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Individual cells in genetically homogeneous populations have been found to express different numbers of molecules of
specific proteins. We investigated the origins of these variations in mammalian cells by counting individual molecules
of mRNA produced from a reporter gene that was stably integrated into the cell’s genome. We found that there are
massive variations in the number of mRNA molecules present in each cell. These variations occur because mRNAs are
synthesized in short but intense bursts of transcription beginning when the gene transitions from an inactive to an
active state and ending when they transition back to the inactive state. We show that these transitions are intrinsically
random and not due to global, extrinsic factors such as the levels of transcriptional activators. Moreover, the gene
activation causes burst-like expression of all genes within a wider genomic locus. We further found that bursts are also
exhibited in the synthesis of natural genes. The bursts of mRNA expression can be buffered at the protein level by slow
protein degradation rates. A stochastic model of gene activation and inactivation was developed to explain the
statistical properties of the bursts. The model showed that increasing the level of transcription factors increases the
average size of the bursts rather than their frequency. These results demonstrate that gene expression in mammalian
cells is subject to large, intrinsically random fluctuations and raise questions about how cells are able to function in the
face of such noise.

Citation: Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S (2006) Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4(10): e309. DOI: 10.1371/journal.pbio.0040309

Introduction

Many recent experiments show that genetically identical
populations of bacteria and yeast can exhibit cell-to-cell
variations in the amount of protein a gene produces [1–7].
These variations result in increased phenotypic diversity [8–
14]. The variations are thought to arise from the typically
small number of molecules involved in gene expression, with
protein numbers often on the order of hundreds of
molecules, mRNA on the order of tens of molecules, and
the genes themselves often present in just one or two copies
per cell. The factors leading to cell-to-cell variations can be
classified as deriving from two sources: (a) variations in
global, or extrinsic, factors, such as varying amounts of
transcriptional activators, or (b) inherently random, or
intrinsic, molecular events, such as the transcription of
mRNA or translation of proteins [3,15].

While studies in bacteria have shown that variations have
partially [3] or completely intrinsic [4] origins, studies in yeast
suggested that variations arise mostly from extrinsic sources
[1,5,16]. Recent studies with more accurate methods of
analysis have, however, identified a more substantial intrinsic
component to the variations in yeast [17,18]. In two of these
studies [1,5], the authors developed models of gene expres-
sion postulating that the remaining intrinsic variability was
due to random transitions of the gene itself between an active
state, in which mRNA is transcribed at a high rate, and an
inactive state, in which mRNA is transcribed at a much lower
rate [19]. This theory predicts that the magnitude of
variations in protein level (relative to the mean amount of
protein) increases as the rate at which genes activate
decreases. By experimentally varying the overall level of gene
expression of fluorescent protein reporters, the authors
obtained results consistent with this model. Other studies
performed in higher eukaryotes by a variety of means,
pioneered by the early work of Ko et al. [24], have indicated

that significant cell-to-cell variations exist in these organisms
as well [20–23].
However, direct detection of the proposed gene activation

and inactivation events was not possible because new proteins
from individual activation events were masked by proteins
remaining from previous events as a result of the long half-
lives of the fluorescent proteins used as the reporter. The use
of fluorescent proteins is further limited by their low
sensitivity: because individual molecules of fluorescent
protein produce only small amounts of fluorescence, they
are difficult to detect in the low numbers produced by many
genes. This limitation is particularly troublesome in eukary-
otic cells in general, and higher eukaryotes in particular, as
the cellular volumes are much larger than those of bacteria,
thus diluting the fluorescent protein concentration.
Given these limitations, the most direct way to detect gene

activation and inactivation is to directly monitor the mRNA
produced from the gene at the resolution of single molecules.
Because the half-life of mRNA is typically much shorter than
that of fluorescent proteins, their levels reflect more
accurately the state of the gene. Moreover, by detecting
single molecules, one would sidestep the issue of sensitivity.
Furthermore, the presence of integral molecule counts would
be especially valuable in precisely evaluating models of
stochastic gene expression.
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In this study, we explored cell-to-cell variation in gene
expression in mammalian cells by accurately counting single
molecules of mRNA through the use of fluorescence in situ
hybridization (FISH). By obtaining precise measurements of
these most immediate (and fast decaying) products of gene
expression, we show direct evidence that genes transition
infrequently between active and inactive states, resulting in
large cell-to-cell variations in gene expression in clonal cell
lines. In contrast to the mostly extrinsic variations observed
in yeast, we show that these transitions are intrinsically
random and not due to extrinsic factors and that they affect
the expression of entire genomic loci. Furthermore, we found
that the mRNA produced by the gene encoding the large
subunit of RNA polymerase II is also produced in bursts, and
that these bursts are uncorrelated with those from our
reporter gene, indicating that the level of RNA polymerase II
is not an important extrinsic determinant of cell-to-cell
variations. We also analyzed the effect that the mRNA
variations had on the proteins they encode and found that
having a slow protein degradation rate can serve to buffer the
mRNA variations. A mathematical model of gene activation
and inactivation indicates that the mean number of mRNA
produced per activation event (the ‘‘average burst size’’) can
be controlled by varying the amount of transcriptional
activators in the cell.

Results

Detection of Individual mRNA Molecules
To directly observe random events of gene activation and

inactivation, we measured cell-to-cell variations in the
number of molecules of a specific mRNA. We accomplished
this by integrating a reporter gene possessing a tandem array
of probe binding sites into mammalian cells and utilized
fluorescently labeled probes to visualize mRNA transcribed
from the gene by FISH. To obtain single molecule sensitivity,
we introduced 32 tandem copies of a 43–base-pair probe-
binding sequence at the 39 end of a coding sequence for a
fluorescent protein (throughout this paper, we refer to this

sequence array as M1). The construct was inserted into
Chinese hamster ovary (CHO) cells by electroporation, and a
stable cell line was isolated in which a single copy of the gene
was integrated into the cells’ genome. These cells were then
fixed and subjected to hybridization with a single-stranded
oligodeoxyribonucleotide probe that was both complemen-
tary to the tandemly repeated sequences and labeled with five
well-dispersed fluorophore moieties (Figure 1A). The binding
of so many fluorophores to each individual mRNA molecule
resulted in signals so bright that each molecule was detectable
as a diffraction-limited spot in a conventional wide-field
fluorescence microscope (Figure 1B). To count the total
number of mRNA molecules in each cell, optical slices
spanning the full three-dimensional cellular volume were
acquired (Video S1). The number of mRNA molecules in each
cell was then measured using custom software to identify
individual fluorescent spots in three dimensions from the
image stacks (Figure 1C). We have shown previously that each
spot corresponds to an individual mRNA molecule and that
there is no significant loss of mRNA molecules during the
FISH procedure [25], thus establishing that the method is a
valid way to count the number of mRNA molecules in
individual cells.

