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ABSTRACT
Abnormal patterns in infants’ General Movements (GMs) are robust
clinical indicators for the progression of neurodevelopmental
disorders, including cerebral palsy. Availability of automated
platforms for General Movements Assessments (GMA) could improve
screening rate and allow identifying at-risk infants. While we have
previously shown that deep-learning schemes can accurately track
the longitudinal axes of infant limb movements (12 anatomical
locations, 3 per limb), information about the distal limb segments’
rotational movements is important for making an accurate clinical
assessment, but has not previously been captured. Here we show
that training schemes that are highly successful at tracking trunk
and proximal limb landmarks perform less well for the distal limb
landmarks, and this problem is exacerbated when landmarks are
more precisely defined in the training-set to capture rotational
movements. Increasing the sample size to 26 videos using a mixture
of laboratory and clinical data pre-selected for diversity of pose and
video conditions in a ResNet-152 deep-net model was sufficient to
permit accuracy of >85% for the distal markers, and overall accuracy
of 98.28% (SD 2.29) across the 24 landmarks. This scheme is suitable
to form the basis of an infant pose reconstruction algorithm that
captures clinically relevant information for an automated GMA.
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Introduction

Neurological injuries due to hypoxic-ischemic encephalopathy, perinatal stroke and
infection are life-threatening conditions to a developing fetal or neonatal brain. Such
injuries can often lead to neurodevelopmental impairments that cause lifelong physical
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disability, including cerebral palsy (CP) (Fairhurst 2012; Gunn and Thoresen 2015;
Ahearne et al. 2016; Abbasi et al. 2023). Spontaneous General Movements (GMs) of
infants during the first 6–20 weeks of post-term age contain valuable prognostic infor-
mation about the quality of neurodevelopmental growth (Ferrari et al. 2004; Garcia
et al. 2004; Spittle et al. 2009; Bosanquet et al. 2013). The complexity and variations of
GMs are thought to be driven by cortical structures modulating brainstem and spinal
cord central pattern generator networks (Hadders-Algra 2018; Prechtl 1997). Conse-
quently, abnormal or absent GMs can indicate risks of impaired neurodevelopment or
neuromotor deficits (Morgan et al. 2019; Prechtl 1997). Clinically, the General Move-
ments Assessment (GMA) is used to identify infants with higher risk of neurodevelop-
mental disorders, such as cerebral palsy (CP). Cramped-synchronised GMs with rigid
and stiff features during what is termed the ‘writhing period’ (up to around 8 weeks
post-term age) as well as the absence of fidgety movements in the ‘fidgety period’ (12–
20 weeks post-term age) are prognostic signatures of possible developing CP (Einspieler
and Prechtl 2005; Darsaklis et al. 2011). Early diagnosis provides an opportunity for early
access to interventions while the brain’s neuroplasticity is still high, which can improve
neuromuscular outcomes (Hadders-Algra 2014; Bernava et al. 2022; Caruso et al. 2020).
The widespread utility of the GMA is currently limited at paediatric clinics, in part due to
the limited number of qualified assessors; automated computer-vision and classification
technology can alleviate this limitation.

Advanced image processing techniques, including deep-learning technology, have
recently created new robust motion-tracking algorithms to capture body motions from
videos. Toolboxes such as DeepLabCut™ (Nath et al. 2019; Mathis et al. 2018) and Open-
Pose (Cao et al. 2019), are good examples of motion tracking platforms that take advan-
tage of these principles. DeepLabCut (Mathis et al. 2018) in particular has shown robust
capabilities for markerless pose-estimation and movement tracking of various species
including non-primates (Mathis et al. 2021) and primates (Labuguen et al. 2021;
Abbasi et al. 2023). Deep-net models developed in DeepLabCut are shown to be
capable of identifying previously learned landmarks and track movements in out-of-
domain human (Abbasi et al. 2023) and animal subjects (Mathis et al. 2021), as well as
human infants (Nath et al. 2019; Wei and Kording 2018). DeepLabCut has also been
shown to effectively generalise when tested on out-of-training domain subjects.

