimentation on „real‟ clinical samples, it is important 

to critically assess each stage, or „experimental unit‟, in the workflow for sources of bias [60,65]. An 

experimental unit can be the gel on which protein samples are resolved, the isolation or collection of 

samples, or the method of detection of the sample (i.e., LC-MS analysis). Construction of an unbiased 

experiment therefore begins with proper understanding of the experimental procedures before running 

those precious clinical samples.  

High throughput biomarker identification studies require adherence to the experimental setup 

provided by Fisher to prevent bias introduced during analysis. Sequential processing of samples, 

although potentially easier to execute, is one of the most common, though easily avoided sources of 

bias. Figure 3 outlines the influence of sequential processing on altering the validity of a biomarker 

discovery experiment. Here, it is assumed that the mean concentration and standard deviation of a 

putative biomarker in a test population does not change. However, by ignoring randomization, the 

confidence in the obtained data can drastically decrease or lead to identification of a false biomarker. 

The terminology introduced by Fisher as it pertains to high throughput technologies is discussed in 

greater detail below. 
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Figure 3. The influence of randomization on quantitative analysis of potential biomarkers. 

In the figure, successive MS runs were assumed to contribute a 5% decrease in signal 

intensity. A randomized design allowed proper characterization of the true biomarker while 

avoiding improper characterization of the false biomarker. In a biased design, the samples 

were analyzed in an improper grouping, which led to an apparent difference in the 

observed concentration of the false biomarker.  

 

Randomization in experimental design refers to both the collection of samples as well as sample 

processing and data analysis. Randomization guards against the introduction of uncontrollable 

variables unknown to the researcher that may affect the accuracy of the data. Changes in response may 

include factors such as sample collection and storage time, protein extraction and processing, changes 

in chromatographic separation and instrumental drift. All aspects of the workflow, from sample 

collection to data interpretation need to be controlled. The effect of randomization is shown in Figure 3. 

Here it is assumed that a variable in the analysis workflow has introduced drift, corresponding to a 5% 

relative loss in signal following each successive analysis. A randomized design correctly identifies the 

true biomarker and sees no statistical difference between the control vs. text groups for a „false‟ 

biomarker. Without randomization, the 5% signal drift introduced an apparent difference for the false 

biomarker, invalidating the results of the analysis. Numerous examples of this have been presented in 
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the literature, including the false identification of a biomarker for ovarian cancer, which were later 

proven to be invalid as the original profiling of diseased vs. healthy samples occurred on separate days, 

yielding the false results [24,66]. 

Replication allows assessment of biological and technical variability of the biomarker identification 

workflow while quantifying the range of „normal‟ vs. „diseased‟ states for potential biomarkers. 

Technical replication tests the variation within each of the experimental units, such as sample isolation, 

collection, storage, preparation, or detection. Quantifying the level of technical variation within each 

experimental unit is essential for determining a threshold above which test groups are statistically 

different. Knowledge of the variability in the methodology will also assist in prediction the number of 

biological replicates required to obtain quantitative information [65,67,68]. Biological replication tests 

the innate inter- or intra-individual variability within a test population. These results require 

preliminary study of a large population of „normal‟ samples for estimation of the expected variability 

within a test population [69].  

The majority of variability is assumed to be biological, and so increasing the number of biological 

replicates will achieve a higher level of confidence in the result [65]. However, more replicates implies 

longer analysis time. It is well known, given the complexity of the proteome, that a higher level of 

fractionation (protein or peptide level) allows the researcher to mine the proteome more deeply, 

increasing the dynamic range of abundance over which proteins are identified. Coupled with the 

inclusion of technical replicates, the number of individual analysis will expand to the point of requiring 

unreasonable instrument time to characterize greater than a single proteome. As seen in Figure 4, the 

biomarker discovery platform cannot be a direct extension of a proteome mining experiment; multiple 

biological replicates are required for confident biomarker identification. Based on the expected 

technical and biological variability, it is said that up to thousands of samples are required for definitive 

conclusions to be drawn for biomarker discovery by high throughput methodologies [65,67,68,70]. 

Pooling samples from healthy and diseased groups will reduce the sample size while maintaining a 

high degree of confidence in the data, however, pooling also eliminates the estimation of  

inter-individual variation within each group, and can mask outliers which can reduce the applicability 

of the biomarker upon validation [71,72]. 

Blocking is meant to prevent bias contributed by experimental parameters known to the researcher. 

Examples of blocking during experimentation include organizing samples based on age, gender or 

ethnicity, but also on the disease grade or sample origin. Blocking should be applied to insure equal 

allocation of experimental groups in a randomized trial, allotting equal analysis time of healthy and 

diseased groups. As an example, a test for obstructive coronary artery disease (CAD) predicts with 

high confidence the presence of CAD in non-diabetic men, however is ineffective in women, and men 

with diabetes [1,73,74]. Other factors such as comorbidity or medication also present confounding 

variables that cannot be corrected by any number of statistical manipulations post acquisition. 