Measurement of Cell-to-Cell Variations in Clonal Cells
To measure cell-to-cell variations in mRNA numbers in

clonal cell lines, we generated stable CHO cell lines
expressing our construct. The gene was placed under the
control of a promoter whose expression could be controlled
in mammalian cells (Figure 2A), and it was stably integrated
into the genome via electroporation, resulting in the
introduction of a single copy of the gene (as verified by
Southern blotting; unpublished data). Observation of the
mRNA synthesized in these cells showed that there were
marked variations in the number of mRNA molecules from
cell to cell (Figure 2B). The occasional larger bright areas that
were observed are recently activated transcription sites
[25,26] caused by a buildup of nascent mRNA that had not
yet diffused away. The observation that these sites occur

Figure 1. Detection and Quantification of Single Molecules of mRNA in Individual Cells

(A) Schematic diagram depicting the mRNA detection method. Multiple fluorescent probes bind to each mRNA molecule, yielding a bright, localized
signal.
(B) Merged image of a three-dimensional stack of images from a CHO cell expressing the 7x-tetO gene depicted in (A), where each mRNA is hybridized
to FISH probes that bind to the multimeric probe-binding sequence in its 39-UTR (probe P1-TMR binding to the M1 multimer). Each spot corresponds to
a single mRNA molecule.
(C) Identification of the spots in the three-dimensional image stack in (C). Each particle found by the image-analysis algorithm is colored differently,
showing that the algorithm is accurate and that individual molecules are uniquely identified. The scale bars are 5 lm long.
DOI: 10.1371/journal.pbio.0040309.g001
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infrequently indicates that the mRNA is not being continually
synthesized, but rather, it is synthesized during brief periods
of time when the gene is transcriptionally active. We refer to
these periods as transcriptional bursts. The rest of the time,
the gene is in a transcriptionally inactive state, during which
no mRNA molecules are synthesized and those synthesized
earlier are degraded.

Quantitative evidence of the burst-like nature of tran-
scription comes from comparing the number of mRNA in
cells containing active transcription sites to those without
active transcription sites. We found that of 97 randomly
selected cells from cell line E-YFP-M1-7x (details of construct
discussed below), the 23 containing transcriptional foci had
an average of 244 mRNA per cell, as compared to 33 mRNA
per cell in the 74 without any active transcription site (p ,

10�4). Because the FISH method also gives the spatial location
of the mRNA, we were also able to compare the relative
numbers of mRNA in the nucleus and cytoplasm to study
further the behavior of the transcriptional bursts. If tran-
scription occurs in bursts, then one would expect to find
more mRNA in the nucleus than in the cytoplasm when the
gene is active, as the nuclear mRNA has not been exported.
However, when the gene is in the inactive state, the nuclear
mRNA will be exported without being replenished, resulting
in a lower proportion of the total cellular mRNA being found
in the nucleus. To examine such behavior, we costained the
cells with DAPI after the hybridization and determined
whether each mRNA was located in the cytoplasm or nucleus.
Often, we found that cells without a transcriptional focus had
only cytoplasmic mRNA, whereas cells with a transcription
site usually had a large number of nuclear mRNA (Figure 2D).
Statistically speaking, cells containing active transcription
sites had a higher percentage of reporter mRNA in the
nucleus (35%, 17 cells analyzed) than did cells without active
transcription sites (25%, 22 cells analyzed) (p ¼ 0.0093).

Interestingly, the two cells depicted in Figure 2D are clearly
descended from the same parent cell but seem to display
different transcriptional behavior. This behavior is typical
and indicates that variations global extrinsic factors such as
position in the cell cycle are not the primary source of
variation in the activity of the transgene; this is more
systematically analyzed in the ‘‘Relative Contributions of
Intrinsic and Extrinsic Factors to Variations in mRNA Level’’
section of the results.
Further evidence for transcriptional bursts comes from an

analysis of the statistics of the distribution of mRNA
molecules per cell over the entire cell population. If mRNA
were produced at a constant rate, one would expect a Poisson
distribution of mRNA per cell, in which case the mean
number of mRNA molecules per cell and the variance (the
square of the standard deviation) would be equal. However,
we found that the mean was approximately 40 mRNA
molecules per cell, while the variance was roughly 1,600
molecules squared, indicating that the mRNA is not synthe-
sized at a constant rate, consistent with the occurrence of
transcriptional bursts.

Mechanisms Controlling Transcriptional Bursts
To investigate the mechanisms controlling transcriptional

bursts, we altered the overall level of transcription both by
changing the amount of transcriptional activator present in
the cells and by altering the number of binding sites for that
activator in the promoter. To accomplish this, the gene was
inserted downstream from a minimal cytomegalovirus pro-
moter, and either one or seven copies of the tetracycline-
sensitive tet operator sequence were present upstream from
the promoter (Figure 2A). Transcription from the promoter
is only possible when a protein known as the tet-trans-
activator (tTA) binds to the operator sequence. tTA is a
protein consisting of two domains: one that binds to the tet

Figure 2. Cell-to-Cell Variation of mRNA Numbers in Clonal Cell Lines

(A) Schematic diagram of the doxycycline-controllable promoters and the reporter genes that they control. Doxycycline binds to the tTA protein,
thereby preventing it from binding to the tet operator.
(B, C) Representative fields of cells from cell lines E-YFP-M1-1x and E-YFP-M1-7x, containing the 1x-tetO and 7x-tetO promoters, respectively, where each
mRNA is hybridized to FISH probe P1-TMR and the image was obtained by merging a three-dimensional stack of images.
(D) Two sister cells from cell line E-YFP-M1-7x displaying mRNA hybridized to FISH probe P1-TMR (red) and costained with DAPI (blue). The image
represents one focal plane. The scale bars are 5 lm long.
DOI: 10.1371/journal.pbio.0040309.g002
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operator (derived from the TetR protein), and one that
promotes transcription of nearby genes (the VP16 acidic
activation domain). The tetracycline-like antibiotic doxycy-
cline binds to the DNA-binding domain of tTA, preventing it
from binding to DNA. By varying the level of doxycycline in
the growth medium, we were able to control the level of free
tTA in the cells [27].

Two constructs (1x-tetO and 7x-tetO) were stably inte-
grated into CHO cells that had previously been modified to
express tTA, resulting in the cell lines E-YFP-M1-1x and E-
YFP-M1-7x, each containing a single copy of the respective
reporter gene. Representative snapshots of clonal cell fields
are shown in Figure 2B and 2C. We observed that the size of
the bursts were larger in the E-YFP-M1-7x cell line than in the
E-YFP-M1-1x cell line. We then varied the amount of
doxycycline in the growth medium and measured the
distribution of the number of mRNA molecules per cell
across several fields of cells grown at each concentration of
doxycycline (Figure 3A; mRNA counts given in Table S1). As
expected, increasing the level of doxycycline resulted in a
decrease in the mean number of mRNA molecules per cell
(Figure 3B, top). However, we also found that the variability
across the population (quantitatively measured by the
‘‘noise,’’ which we define as the standard deviation divided
by the mean) remained constant over all doxycycline
concentrations for the 1x-tetO construct but varied non-
monotonically for the 7x-tetO construct (Figure 3B, bottom).
Moreover, we found that noise properties do not change if
one considers mRNA concentration rather than absolute
number (Figure S2, compare with Figure 3B, bottom). This is
most likely because the primary source of variation is the
activation state of the gene itself, which does not vary with the
volume of the cell.