DeepLabCut is built on transfer-learning through using ResNet models pretrained
on a benchmark ImageNet (Krizhevsky et al. 2012) for object detection, and utilises
deconvolutional layers for semantic segmentation (Mathis et al. 2018). Deconvolu-
tional layers are generally designed for up-sampling the visual information to estimate
probability of an object similarity to a previously learned object, in spatial space, and
localise a body-part in an image. These features seem to have helped DeepLabCut
achieve reliable motion tracking performance. Deeper network structure in deep-net
models (e.g. ResNet-152) has been helpful for mimicking the mechanism of biological
neuronal cells and their complex connectivity (Krizhevsky et al. 2017). ResNet-152, in
particular, is one of the enhanced deep-net models which was first introduced by
Microsoft in the 2016 ImageNet challenge (Image-net Challenege n.d.). During the
training process, the manually labelled data are iteratively used for fine-tuning the
deep-net model’s weight parameters towards minimising the value of cross-entropy
loss function. The scheme initially assigns high probabilities to human-labelled
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locations in the manually annotated images while the rest of the image gains negligible
likelihoods (Mathis et al. 2018).

The application of deep-learning-based approaches is relatively new in the infant
GMA field. Some recent attempts have applied these techniques to movement classifi-
cation, not motion detection in 2D videos (Cunningham et al. 2019; Lempereur et al.
2020; Silva et al. 2021). Other recent works have demonstrated capabilities of deep-learn-
ing-based approaches for prediction of CP and other neurological disorders in high-risk
infants from automated markerless tracking of their GM patterns (Groos 2022a; Sakkos
et al. 2021; Raghuram et al. 2022; Wu et al. 2022; Shin et al. 2022; Groos et al. 2022b).
Several teams (Groos et al. 2022a, 2022b; Wu et al. 2022; Shin et al. 2022), including
us (Abbasi et al. 2022)[27], have used deep-learning-based markerless motion tracking
technology to track supine infant movements equivalent to the movements recorded
and assessed during the GMA. All of these studies have used deep learning to track
and reconstruct three markers on each arm and leg, giving the longitudinal axis of the
limb. In our case, we showed that, using deep-net models trained in the DeepLabCut™
environment (Nath et al. 2019; Mathis et al. 2018), we could achieve a cross-validated
accuracy of 95.52% (SD 2.43) across 12 anatomical locations when trained on data
from only five infants and tested on out-of-domain videos from a novel baby.

The original descriptions of GMs made by Prechtl and others specifically mention the
importance of limb rotations: ‘The majority of extension or flexion of arms and legs is
complex, with superimposed rotations and often slight changes in direction of the move-
ment. These additional components make the movement fluent and elegant and create
the impression of complexity and variability’ (Prechtl 1990). Similarly, GMA-trained
clinicians state that small rotations are a key feature of the fidgety movements being
assessed. However, to date no studies have used deep learning to track more than
three markers per arm, as would be required to capture these rotational movements. It
is possible that missing this feature of infant movements restricts automated analyses
from identifying important signs relating to neuromotor development.

This current work assesses the implications of tracking additional, more precise anatom-
ical landmarks allowing the estimation of distal limb segment rotations that have been
beyond the scope of previous works, and how tracking performance of those distal land-
marks is affected by using larger training datasets. We assess the generalisation capabilities
of two landmark sets for training of the deep-net, one tracking 16 anatomical landmarks and
the other 24 landmarks including three differently positioned points on each hand and foot
compared to the 16-landmark set. Generalisation is assessed formodels trainedwith both (1)
a clinically recorded dataset, and (2) a combined dataset of clinical and laboratory videos.
Leave-one-out cross-validation (LOOCV) was used to assess the trained models’ perform-
ance, across all landmarks, across the entirety of three randomly selected videos from the
clinical cohort, using our previously reported Kalman filter-based assessment approach.

Data acquisition

Ethics

All procedures in this study were approved by the Auckland Health Research Ethics
Committee (AHREC–000146). Parents/caregivers were fully informed of the purpose
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of experiments, filming procedure and methods, and provided informed written consent
for their child’s participation.