Blocking is therefore the only way to limit the influences of these variables and implies proper 

experimental design [60,65].  
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Figure 4. Increasing the level of fractionation greatly improves the number of proteins 

identified, though longer analysis time is required. Conversely, biomarker experiments 

require analysis of larger sample sizes to improve the biological significance of the 

identified proteins. In the discovery phase, biomarker experimentation must find a balance 

between these extremes. Pooling samples is one method to reduce the analysis time, 

however will also limit biological relevance.  
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of these compounds can lead to sample loss and decreased sensitivity [81–83]. Similarly, depletion of 

highly abundant proteins or sample purification can introduce unexpected bias in results due to  

non-specific binding [84–86]. Reducing these forms of bias are of utmost importance to the overall 

experimental workflow, and optimization of each protocol beforehand can lead to greatly improved 

sensitivity in results. However, dealing with such large volumes of information can provide challenges 

all their own [22,23,87]. 

3.3. Statistical Analysis of High Dimensional Datasets 

Microarray and MS based techniques generate thousands of data points for a single sample [8,53]. 

As the number of data points per sample approaches hundreds to thousands, the data becomes what is 

known as „high dimensional‟ [23]. Traditional statistical methods such as t-tests are commonly used to 

compare the mean values of two samples to determine statistical significance between them. This 

method is useful for determining differences between traditional datasets; however these methods 

break down during analysis of data in high dimensions. A commonly employed p-value of a t-test of 

95% confidence, implies that 5 times out of 100 the reading is a falsely identified as being significant. 

Following this logic, conducting a t-test on expression profiles of 10,000 genes or proteins at 95% 

confidence potentially leads to identification of 500 false positives. Shifting the confidence interval to 

decrease the number of false positive identifications (referred to as type I error) can theoretically 

improve confidence in the data; however will lead to a significant increase in false negative 

identifications (type II error). This confounding statistical problem is known as „the curse of 

dimensionality‟ [88]. 

Obviously, these methods are not ideal for biomarker identification in this fashion, introducing a 

need for statistical methodology better suited to high dimensional datasets. A number of researchers 

have published methods in an attempt to circumvent or reduce the effects of the curse of 

dimensionality [89–91]. Such statistical algorithms take advantage of bayesian statistics, hierarchical 

clustering, or quasi-poisson distribution, and support vector machine (SVM) methods to differentiate 

between data sets. A comparison of some of these statistical methods was conducted by Leitch et al. 

(2012) [21]. These statistical methods can be used to generate a list of candidate data points 

contributing to the differences between each group (i.e., diseased or healthy). However, with these 

statistical approaches, there is a danger of over-fitting the data. Over-fitting occurs as a result of 

applying a large number of variable data points to a small number of outcomes (i.e., diseased vs. 

healthy). Insuring the quality of data therefore requires a large „training‟ sample group accompanied by 

an independent „validation‟ group. Ransohoff reviewed the terminology [29], and gives examples of 

sufficient and insufficient data sets for biomarker identification. Because it may not be possible to obtain 

sufficient samples to construct large training and validation groups, one may conduct cross-validation 

within the training set by sequential grouping and comparison within the same group [92]. Other 

methods aiming to eliminate over fitting employing unsupervised statistical methods include  

principle component analysis [93,94] or hierarchical clustering [95,96]. These methods however 

shown greater application for classification of disease based on subcellular processes than for 

biomarker discovery [97,98]. 
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4. Conclusions  

The field of biomarker discovery using high throughput methodology in the form of microarray 

chip technology and mass spectrometry is rapidly expanding. Biomarker studies aim to compile gene 

or protein profiles for effective and decisive disease diagnosis, prognosis, and prediction of effective 

treatment plans. Early on, the field of biomarker discovery experienced some growing pains in the 

form of flawed methodologies and inadequate statistical analyses, leading to irreproducible biomarker 

discoveries. These errors in judgement, as researchers rushed to publish and identify biomarkers 

unfortunately led to erroneous results. These false claims shook the confidence of researchers and 

caused a general mistrust of the ability of high throughput technologies to yield informative disease 

markers. Over the last decade, a large quantity of research has been committed to the critical 

assessment of sources of bias, statistical analysis, and experimental procedures employed in biomarker 

discovery studies. This research has provided a better understanding the fundamentals in experimental 

planning and execution, as well as statistical analysis of such large data sets.  

As technology develops to allow even greater amounts of data to be generated, methods to handle 

such large datasets must be understood and applied correctly to allow effective conclusions. In 

response to the need to obtain quantitative information of large data sets, statistical algorithms capable 

of dealing with them are being developed, and ever-expanding computational power is also allowing a 

greater number of samples to be analyzed. The future of biomarker research depends on the 

experiments currently being conducted, and retaining stringent requirements for true identification of 

biomarkers, with sufficient validation to back claims will boost confidence in the field and allow a 

greater understanding of the molecular pathophysiology behind a great number of diseases. 
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