Both results are inconsistent with conventional stochastic
models of gene expression [3,5,15,28] that predict that noise
should increase steadily as the mean level of transcription
decreases. To explain this behavior, we invoked a model of
gene activation and inactivation [29] in which the gene
undergoes infrequent transitions between a transcriptionally
active state, during which many mRNA molecules are
produced, and a transcriptionally inactive state, in which no
mRNA molecules are produced (the model is analyzed in
more detail in Protocol S1, where a complete formula for the
mRNA distribution is presented). Using a fast numerical
evaluation of the theoretical distributions resulting from this
model, we were able to fit the experimentally obtained data to
find expressions for the gene activation rate, k (to within a
factor of the mRNA degradation rate, d), and the average
number of mRNA produced during each burst, l/c (hence-
forth referred to as the average burst size) (Figure 3C). The
mRNA half-life was determined by quantitative RT-PCR to be
approximately 4 6 1 h (Figure S1; see Materials and Methods
for further discussion). The results of the fitting procedure
show that either increasing the number of transcription
factor binding sites or increasing the amount of intracellular
transcription factors increases the average burst size. Based
on our analysis, it is impossible to say whether this is due to a
decrease in the rate of gene inactivation or an increase in the
rate of transcription of the activated gene. This fact does,
however, point to an important difference with the bacterial
case, where gene activation and inactivation have typically
been associated with transcription factor association and

dissociation [4]. Were that the case, decreasing the amount of
transcription factors would serve to decrease the rate of
activation while leaving the rates of inactivation and tran-
scription the same. In our data, the rate of gene activation
appears to be fairly constant until the doxycycline concen-
tration reaches a relatively high level, at which point it
increases, arguing against the application of the bacterial
model to our system. It is unclear why the rate of gene
activation increases at the larger doxycycline concentrations,
since decreasing the level of transcription factors should only
decrease the rate of gene activation. This might be due to
factors not included in our model, or some physical behavior
on the part of the cell induced at higher doxycycline
concentrations. However, our data generally indicate that
modulating the concentration of transcriptional activators
affects the overall level of transcription by altering the
average burst size rather than its frequency.

Relative Contributions of Intrinsic and Extrinsic Factors to
Variations in mRNA Level
If the variation in expression levels from one cell to

another were truly due to random gene activation events,
then the presence of multiple independently activating
copies of the gene would result in less cell-to-cell variability
in mRNA numbers (i.e., the noise should decrease). Intui-
tively, this can be seen by considering simultaneous coin
tosses: if only one coin is tossed, it is either heads or tails, but
if several coins are tossed at once, the chances of the set of
them being close to 50% heads and 50% tails increases with
the number of coins used. To test this possibility, we
integrated multiple copies of our reporter gene into one
region of the genome via cationic lipid-based transfection
(lipofection), which simultaneously integrates tens to hun-
dreds of gene copies, often in tandem and at the same locus,
and isolated cell line L-GFP-M1-7x. Generally, the number of
mRNA produced in this cell line was much larger than in E-
YFP-M1-7x (with only one copy of the reporter gene), but the
cell line still displayed massive cell-to-cell variations (Figure
4A) with a markedly skewed distribution (Figure 4B). Statisti-
cally, this is demonstrated by the fact that the noise
characteristics of these two cell lines was similar; since the
mean number of mRNA molecules per cell has increased
roughly 10-fold (at no doxycycline) over the E-YFP-M1-7x cell
line, one would expect the noise to decrease by a factor of
H10 ’ 3 if the genes expressed independently, but no such
decrease was observed (Figure 4C; compare to Figure 3B).
There are two alternate explanations for this observation.

One possibility is that the massive fluctuations seen in the
number of mRNA molecules per cell are due to fluctuations
in global factors that simultaneously affect the expression of
all of the reporter genes (e.g., fluctuations in the levels of tTA
or RNA polymerase II); this is usually referred to as extrinsic
noise [3,15]. Alternatively, since the genes were integrated
into the same genomic locus, it is possible that the genes
express in a coordinated fashion in response to a random,
local gene activation event (such as chromatin decondensa-
tion) that affects all nearby genes [1]. However, if local gene
activation events occur at random, then genes located at
distant sites would activate and deactivate independently.
This type of noise, due to the random occurrence of events
involved in gene expression, is usually referred to as intrinsic
noise and is not dependent on global factors.
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To explore these two alternative explanations, we con-
structed another reporter gene, CFP-M2, that encoded a cyan
fluorescent protein and contained a different tandem array
of probe-binding sequences in its 39-UTR, denoted M2. This
allowed its mRNA to be distinguished from the mRNA
synthesized from reporter genes containing the M1 sequence
array by performing FISH with an additional probe that
binds to the M2 array but is conjugated to a differently

colored fluorophore. In one series of experiments, this gene
was integrated into a cell line (L-GFP-M1-7x) that already
expressed a reporter gene containing the M1 array, resulting
in the CFP-M2 reporter gene being integrated into a locus
distant from the site of integration of GFP-M1 (Figure 5A,
left). In a second series of experiments, the two reporter
genes were integrated simultaneously via lipofection, result-
ing in both genes being integrated at the same locus (Figure

Figure 3. Statistical Analysis of Per-Cell mRNA Population Distributions

(A) Histograms showing the distribution of mRNA molecules per cell for three doxycycline concentrations for both cell lines E-YFP-M1-1x (left) and E-
YFP-M1-7x (right).
(B) Graphs showing the population mean (top) and noise (defined as the standard deviation divided by the mean [bottom]) as a function of doxycycline
concentration. Statistics were taken from the mRNA counts used in (A), and error bars were obtained by bootstrapping.
(C) Activation rate (k/d) and average number of mRNA molecules produced per burst (l/c) for 1x-tetO (blue) and 7x-tetO (red) obtained from fitting the
mRNA count data to the model of gene activation and inactivation by the maximum-likelihood method. Error bars reflect 95% confidence intervals.
DOI: 10.1371/journal.pbio.0040309.g003
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5A, right). If the variations in mRNA expression in each cell
were due to global factors, bursts of mRNA synthesis from
these distinct genes would likely occur simultaneously in the
same cell regardless of their genomic location (i.e., both cell
lines would show a strong correlation between the expression
of both reporter mRNAs). However, if gene expression is
controlled by local gene activation events affecting individual
loci independently, the first cell line, in which the distinct
reporter genes are integrated at different loci, would show no
correlation in gene expression, but the second cell line, in
which the distinct reporter genes are integrated at the same
locus, would show a strong correlation in gene expression.

When integrated at separate loci (as evidenced by the
presence of two distinct transcription sites), the two reporter
mRNAs each individually displayed the large fluctuations
observed previously (Figure 5B), yet the occurrence of those
fluctuations were completely uncorrelated with each other (R
¼ 0.056, p ¼ 0.57) (Figure 5B, inset). However, when the two
genes were integrated at the same locus (as evidenced by a
single, dual-colored transcription site; Video S2), the genes
produced both types of mRNA in simultaneous bursts (Figure
5C and inset; R ¼ 0.89, p ¼ 1.2 3 10�38). Taken together, the
results of these experiments show that infrequent gene
activation and inactivation events control the variability in
mRNA levels, and these events occur randomly and are not
dependent on global, extrinsic factors. Moreover, the results
imply that these gene activation events are spatially extended,
in that they affect whole regions of the genome at once.