Recording procedures

Clinical recordings were provided by the Child Development Centre of the Waikato Dis-
trict Health Board (DHB), New Zealand. Infants were filmed by a trained clinician during
March 2017 to June 2021 as part of clinical practice. Data from a cohort of 15 infants (9
males and 6 females, born with gestational ages ranging 24–41 weeks, mean age when
recorded 22.9 (SD 4.1) weeks, mean corrected age when recorded 12.8 (SD 1.0) weeks;
Table 1) with GMs captured during their fidgety period were selected from the larger
database of available clinical recordings to provide a diverse selection of movement pat-
terns, skin colour, clothing and background colour and videoing conditions such as sha-
dowing and angle. Selection criteria for the larger database were set to infants with less
than 32 weeks gestation and/or less than 1500 g weight at birth. Also, an HIE (Sarnat
score 2 or 3) or any other concerns identified by medical staff was considered for
infant selection. Infants were filmed either at home or brought to the clinic, changed
into a nappy only, and laid down in a supine position on a plain-colour linen on a com-
fortable mat. Standard iPads (MQDT2X/A: 12-megapixel camera with 4K HD video and
a MD367X/A: 3rd generation iPad with 5-megapixel 1080p HD camera) were used for
recording the videos. Infants were filmed while awake, with spontaneous mobility, in
their natural state for 1–2 minutes with minimal environmental distractions (i.e. from
parents/caregivers or the presence of toys). Data were recorded with 1920 × 1080
pixels resolution and frequency of 29.97 frames/second. Data were initially post-pro-
cessed in Adobe Premiere Pro 2022 to remove intervals where parts of the infant’s
body were out of frame, placing the infant relatively in the center of the recording and
further cropping out any excessive background space in the video. Based on experience,
removing the extra unnecessary information in the videos could be helpful to improve
the robustness of the model. Videos were then saved in their original quality. A total
of 24K frames were eventually used from the 15 infants.

Table 1. Infants’ health and demographic information. All participants belong to a high-risk group,
had birth complications and comorbidities and received medications and/or continuous positive
airway pressure (CPAP).

Gender Ethnicity Gestational age at birth (wks + days) Ventilated

P01 M Māori 26 + 0 Yes
P02 M NZE^ 27 + 6 Yes
P03 M Middle Eastern 32 + 0 No
P04 F NZE 29 + 6 No
P05 M Māori 24 + 0 Yes
P06 F Māori 27 + 0 No
P07 F Māori/NZE 30 + 2 No
P08 M Māori Pacific 28 + 0 No
P09 M African 41 + 0 No
P10 F NZE 35 + 0 No
P11 M NZE 30 + 3 Yes
P12 F Māori 26 + 5 Yes
P13 F NZE 33 + 0 No
P14 M NZE 26 + 0 Yes
P15 M NZE 30 + 5 No

^ New Zealand European
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The laboratory dataset comprised 12 videos from 6 term-born infants with mean age
when recorded of 17.33 (SD 2.9) weeks, 4 male:2 female. Further details of the laboratory-
based recordings are provided in Abbasi et al. 2023.

Methods and computational approach

Deep-learning training and validation

A generalised motion tracking deep-net model is important for our application, where we
would need the network to be able to reliably identify and track body landmarks in novel
videos from unseen infants. To evaluate how the tracking performance for the distal limb
segments varies between the two landmark sets, we randomly selected 3 infant videos
from the pool of 15 clinically recorded infants. To assess the sensitivity of tracking per-
formance to the training set size, four training sets were then formed, schemes #1–#3
included 100 frames from each of 5, 10 or 14 videos from the clinical dataset, respectively.
Scheme #4 was formed by adding 100 frames of each of 12 laboratory-recorded videos to
the training data of scheme #3. The 100 frames from each video were selected using
DeepLabCut’s k-means clustering feature to maximise diversity of postures in the
selected frames.

A total of 64,800 points (clinical recordings: 15 infants × 100 frames each × 24 ana-
tomical locations = 36,000; and lab recordings: 6 infants × 2 videos × 100 frames
each × 24 anatomical locations = 28,800) were manually labelled by an expert (H.
A.). Examples of the manually labelled locations in the clinically recorded videos
are shown with coloured dots in Figure 1. This figure also illustrates the diversity
of ethnicities, filming conditions and quality of the videos used from the clinical
recording cohort.

We then assessed, using cross-validation, whether models trained with each of the four
schemes performed equally well across the three left-out subjects. For testing schemes #1
and #2, none of the training sets included any of the three testing videos. For testing
schemes #3 and #4, one video from the clinical dataset was selected for testing and the
training set was formed from the remaining 14 clinical videos (plus the laboratory
videos for scheme #4).