Cell-to-Cell Variations in the mRNA Encoding the Large
Subunit of RNA Polymerase II

To further examine the role of global, extrinsic factors, we
checked for fluctuations in a putative extrinsic factor, RNA
polymerase II, to see if the level of expression of its mRNA
correlated with the level of expression of the mRNA from a
reporter gene. We were able to image individual molecules of
the natural mRNA encoding the large subunit of RNA
polymerase II by exploiting the presence of a naturally
occurring 21-nucleotide-long sequence that is repeated 52

times in the mRNA. We used a FISH probe for the repeated
sequence that was labeled with a distinctively colored
fluorophore, and we counted fluorescent spots similar to
those observed previously (Figure 6A). We found that this
mRNA also displayed bursts of mRNA synthesis and that its
distribution across a field of cells was similar to those
observed for the reporter genes, with a variance over 50
times the mean (Figure 6B, top). To check for a correlation
between the level of this mRNA and that of a reporter gene
(in cell line E-YFP-M1-7x), we also quantified the level of
mRNA expression of the reporter gene in the same cells. No
significant correlation was found (R¼ 0.083, p¼ 0.41) (Figure
6B, bottom). By using the model of gene activation and
inactivation, we were able to estimate the rates of gene
activation, inactivation, and transcription to within a factor
of the mRNA half-life (see Figure 6B for parameter values and
confidence intervals), indicating that the activation was
indeed infrequent and burst-like. These results show two
things: (a) synthesis of the mRNA from natural genes can also
be burst-like and (b) fluctuations in the number of mRNA
molecules encoding the large subunit of RNA polymerase II
are not a source of noise in the expression of other genes.

Propagation of mRNA Variability to Protein Levels
To investigate the effects that burst-like transcription of

mRNA had upon intracellular protein levels, we simulta-
neously quantified the number of mRNA and the fluorescent
proteins they encoded in individual cells. To assess the effects
that the rate of protein degradation had upon protein
variability, we performed this analysis on a cell line
expressing a fluorescent protein that was actively degraded
and another cell line expressing a fluorescent protein with no
active degradation.
For the case of active degradation, we used a cell line stably

expressing the GFP-M1 reporter gene, which encoded a green
fluorescent protein (GFP) that had been tagged at the C-
terminus with a short amino acid sequence rich in proline,
glutamic acid, serine, and threonine (d2EGFP) that targets the
protein for active degradation (with a half-life of approx-

Figure 4. Cell-to-Cell Variations in mRNA Numbers in a Cell Line with Multiple Reporter Gene Integrations at the Same Gene Locus

(A) Representative field from cell line L-GFP-M1-7x, generated by lipofection, where the mRNA was hybridized to FISH probe P1-TMR; the image was
obtained by merging a three-dimensional stack of images.
(B) Histogram showing the distribution of mRNA molecules per cell over for cell line L-GFP-M1-7x when grown in media containing no doxycycline.
(C) Graphs showing the population mean (top) and noise (defined as the standard deviation divided by the mean [bottom]) as a function of doxycycline
concentration. Error bars were obtained by bootstrapping.
DOI: 10.1371/journal.pbio.0040309.g004
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imately 2 h) and examined the correlations between the
mRNA and protein levels (Figure 7A). We found that the
levels correlated quite well, with correlation coefficients
larger than 0.78 (p , 2.6 3 10�22) over a range of transcrip-
tional strengths. Moreover, the distribution of total protein
levels appeared rather similar to those of the mRNA (Figure
7A, marginal histograms on top, mRNA, and right, protein).

For the case of no active protein degradation, we used
another cell line, this time expressing the CFP-M2 reporter
gene, in which the fluorescent protein did not contain any
degradation tags. We found that the correlation between the
mRNA and protein levels was significantly lower than before
(R ¼ 0.35, p ¼ 1.9 3 10�4) (Figure 7B). Moreover, while the
mRNA distribution was still heavily skewed with long tails, the
protein distribution was somewhat less skewed. We also
examined the distribution of proteins in live cells from cell
line E-YFP-M1-7x, whose reporter gene also encodes a
fluorescent protein that is not actively degraded. In this case,
the single-copy integration produced too few proteins for us

to detect after the fixation procedure, preventing us from
simultaneously measuring the mRNA levels, but we found
that the fluorescent protein levels in live cells also displayed a
much less skewed distribution as compared with the actively
degraded proteins (Figure 7C).
To explain the differences in protein distributions and

correlation between the actively degraded and nondegraded
cases, we added protein dynamics to the model of mRNA
dynamics and examined the behavior of this model through
the use of Gillespie’s stochastic simulation algorithm [30].
(The parameters used for the simulations were those obtained
from cell line E-YFP-M1-7x under conditions of no doxycy-
cline, although the qualitative features observed do not
depend heavily on the specific parameters used.) These
simulations show that decreasing the rate of protein
degradation results in a sharp decrease in the correlation
between the mRNA and protein levels (Figure 7D). Also, the
protein distribution changed from being heavily skewed to
being more Gaussian in nature (Figure 7D, right marginal

Figure 5. Dual-Reporter Experiments Showing Variations Are Intrinsically Random and Can Affect an Entire Gene Locus

(A) Schematic depicting dual-reporter integration experiments, where the two reporters are either integrated in separate locations in the genome (left)
or at the same locus (right).
(B) Two-color overlay showing a merged three-dimensional stack of images of the cell line in which two different reporter genes (one expressing mRNA
containing the M1 sequence array and the other expressing mRNA containing the M2 sequence array) are integrated into separate loci (cell line L-GFP-
M1-7xþL-CFP-M2-7x); green corresponds to the signal from GFP-M1 mRNA and red corresponds to the signal from CFP-M2 mRNA (using probes P1-
TMR and P2-Alexa-594, respectively). The relative mRNA levels of both genes were quantified by counting the mRNA of each color in a single optical
slice in each cell (inset).
(C) Two-color overlay showing a merged three-dimensional stack of images of the cell line in which the two distinct reporter genes are integrated into
the same locus (cell line L-YFP-M1-CFP-M2), where the same FISH probes were used as in (B). The relative mRNA levels of both genes were quantified by
counting the mRNA of each color in a single optical slice in each cell (inset). The scale bars are 5 lm long.
DOI: 10.1371/journal.pbio.0040309.g005
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histograms), even though the mRNA distribution remained
heavily skewed in all cases (Figure 7D, top marginal histo-
gram). Intuitively, this is because proteins with fast protein
degradation rates will be abundant only when the mRNA
encoding it is abundant, resulting in a high correlation and
similar distributions. However, if the proteins degrade very
slowly, then proteins from earlier transcriptional bursts may
still be present when new bursts occur. In this case, the
transcriptional bursts merely serve to occasionally ‘‘top up’’
the amount of fluorescent proteins from time to time,
resulting in less skewed distributions and a lower correlation
between mRNA and protein numbers. Qualitatively, these
predictions correspond well with our experimental observa-
tions.

Discussion

We have shown that the mRNA levels of both reporter
genes and native genes display large cell-to-cell variations in
mammalian cells due to intrinsically random, infrequent
events of gene activation. These burst-like fluctuations are
not restricted to engineered reporter genes, but occur in
natural genes as well, as demonstrated for the mRNA

encoding the large subunit of RNA polymerase II. We have
further shown that these events are controlled by gene
regulatory mechanisms, such as the level of activator proteins
and the number of transcription factor binding sites, and can
affect regions of the genome rather than just specific genes.
Moreover, we have found that the variations are intrinsi-

cally random, rather than due to global extrinsic factors. This
contrasts with the results of previous studies in lower
eukaryotes [1,5,16], although some qualification of those
studies may be required, as some extrinsic effects may simply
be related to fluctuations in cell volume (see Protocol S1 for a
further comparison to previous studies). This finding is
significant, because extrinsic variations are often due to
fluctuations in transcription factors [1,3] and cell cycle [16],
which means they are at least partially regulated, whereas
intrinsic variations are by definition uncontrollable.
We have also shown that the statistics of these variations

are well described by a model in which the only sources of
randomness are random events of gene activation and
inactivation, implying that one can safely ignore the random-
ness inherent in the chemical reactions describing tran-
scription and translation. This is qualitatively different from

Figure 6. Cell-to-Cell Variations in the mRNA Encoding the Large Subunit of RNA Polymerase II

(A) Representative field of cell line E-YFP-M1-7x upon performing FISH with differently colored probes for both YFP-M1 mRNA and the mRNA encoding
the large subunit of RNA polymerase II. The image is a two-color overlay, where green corresponds to the signal from YFP-M1 mRNA (one optical slice)
and red corresponds to the signal from RNA polymerase mRNA (merged three-dimensional image stack). The probes used were P1-Cy5.5 and P3-TMR.
(B) Histogram showing the distribution of RNA polymerase mRNA molecules per cell (top) and scatterplot (bottom) showing reporter mRNA levels
(quantified by counting the mRNA in a single optical slice) and RNA polymerase mRNA levels (quantified by counting all mRNA) in each cell. Gene
activation (k/d), inactivation (c/d), and transcription rates (l/d) (normalized by the mRNA decay rate d) are given with 95% confidence intervals as
indicated. The scale bar is 5 lm long.
DOI: 10.1371/journal.pbio.0040309.g006

Figure 7. Propagation of mRNA Variations to Variations in Protein Levels

(A) Scatterplot of total GFP and mRNA numbers in individual cells from cell line L-GFP-M1-7x grown under conditions of no doxycycline (blue), 0.08 ng/
ml doxycycline (red), and 0.16 ng/ml doxycycline (green). Marginal histograms indicate the distribution of reporter mRNA per cell (top) or total GFP
(right) for all the growth conditions.
(B) Scatterplot of total CFP and mRNA levels (obtained from a single optical slice) in individual cells from cell line L-GFP-M1-7xþL-CFP-M2-7x grown
under conditions of no doxycycline. Marginal histograms indicate the distribution of reporter mRNA per cell (top) or total GFP (right) for all the growth
conditions.
(C) Histogram of total YFP per cell from cell line E-YFP-M1-7x. YFP was quantified in live cells to minimize loss of fluorescence due to fixation and
permeabilization.
(D) Scatterplots and associated marginal histograms showing the results of stochastic simulations of the model of mRNA and protein dynamics
presented in Protocol S1. The mRNA dynamics were the same for all cases, but the protein degradation rate was increased as indicated. Details of the
simulation procedures and exact values of the parameters used are given in the Materials and Methods section.
DOI: 10.1371/journal.pbio.0040309.g007
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the bacterial case, where such reactions are thought to be the
dominant source of variability in gene expression [3,7,28,31–
33], despite some recent evidence of relatively mild burst-like
behavior in Escherichia coli [4]. Other studies performed in
higher eukaryotes have found similar behavior to that we
have observed, albeit by different means [20–22,24]. In
particular, the work of Chubb et al. [23] showed through
temporal measurements of active transcription sites that
genes do indeed undergo random transitions between tran-
scriptionally active and inactive states, providing a powerful
corroboration of our model. Their study used the MS2
method of mRNA detection, which has previously been used
to monitor real-time kinetics of gene activity [26].

Possible Physical Mechanisms for Transcriptional Bursting
The most likely sources for the transcriptional bursts are

random events of chromatin remodeling [1,5]. If this is the
case, then gene activation would correspond to chromatin
decondensation and gene inactivation would correspond to
chromatin condensation, facilitated by the activity of histone
acetyltransferases and deacetyltransferases, respectively. Our
experiments with two reporter genes integrated in tandem or
at different locations of the genome support this idea (Figure
5). When the genes are located in distant regions of the
genome, they burst independently, but when they are located
near each other, they burst together. This is consistent with
previous studies in which VP16-mediated decondensation
was observed to extend over a region much larger than a
single gene [34,35].

If the decondensation of chromatin is a prerequisite for
gene activation, then the nucleation of this decondensation
will be a significant rate-limiting step. The structure of
chromatin at the level of nucleosome stacking suggests that
the ‘‘breathing’’ events that permit the entry of transcrip-
tional regulators will be infrequent [36]. However, once a
transcription regulator is able to bind to its target site on the
DNA exposed during a breathing event, it would attract
histone acetyltransferases and thereby keep the immediate
context of chromatin accessible. Of course, the rate of the
nucleation will likely depend on the actual location of the
genome in question, with some areas exhibiting lower
nucleation frequencies than others.

The fact the mRNA is produced in bursts points to new
means by which the cell may control transcription. There are
three apparent means by which a cell would be able to
upregulate a gene’s transcription: it could (i) increase the rate
of gene activation, (ii) increase the rate of transcription when
the gene is in the active state, or (iii) decrease the rate of gene
inactivation (the opposite behaviors, of course, apply should a
cell decide to downregulate a gene’s transcription). These
mechanisms, while all resulting in the same average increase in
transcription, differ markedly in the nature of the cell-to-cell
variations induced. Our data indicate that in our system,
either case (ii) or (iii) applies, whereas case (i) does not; in
other words, the average burst size is being modulated rather
than their frequency. The observation that altering the level
of transcriptional activator does not reduce the rate of gene
activation supports this hypothesis. Furthermore, the fact
that altering the level of transcriptional activator does not
reduce the rate of gene activation again argues for the
intrinsic nature of the variations observed: if the primary
source of cell-to-cell variation is the infrequent events of

gene activation and those events are independent of the level
of transcriptional activator, then the variations are likely due
to some intrinsic fluctuations gene activation that do not
depend on transcriptional activators. If gene activation does
indeed correspond to chromatin remodeling, this points to
the possibility that the nucleation of chromatin decondensa-
tion at a gene locus may be an inherently random event that
does not require the presence of transcription factors but,
once initiated, requires those factors to sustain the decon-
densed state.