We used DeepLabCut’s recommended multi-step learning-rate updating regime
(0.005 from 0–10k iterations, 0.02 for 10k–430k iterations and 0.002 for 430k–700k iter-
ations) and their built-in ‘imgaug’ image augmentation algorithm with a training-to-test
proportion of 95% to 5% for each training round. A decaying cross-entropy loss function
across all training schemes confirmed validity of the training process. Depending on the
size of the training dataset in each scheme, network training, which was run for 700k iter-
ations, took 3 to 7 days on the NVIDIA A100 machines (detailed in the ‘Computing
Infrastructure’ section). The root mean square errors (RMSE), generally the average dis-
tance between the detected labels by the ResNet and the scorer’s annotations, were 2.44
(SD 0.10) pixels after training with the 24-landmark set, while test errors were found to
be higher at 4.17 (SD 0.05) pixels. Since physical calibration scales were not included in
the clinical data set, and imaging conditions varied between videos, we are unable to
convert these pixel values to physical distances. Plots of cross-entropy loss for all four
training schemes after training are shown in Figure 2, confirming the fast convergence
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of the model across all training schemes. The discontinuity at 430,000 iterations is a
result of the standard-practice parameter change in the learning-rate scheme from the
0.02 to 0.002.

Figure 1. Examples of the 24 manually labelled anatomical locations (colourful dots), in DeepLabCut
environment, in 15 clinically recorded infants. No consent was received to share baby #13’s image.

Figure 2. Cross-entropy loss for all training schemes from A, 24 anatomical landmarks and B, 16
anatomical landmarks.
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Labelling strategies

The 16-landmark set comprised labels at the eyes, nose, sternum and three locations per
limb: shoulders, elbows and hands, or anterior superior iliac spines (ASIS), knees and
feet. All landmarks were labelled at the 2-D position of their location in the image,
regardless of the orientation of the structure (Figure 3 A–D). For example, the hand
label was placed on the dorsal, palmar, ulnar or radial aspect of the hand depending
on the orientation of the hand, such that the label was above the point deep in the
hand below the center of the palm. The only time a landmark was not labelled in an
image was when the landmark was covered beneath a different body part.

The 24-landmark set used the same facial, torso, shoulder and elbow landmarks as the
16-landmark set. The exact same manual label locations were used from the 16-landmark
data. Hands and feet were labelled differently, with a label placed at the wrist, index finger
metacarpophalangeal (MCP) joint, little finger MCP, ankle, big toe metatarsophalangeal
joint (MTP) and little toe MTP. As before, landmarks were labelled regardless of orien-
tation, at the apparent location of the central point deep within the anatomical structure,
except when covered by a different body part, where they were not labelled. Landmarks
on the MCPs and MTPs were not labelled when that side of the hand was not visible in
the image because of the hand orientation (Figure 3 E–H).

Automatic unsupervised performance measure

We have previously described the development of a Kalman-filter-based approach to
automatically generate performance metrics using all frames of a validation video

Figure 3. Examples of the manually labelled anatomical locations (colourful dots) in the right limbs
from the 16-landmark set (A–D), as well as the 24-landmark set (E–H).
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(Abbasi et al. 2023). This approach supplants earlier methods using the average Percen-
tage of Correct Keypoints (aPCK) (Liu et al. 2021; Mathis et al. 2021), which is time-con-
suming and usually involves ‘out-of-domain’ performance validation against a much
smaller number of manually labelled frames from the validation video. Briefly, the
Kalman filter tracks each landmark with a state variable considering x and y position, vel-
ocity and acceleration, and this Kalman filter is run forwards and backwards through the
data. The Kalman filter output is used solely to identify instances in the DeepLabCut
output where the marker trajectories deviate from those smooth assumptions and there-
fore are likely to be labelled incorrectly. This approach helps to detect potential ‘outlier
identifications’ by the deep-net landmark identifier, and at other points the landmark
locations identified by the deep-learning model are unmodified by the Kalman filter
process. Each frame’s DeepLabCut position estimate forms the noisy observations on
which the state is updated. After each prediction step, logical combinations of likelihoods
from both forward and backward Kalman filter measures are evaluated and compared
against the probability of the current position of the marker that is estimated by the
ResNet motion-tracking model to automatically assign true positive (TP), false positive
(FP), false negative (FN) and true negative (TN) status for each marker position in
each frame. The estimated probabilities from the ResNet indicate the confidence of a
motion-tracking model with the identified location of that landmark in the image. Nega-
tive log-likelihood values greater than 20 were considered as a poor tracking observation,
while a good labelling was defined when the ResNet model identified a marker with a
confidence level of > = 0.6. Similar to the previous work, here we evaluated the precision
(positive predictive value, PPV), sensitivity (true positive rate, TPR), overall performance
(average of precision and sensitivity) and overall accuracy (proportion of correct identifi-
cations (TP + TN) out of all identifications (TP + TN + FP + FN)) for each anatomical
landmark. For more information, refer to Abbasi et al. 2023.