Mathematical Model
Our mathematical treatment of stochastic gene expression

is rather different than methods based on moment generating
functions [28] and applications of the fluctuation-dissipation
theorem [31] in that we are generally more concerned with
obtaining some information about the nature of the entire
distribution rather than simply finding formulas for the first
two moments (although we do provide alternate derivations
of such formulas in Protocol S1). While moment computa-
tions are very useful in evaluating stochastic models in
bacteria, we believe that information regarding the entire
distribution is critical to understanding the observed burst-
like events that resulted in heavily skewed distributions, since
such distributions are not very well described by population
means and variances. Our use of exact solutions for the
complete distribution enabled us to perform rigorous
statistical determinations of key model parameters. Of
course, obtaining expressions for such distributions is
generally difficult for most chemical master equations, and
so we anticipate that the use of telegraph-like signals (as
elucidated in Protocol S1) may lead to significant simplifica-
tions. The primary assumption that allows the use of such
models is that the randomness associated with individual
events of transcription and translation is relatively mild
compared with that arising from random gene activation and
inactivation. We anticipate this assumption to be generally
valid in higher eukaryotes, especially given the role that
chromatin dynamics plays in their expression patterns. Such
methods may find particular utility in the study of the
dynamics of cell signaling networks, which have been shown
to exhibit the burst-like variations observed here [24,37].

Implications for Cellular Function
In a wider sense, the presence of such large, unpredictable

fluctuations in gene expression may initially appear to be a
significant impediment to the functioning of a cell. In
particular, given its essential role in cellular function, it is
surprising that the gene encoding the large subunit of RNA
polymerase II also displays fluctuations on the order of those
seen in the reporter genes. Our analysis of protein levels
yields a resolution to this apparent paradox: if the degrada-
tion rate of the proteins is sufficiently small, then the
variations in protein level will be buffered because the
proteins from new bursts serve only to ‘‘top up’’ the proteins
already present from previous bursts. This suggests that
essential genes whose mRNA expression is burst-like should
have relatively stable proteins. Moreover, there are other
manners in which protein variations may be further reduced.
For instance, should two different proteins, each bursting
independently, form a heteromeric complex, then the
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variations in the number of complexes will be somewhat
buffered from the variations in each component.

Conversely, there may also be situations in which burst-like
expression of unstable proteins may be desirable as well.
Many examples of such situations exist in bacteria and yeast,
often as a result of multistable behavior [8,10–12,14,38].
However, while such phenotypic variability may be advanta-
geous for unicellular organisms because each cell is essentially
identical, the same reasoning does not necessarily apply to
multicellular organisms, in which the diversity of cellular
function is controlled by the organism’s developmental
program. It is possible, though, that higher eukaryotes might
also be able to exploit this variation to achieve a multitude of
cellular behaviors in otherwise homogeneous tissues and cell
types, leading to, for example, mosaic phenotypes [39] or
transitions between phases in the viral life cycle [12]. In
multicellular organisms, however, the reasoning behind the
need for phenotypic variability is somewhat different than in
unicellular organisms, since the variability is not designed to
take advantage of an unpredictable environment but rather
to achieve varied function or behavior within a relatively
constant environment. We expect that distinctions such as
these will result in interesting differences in the properties of
stochastic gene expression in unicellular and multicellular
organisms.

Materials and Methods

Multimer construction. Construction of the DNA fragment with 32
probe binding sites in the pGEM-f11(z-) cloning vector (Invitrogen,
Carlsbad, California, United States) was performed by the method
described in Robinett et al. [40]. The mutually complementary
oligonucleotides used to produce the M1 32-mer are M1-forward:
TCGACCGATCGTGGCCTAAGGAGTTTATATGGAAACCCTTAC-
CAGCCGCTCGAGCCGAGG and M1-reverse: GATCCCTCGGCTC-
GAGCGGCTGGTAAGGGTTTCCATATAAACTCCTTAGGCCAC-
GATCGG.

The underlined portions of the sequence correspond to the SalI,
XhoI, and BamHI sites used for integration into the host vector. A
similar procedure was used to produce the M2 32-mer described by
Vargas et al. [25]. The following oligonucleotide was used: M2-forward:
TCGACCAGGAGTTGTGTTTGTGGACGAAGAGCACCAGC-
CAGCTGATCGACCTCGAGCCGAGG, along with the corresponding
reverse oligonucleotide designed in the same manner as M1-reverse.
The resulting plasmids were pGEM-M1-32x and pGEM-M2-32x.

Creation of the reporter genes. The reporter genes were
constructed by adding an open reading frame for yellow fluorescent
protein (YFP) and cyan fluorescent protein (CFP) upstream of the M1
and M2 multimers in the pGEM-M1-32x and pGEM-M2-32x plasmids,
respectively. The sequences encoding YFP and CFP were amplified
via PCR from pDH3 and pDH5 (University of Washington, Yeast
Resource Center, Seattle, Washington, United States) and inserted in
front of the M1 and M2 multimers between the SacI and SalI
restriction sites, also introducing a BglII restriction site between the
SacI site and the start codon of the open reading frame.

Integration into expression vectors. These reporter genes were
then integrated into expression vectors enabling their expression in
mammalian cells. The base vectors chosen were the pTRE2Hyg,
pTRE2Pur, and pTRE-d2EGFP vectors (Clontech, Palo Alto, Califor-
nia, United States). Each contains a tetracycline-responsive promoter
containing seven copies of the tet operator followed by a minimal
cytomegalovirus promoter and a polyadenylation signal. Addition-
ally, the pTRE2Hyg and pTRE2pur vectors enabled selection by
appropriate quantities of hygromycin B (Invitrogen) or puromycin
(Sigma, St. Louis, Missouri, United States).

To create a vector with one copy of the tet operator, we amplified
the promoter region of pTRE2Hyg using a primer containing one
copy of the tet operator. This was then cloned back into the
pTRE2Hyg promoter site, replacing the native promoter and creating
the plasmid pTRE2Hyg1x. The YFP-M1 construct was then extracted
from the pGEM host vector with BglII and NotI and then inserted
into the pTRE2Hyg and pTRE2Hyg1x vectors between the BamHI

and NotI sites. The CFP-M2 construct was similarly inserted into the
pTRE2Hyg and pTRE2Pur vectors. This created the plasmids
pTRE2Hyg-YFP-M1, pTRE2Hyg1x-YFP-M1, pTRE2Hyg-CFP-M2, and
pTRE2Pur-CFP-M2. The M1 multimer was also inserted into 39-UTR
in the pTRE-d2EGFP vector between the BamHI and EcoRI sites,
creating the plasmid pTRE-d2EGFP-M1. All constructs were verified
by sequencing.

Creation of cell lines. All cell lines were derived from the CHO-
AA8-Tet-off cell line (Clontech), which possesses a stably integrated
gene expressing the tetracycline-controlled Tet-off transactivator.
Cell lines E-YFP-M1-1x and E-YFP-M1-7x, containing the 1x-tetO and
7x-tetO constructs, were generated by electroporation (Bio-Rad,
Hercules, California, United States) using plasmids pTRE2Hyg1x-
YFP-M1 and pTRE2Hyg-YFP-M1, respectively. The electroporator
settings were 360 V and 975 lF using 10 lg of plasmid DNA linearized
with XmnI added to 107 cells in 500 ll of PBS in a 4-mm gap cuvette.
The multiple-copy integration clones were generated using Lipofect-
AMINE 2000 (Invitrogen) by following the manufacturers instruc-
tions. Cell line L-GFP-M1-7x was created by transfecting the CHO-
AA8-Tet-off cell line with the pTRE-d2EGFP-M1 plasmid linearized
with ScaI. To create the cell lines in which two reporter genes were
integrated in different loci, cell line L-GFP-M1-7x was transfected
using LipofectAMINE 2000 with the plasmid pTRE2Hyg-CFP-M2,
linearized with XmnI; the resultant cell line is L-GFP-M1-7xþL-CFP-
M2-7x. To create the cell line in which two reporter genes were
integrated in the same locus, the CHO-AA8-Tet-off cell line was
simultaneously cotransfected with equal amounts of pTRE2Hyg-YFP-
M1 and pTRE2Pur-CFP-M2, resulting in cell line L-YFP-M1-CFP-M2.
Cell lines were isolated after transfection by either electroporation or
lipofection via selection with the appropriate antibiotic (hygromycin
B or puromycin) and then purified by serial dilution. That only one
copy of the transgene was integrated into cell lines E-YFP-M1-1x and
E-YFP-M1-7x was verified by Southern blotting upon digestion of
genomic DNA with the restriction enzyme BglII. Several cell lines
were isolated following transfection; all exhibited similar phenotypes
to the cell lines analyzed in this paper. Cell lines obtained from
lipofection with pTRE-d2EGFP-M1 were isolated not by antibiotic
selection but instead by directly identifying fluorescent cell clusters
and purifying by serial dilution. Stability of the gene was verified by
DNA FISH (unpublished data).

Cell culture. Cells were cultured in the alpha modification of
Eagle’s minimum essential medium (Sigma) supplemented with 10%
TET-System-Approved fetal bovine serum (Clontech). The growth
medium was supplemented with a low concentration of the selective
antibiotic to ensure stability of the transfected gene. Appropriate
amounts of doxycycline were added as indicated, and cells were
grown at the desired concentration of doxycycline for 4 d to
minimize any transient effects. The doxycycline concentration
experiments were all performed in parallel with the same batch of
media to minimize differences due to serum composition, etc.

Construction of probes for in situ hybridization. The probes used
for the in situ hybridization were DNA oligonucleotides synthesized
on an Applied Biosystems (Foster City, California, United States) 394
DNA synthesizer using mild phosphoramidites (Glen Research,
Sterling, Virginia, United States). The oligonucleotide sequences
were P1: 59-CGGCRGGTAAGGGRTTCCATARAAACTCCTRAGGC-
CACGA-39; P2: 59-RCGAGGTCGARCAGCTGGCTGGRGCTCTTCG-
RCCACAAACA-39; and P3: 59-AGAGGRGGGCGAGRAGCRGGGA-
GAGGRGGGCGAGRAGCRGGG-39, where P1 and P2 are comple-
mentary to the repeat sequences in M1 and M2, respectively, and P3 is
complementary to a consensus sequence for the 52 repeats in the
RNAPII subunit A cDNA sequence. The ‘‘R’’s represent locations
where an amino-dT was introduced in place of a regular dT. The
oligonucleotides were synthesized on a controlled pore glass column
(Glen Research) that introduced an additional amine group at the 39
end of the oligonucleotide. The probes’ amine groups were then
coupled to the fluorophores Cy5.5, Alexa 594, and tetramethylrhod-
amine (Molecular Probes, Eugene, Oregon, United States) to create
the following probes: P1-TMR, P1-Cy5.5, P2-Alexa-594, and P3-TMR.
The probes were purified on an HPLC column to isolate oligonu-
cleotides displaying the highest degree of coupling of the fluorophore
to the amine groups.

In situ hybridization. Cells were cultured in multichambered
coverglass (Lab-Tek, Nalge Nunc, Rochester, New York, United States)
coatedwith gelatin. The cells were fixedwith 3.7% formaldehyde for 10
min at room temperature, washed with 13PBS, and permeabilized for
at least 1 h in 70% ethanol. FISH was then performed using
combinations of probes P1, P2, and P3 at a concentration of 1 ng/ll
each following the procedure outlined in Femino et al. [41]. The
optimal level of formamide used during hybridization and washing for
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maximumsignal to backgroundwas empirically determined to be 25%.
For the DNA FISH experiments, an additional two steps were added
after the permeabilization step: (1) cells were subjected to RNase A
treatment at 100 lg/ml in PBS for 30 min at 37 8C, after which (2) cells
were heated to 80 8C for 8 min in 70% formamide, 23SSC, after which
the hybridization proceeded as described above.

Image acquisition and analysis. After in situ hybridization, cells
were imaged using an Axiovert 200M inverted fluorescence micro-
scope (Zeiss, Oberkochen, Germany), equipped with a 1003 oil-
immersion objective and a CoolSNAP HQ camera (Photometrics,
Pleasanton, California, United States), and cooled to �30 8C; then,
standard filter sets obtained from Omega Optical (Brattleboro,
Vermont, United States). Openlab acquisition software (Improvision,
Sheffield, United Kingdom), was used to acquire the images. For three-
dimensional imaging, randomly chosen fields were imaged by taking
adjacent Z-axis optical sections that were 0.3 lm apart. The particles
were counted in three dimensions using custom software written in
MATLAB (The Mathworks, Natick, Massachusetts, United States). The
general procedure was to (i) manually select the individual cells in a
field, then (ii) run a median filter on each optical slice taken, then (iii)
run a custom linear three-dimensional filter, designed to enhance
particulate signals and loosely based on the discrete Laplacian, on the
stack of images, then (iv) manually select a threshold for the enhanced
images, and then (v) count the total number of isolated signals (i.e.,
connected components) in three dimensions. For each manually
selected threshold, other thresholds 25% above and below were also
analyzed to verify that the particle count did not depend significantly
on the particular threshold chosen. Our best estimate is that the
number of spots counted by our algorithm is accurate to within 10%
of the actual number. In cells with transcription sites, the tran-
scription site itself was subjected to the same counting procedures,
usually resulting in it being counted as a single molecule. This is
justified, since the nascent RNAs present at the transcription site are
mostly likely unprocessed pre-mRNA that have not yet been subjected
to the various post-transcriptional modifications required for an
mRNA to be considered functional [41].