Computing infrastructure

Processing was performed using New Zealand eScience Infrastructure (NeSI) high-per-
formance computing facilities’ Cray CS400 cluster (NeSI, n.d.). The ResNet model was
trained using enhanced NVIDIA Tesla A100 PCIe GPUs, with 40 GB HBM2 stacked
memory bandwidth at 1555 GB/s per training task. Intel Xeon Broadwell CPUs (E5-
2695v4, 2.1 GHz) were used on the cluster for handling the GPU jobs. In this work,
we used DeepLabCut version 2.2.0.3, TensorFlow 2.5.0, CUDA 11.6 and Python 3.8.6.

Results

We used cross-validation to evaluate performance for tracking each trained model across
all anatomical landmarks on the three left-out clinically recorded videos. The trained
ResNet model was able to accurately track movements in out-of-domain (unseen)
videos from three novel infants with an overall performance of 98.28% (SD 2.29),
across all 24 locations, for the training scheme #4, where data from 14 clinical + 12
lab-recorded videos were used in the training set. This was improved from an overall
accuracy of 92.21% (SD 9.28) for the training scheme #1 where data from only five clini-
cally recorded videos were used in the training set (Figure 4 and Tables S1 & S2).
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Tabulated results in Tables S1 and S2 show how the overall performance of the ResNet
model for the 16- and 24-landmark sets improves as more manually labelled data from a
larger number of infants were used in the training (from training scheme #1 to training
scheme #4). The performance variance also decreases as the size of the training data
increases in all cases except for the change from scheme #3 to #4 in the 16-landmark
set. Breakdowns of the performance by anatomical landmark are shown as heatmaps
in Figure 5 (see also Tables S3–S5 and Tables S6–S10 respectively for numerical

Figure 4. Accuracy values, averaged across landmarks for each testing video, for the training schemes.
Red = 16-landmark set, blue = 24-landmark set; squares, circles, diamonds indicate test video 1–3
respectively.

Figure 5. Accuracy measures for training scheme #1 to #4 across 16 anatomical landmarks (A–D) and
24 anatomical landmarks (E–H) on three unseen validated videos.
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details). In Figure 5 C and D we can see that the increase in variance from scheme #3 to
#4 with 16 landmarks is specifically caused by poorer performance in tracking the right
hand of infant #1. Note that even though only the hand landmarks varied between the 16-
and 24-landmark sets, model training considers all landmarks simultaneously, and there-
fore the models trained on the two landmark sets may have different performance even at
the shared landmarks.

Figure 6 A highlights that the poorest performances occurring for the hands and
elbows in the 16 landmarks with scheme #1 set recovered to much higher values for
scheme #4. Similarly, the performance for MCPs and MTPs in scheme #1 of the 24-land-
mark set was also low and improved substantially with scheme #4 (Figure 6 B). Tables
S11 and S12 provide location-based validation results across both landmark sets and
all training schemes, averaged across the three test videos.

The small performance variations between test videos for training scheme #4 (Figure
4) support consistent generalisation capabilities of the deep-net model across large
numbers of video-frames from three different subjects. The larger variation in the
location-based comparison, especially for the 24-landmark scheme (Figure 5 H, but
also apparent with 16 landmarks, Figure 5 D), reflects that landmark identification is a
more challenging task for the visually complex or often occluded landmarks (i.e.
MCPs and MTPs).

Examples of the locations predicted by the tracking model trained with scheme #4,
relative to the manually labelled locations by the expert observer (H. A.) are shown in
Figures 7 A–C (16-landmark set) and 7 D–F (24-landmark set).