In experiments where fluorophores other than TMR were used, we
instead quantified the relative amount of mRNA from cell to cell by
counting the number of mRNA in one optical section (chosen near
the bottom of the cellular volume). This was done because the
relatively poor photostability of the Cy5.5 and Alexa 594 dyes meant
that the particulate signal became quite weak during the acquisition
of the image stacks, making the imaging and counting of individual
molecules progressively more difficult and thus significantly less
accurate. In the case of the L-GFP-M1-7x clone, the large number of
mRNA molecules often resulted in signals too intense to quantify
using the segmentation method above due to overlap in the
diffraction-limited spots. In this case, we quantified the mRNA by
integrating the total fluorescence over the entire cellular volume. To
relate this to the absolute number of mRNA in the cell, we quantified
the mRNA in several test cells where the counting procedure was
reliable using our particle counting algorithm and correlated that to
the total fluorescence within the volume. The relationship was found
to be linear (Figure S3), thus yielding a simple formula by which one
can compute the total number of molecules in a cell given its total
integrated fluorescence. While this method is most likely relatively
inaccurate for low numbers of particles, it is able to yield a reasonable
estimate of the number of molecules in cells with very large numbers
of mRNA. The Supporting Information videos were created by
deconvolving the optical sections and rendering them in three-
dimensional using Volocity (Improvision).

The fluorescent protein levels were quantified by a single
fluorescence image toward the lower focal plane of the cells. The
total fluorescence was found by integrating the difference between
the pixel intensities and the average background over the entire
cellular area. In the case of the live cell YFP images, OptiMEM (Sigma)
was used as growth medium because of its reduced autofluorescence
as compared with regular MEM.

All software is available upon request.
Statistical analysis and estimation of model parameters. The error

bars for the means and noises reporter were obtained by the
bootstrap method. The parameters from the model were estimated
using the maximum-likelihood method based on an explicit formula
derived for the complete mRNA distribution as outlined in Protocol
S1. The error bars reflect 95% confidence intervals.

The p-values for all the correlations given represent probabilities
of finding the given data assuming the null hypothesis of no
correlation.

The p-values comparing the mRNA distributions in cells either
containing or not containing transcription sites and comparing the

nuclear versus cytoplasmic fraction were found by a permutation
method and reflect the chances of obtaining the percentages found
by random chance (i.e., by randomizing which cells are labeled as
transcriptional active and inactive).

Determination of mRNA decay rate. The mRNA decay rate was
found by using real-time RT-PCR on RNA isolated from cell line L-
GFP-M1-7x grown in medium containing 10 ng/ml doxycycline for a
range of times using the Qiagen One-Step RT-PCR kit (Valencia,
California, United States). The real time RT-PCR was performed for
both the GFP transgene and the highly expressed elongation factor 1
gene, which served as an internal control not likely to change in
response to doxycycline concentration. We used primers and
molecular beacons specific to each gene to perform real-time PCR.
The difference in threshold cycle between the GFP and the EF1
signals was linearly related to the time since transcription was halted,
allowing an accurate determination of the half-life of the mRNA from
the transgene. The results are shown in Figure S1. In determining the
half-life, only the time points at 2, 4, and 8 h were considered so as
not to confound the results with any transient behavior associated
with mRNA processing and export.

Stochastic simulations. Stochastic simulations of the stochastic
mRNA and protein model described in Protocol S1 were performed
by implementing Gillespie’s Direct method [30] in Matlab (The
Mathworks). The parameters governing the mRNA dynamics were
taken from those obtained from cell line E-YFP-M1-7x grown under
conditions of no doxycycline: rate of gene activation (k/d) ¼ 2.44,
inactivation (c/d) ¼ 2.49, and transcription (l/d) ¼ 910. Since we are
only interested in steady-state solutions, the mRNA degradation rate
d was chosen as a factor by which all the other rates were scaled. The
translation rate lp/d was set to 100 and three values of the protein
degradation rate dp/d were investigated: 0.02, 0.16, and 2.56. In Figure
7C, the values of d and dp are reported in physical units for clarity.

Supporting Information

Figure S1. Determination of Reporter mRNA Degradation Rate

Plot shows the difference in threshold cycle between PCRs performed
on the GFP reporter gene and the EF1 housekeeping from a real-time
RT-PCR experiment performed on total mRNA extracted from cell
line L-GFP-M1-7x. At time 0, the cellular media was replaced with
media containing 10 ng/ml doxycycline, effectively shutting down
transcription of the reporter gene, thus allowing for a determination
of the mRNA degradation time. In determining the half-life, we only
considered the rightmost three points, since early time points may
display non–first-order degradation due to transient effects of mRNA
processing and export.

Found at DOI: 10.1371/journal.pbio.0040309.sg001 (61 KB PDF).

Figure S2. Effects of Cellular Volume upon mRNA Noise

Plot shows the noise (defined as the standard deviation divided by the
mean) of mRNA concentrations for the 1x-tetO construct (red) and
the 7x-tetO construct (blue) over a range of doxycycline concen-
trations. The mRNA concentration was determined by dividing the
number of mRNA by the total volume of the cell, as determined by
microscopy. Compare to Figure 3B, bottom.

Found at DOI: 10.1371/journal.pbio.0040309.sg002 (61 KB PDF).

Figure S3. Linear Correlation Used to Provide Accurate Estimates of
the Number of mRNA Molecules in Heavily Expressing Cells
Encountered when Analyzing mRNA Levels in the L-GFP-M1-7x Cell
Line

Plot shows the correlation between the number of mRNA molecules
and total fluorescence integrated over the cellular volume (back-
ground subtracted). Cells were taken from random fields of cell line
L-GFP-M1-7x and cells were chosen for both reasonable levels of
mRNA to allow for segmentation and for lack of brightly fluorescent
features that could potentially influence the calibration. The linear fit
indicated a value of roughly 53,500 fluorescence units per molecule of
mRNA.

Found at DOI: 10.1371/journal.pbio.0040309.sg003 (60 KB PDF).

Protocol S1. Model of Gene Activation and Inactivation, Parameter
Estimation, and Comparison to Previous Studies

Mechanistic model of bursts in mRNA synthesis, basic model of gene
activation and inactivation, fitting of parameters to experimental
distributions, determination of protein mean and variances, and
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relationship between model and previous studies of intrinsic versus
extrinsic noise.

Found at DOI: 10.1371/journal.pbio.0040309.sd001 (106 KB PDF).

Table S1. Number of Reporter (YFP-M1) mRNAs per Cell Used in the
Study from Cell Lines E-YFP-M1-1x and E-YFP-M1-7x, and Number
of RNAPII Large Subunit mRNAs in Cell Line E-YFP-M1-7x

Found at DOI: 10.1371/journal.pbio.0040309.st001 (21 KB XLS).

Video S1. Three-Dimensional Flythrough of a Pair of Recently
Divided Sister Cells from Cell Line E-YFP-M1-7x

Each white spot represents a molecule of mRNA. The dense white
spot in one of the cells is an active transcription site.

Found at DOI: 10.1371/journal.pbio.0040309.sv001 (6.0 MB MOV).

Video S2. Three-Dimensional Flythrough of a Pair of Recently
Divided Sister Cells from the Cell Line Possessing Two Reporter
Genes Integrated into the Same Locus (L-YFP-M1-CFP-M2)
Green corresponds to the signal from YFP-M1 mRNA, and red

corresponds to the signal from CFP-M2 mRNA. The dense yellow spot
in both cells is an active site of transcription, indicating that both
mRNAs are being transcribed at the same genomic locus.

Found at DOI: 10.1371/journal.pbio.0040309.sv002 (4.0 MB MOV).
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