Discussion

Previous studies in the literature developing an automated General Movements Assess-
ment have consistently tracked three landmarks per limb. In this current work, we
extend beyond that approach to a 24-landmark set which captures information
about rotations of the distal limb segments. We have shown relative performance
with the 16- and 24-landmark sets on a mixed dataset of clinically- and laboratory-
recorded standard 2D video of infants aged 2–5 months old. The introduced set of
24 anatomical landmarks in this work, including the eyes, nose, sternum and five
locations per limb is novel and clinically essential for capturing fine rotational
fidgety-related movements in the hands and feet. This enhanced landmark configur-
ation provides an advantage over the conventional three landmarks per limb, which
is equivalent to the 16-landmark set scheme in this study (including eyes, nose,
sternum and three locations per limb).

We evaluated the landmark identification capabilities of a deep ResNet-152 model for
both of these landmark sets, which involved identification of hands and feet broadly
defined in the 16-landmark set, compared to more specific limb locations such as the
MCP and MTP joints within the 24-landmark set framework.

Performance impact of landmark specificity and dataset size

The performance of the tracking algorithm averaged across all landmarks consistently
improved from training scheme #1 to #4 (Figure 4 and Tables S1 and S2) across the
three out-of-domain videos for both the 16- and 24-landmark sets. The 24-landmark
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set, with higher distal landmark specificity, was tracked with lower performance (98.28%,
SD 2.29), accompanied by increased variance, especially for the distal limbs (Figure 4 &
5) compared to the 16-landmark set (99.04%, SD 1.18).

Figure 6. Location-based accuracy measures for A, training scheme #1 (light orange) vs #4 (dark
orange) of the 16 anatomical landmarks, and B, training scheme #1 (light blue) vs #4 (dark blue) of
the 24 anatomical landmark approach. Note: measurements for nose and sternum have been
excluded (see Table S11 & S12 for details).
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In the 16-landmark set, the poorest performances of training scheme #1 were associ-
ated with hands, feet and occasionally one elbow, whereas tracking of these landmarks
improved to similar levels to the more consistently performing landmarks when the
model was trained in scheme #4 (Figure 5). The lower performance tracking of distal
landmarks is exacerbated when the specificity of the landmark definition is increased
(i.e. the hand MCPs and feet MTPs compared to hand and feet generally) (see Figure
4 and training scheme #1 to #4 in Figure 5). Correspondingly, the standard deviations
across all anatomical landmarks in the three out-of-domain subjects were considerably
and consistently lower, for all training schemes #1 to #4, in the 16-landmark set approach
compared to the 24-landmark set (see Figure 4, and Tables S1 & S2).

However, our data showed that this deficiency was greatly improved when the model
was trained using training scheme #4, which incorporated a larger dataset from both
clinically- and laboratory-recorded videos. In fact, increasing the amount of training
data to 26 videos (2600 frames), in the training scheme #4, recovered performance of
the 24-landmark set back to very close to that of the 16-landmark set for two of the
three test videos in training scheme #3, and above 98.5% accuracy (Figure 4).

Performance in the third test video (test video 1 in Figure 4) remains lower with
scheme #4, at similar levels to that of scheme #1, suggesting that it contains novel
poses not otherwise encountered in the training set.

Figure 7. Examples of the automatic (+) vs manual (O) identifications in the arms of the three infants
in the validation set. Results are plotted using the training scheme #4 for the 16 (A–C) and 24 land-
marks (D–F). Note: marker representations of the arms are magnified for better illustration purposes.
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Our evidence shows that, compared to tracking broadly defined landmarks, to achieve
similar levels of performance when tracking more specifically labelled landmarks, a larger
training set is required to adequately capture variations in local features within the
images (Figure 4 and 5).

Unsupervised performance evaluation for large out-of-domain data

Typically, automatic performance evaluations of larger out-of-domain datasets, with
thousands of frames, is a challenging task where providing ground-truth annotations
through manual labelling can be very time-consuming. In this work, model performance
was evaluated across all frames in the videos using our previously introduced unsuper-
vised performance evaluation strategy that combines likelihoods of a Kalman filter and
the deep-net confidence (Abbasi et al. 2023), to automatically measure performance
metrics on an extensive out-of-domain recording set. Unlike the conventional aPCK
approach of assessing performance on a small number of manually labelled frames
(Liu et al. 2021; Mathis et al. 2021), our approach is evaluated over all frames within
the video meaning that it will not miss any brief, unusual poses the infants may take,
and so represents a more robust measure of performance.

Our Kalman-filter-based validation approach compares tracking results against pre-
dictions based on smooth and nearby assumptions by considering marker location, vel-
ocity and acceleration from previous frames, and combining them with the DeepLabCut
confidence score to mark proper landmark identification and tracking. Related to the
benefit of being able to assess tracking performance across large numbers of frames,
the Kalman-filter approach is also fully unsupervised, meaning that it scales well to
large datasets and allows independent identification of sections of video where the
deep-net tracking has failed, presumably due to the novelty of some aspect of the pose.

The evaluated performance in this work fits well into the reported performance range
of other recent markerless motion tracking studies validated over much smaller manually
annotated datasets (Mathis et al. 2021).

Landmark tracking insights

The algorithm consistently demonstrated best tracking performance for eyes and
shoulders, and worst for the distal landmarks (hands, MCPs and MTPs; see Figure 5).

Several factors could explain these differences. Firstly, distal landmarks can take a
wider range of postures and orientations, particularly influenced by both humeral and
forearm (pronation/supination) rotation, bringing different aspects of the limb to face
the camera and in a range of in-plane orientations, as well as the curling or extending
of fingers, which alter their appearance substantially. Features like the little finger
MCP will be not visible at all, and so, unlabelled in certain configurations. Secondly,
distal limbs being more mobile mean they can overlap each other, either changing
their appearance while visible or occluding the hand or foot entirely from the camera.
There may be fewer manually labelled frames available for these landmarks due to
their occasional occlusion. However, our labelling approach does not solely focus on
marking the visible landmark’s location but also provides information when labelling
the landmark as absent: nothing in the current image looks like this landmark. This
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information should explicitly train the model to identify these cases where the landmark
is not visible and implicitly help to avoid mis-identification of other body parts. Similarly,
in our performance metrics, correctly identifying cases where landmarks are absent
counts positively towards overall performance of the model.

An alternative explanation for the poorer performance of the distal landmarks is the
increased movement speed, and therefore motion blur, of these points at a 30-frames-
per-second sampling rate. We have previously identified that infant hands and feet
move with similar speed distributions, while the tracking performance is poorer for
hands (Abbasi et al. 2023), suggesting at least that pose variations play an important
role in reducing tracking performance. Working with the standard video frame rate of
30 Hz is potentially one of the limitations of the current study. We have noticed that
this sampling frequency can permit substantial motion-blur when capturing faster move-
ments of the hands and feet. Comparison of tracking from video captured at 30 Hz and
60 Hz in a future study will allow quantification of the effect of this influence.

Enhanced landmark labelling strategy

In this study we adopted a ‘center-of-the-joint’ approach for labelling the landmarks,
where the point deep in the joint was labelled whenever the joint was visible from any
angle. The alternative ‘point-on-the-surface’ approach would have been to consistently
label a point on the skin surface associated with a particular landmark. In this latter
case, whenever that surface point was not visible, the landmark should be unlabelled.
While our approach means that the visual appearance of each labelled landmark may
vary more widely throughout the training set, many more labels are able to be provided,
meaning that the landmark has the opportunity to be identified more often in novel data.
This strategy was helpful to introduce a large diversity of infants’ poses for a specific land-
mark in the training set.

Dataset size and diversity

Our results show that with the three-landmark-per-arm labelling strategy used in most
studies, a modestly-sized dataset of 1400 frames from 14 videos in training scheme #3
was sufficient for the ResNet-152 to achieve over 98.5% identification accuracy. For
five landmarks per arm, 2600 frames from 20 infants (26 videos) was able to train the
model to achieve at least 97% accuracy. Groos et al. (Groos, Adde, Støen et al. 2022)
have examined the effect of training- set size between 100k and 14.5k frames for
several CNN-based models (although not ResNet152). They used different Percentage
of Correct Keypoints (PCK)-based performance metrics, for which equivalency with
our Kalman-filter-based approach is not immediately clear. Nonetheless, their results
indicate modest changes in model performance with increases in data size over 1000
frames, and that those improvements that do occur beyond this level are increases in
the precision of the labelling. Two of the models reach (lower) performance maxima
at 5000 frames, whereas EfficientPose-based methods continue to improve with
additional data.

In the context of motion capture of infants, the effective sample size depends on the
number of novel features being shown during training. If features are novel only between
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infants, then the number of infants would be critical. However, in this case, the key fea-
tures being trained on are poses and the appearance of body landmarks which are rela-
tively conserved in appearance between individuals but vary substantially with different
poses. It therefore makes sense that the sample size that is important in this context is the
number of poses captured, which is a function of the variability of poses of the individ-
uals, the number of frames of video included and the differences between selected frames:
DeepLabCut specifically uses a k-means algorithm to facilitate selection of frames that
capture variability across the videos (Nath et al. 2019; Mathis et al. 2018). The high accu-
racies we achieve with our training set size of thousands of frames indicates that the rate
of change between usefully different poses across frames must be reasonably high, and
that our sample sizes in the low thousands of frames are adequate to capture most of
the variability in the range of landmark appearance. A sample size in the low thousands
is consistent with estimates of the number of samples typically considered required in
other machine-learning contexts (Cho et al. 2015).

Additionally, in this current study, we deliberately started with a dataset with a
large diversity of infants’ poses, skin color, background linen and nappy colours
and videoing conditions such as shadow contrast and viewing angle. This range
reflects the true diversity of clinical recordings currently taken. Judicious selection
of the training data to include in this variation may assist in the construction of a
trained model that is robust to different video conditions from an efficiently sized
training set. Deliberate engineering for robustness to skin colour is essential to
avoid the introduction of machine-learning performance bias that has been shown
to impact different communities when these issues are not considered (Singh et al.
2022; Daneshjou et al. 2021).

Limitations and future work

This work has a number of limitations that can be addressed in future studies. Firstly, the
testing set size used here, three videos, is very constrained, and the algorithm should be
validated on a large dataset of clinically recorded videos, including high-risk identified
infants. Secondly, we cannot tell from our results how much better performance will
get with additional training data, and testing with a larger sample size of clinical record-
ings is warranted. According to our Kalman-filter performance metric, which is ben-
eficial for being able to be calculated automatically across a whole video, we are
currently performing at nearly perfect performance; however, comparison of the
tracked positions against human labels may provide a more sensitive measure of the pre-
cision of the labelling, albeit necessarily on a smaller sample. Thirdly, we have only exam-
ined performance of one deep-net model, ResNet152, using the DeepLabCut platform.
There has been a recent proliferation of similar models for pose estimation, and the per-
formance of these in the context of infant tracking should be evaluated. A tool for confi-
guring, training and evaluating all of these algorithms across a common training/testing
set would greatly facilitate this work and likely be useful in many other domains.
Fourthly, to ensure equitable healthcare outcomes, it is essential for future work to for-
mally assess potential biases in machine-learning models, such as those related to skin
colour or variety of poses in the training set, and to aim at mitigating these biases
while enhancing the model’s performance across diverse populations.
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Fifthly, there is no evidence in the literature on the quantification of infant distal
segment rotations in the context of General Movements, and so it is not yet clear
whether, or to what extent, these movement features inform us about neurodevelopmen-
tal function and health. The performance of classifiers trained to detect neurodevelop-
mental concerns from the infant kinematics derived with or without rotational
information should indicate the relative importance of these movements as a clinical
indicator. In the advent that these features are found to be important, it will be fascinat-
ing to explore the functional implications of these movements in terms of healthy early
motor learning and neuromuscular development.

Conclusion

This validation study confirms feasibility of tracking in infants between two and five
months of age, placing landmarks that capture rotational motion of distal limb segments
using markerless motion tracking technology from standard 2D clinically recorded
videos. The required increase in specificity of the labelling of distal landmarks results
in a performance drop in the tracking, as assessed using an automated approach that cap-
tures all pose variability in the test videos. However, this performance drop can be miti-
gated by increasing the size of the dataset. Relatively modest datasets with fewer than 30
videos can be expected to capture the range of landmark variation seen from infants in
this age group. These results indicate the suitability of this approach for inclusion in an
automated clinical platform for infant GMA.
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