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Abstract 

Embeddings are semantically meaningful representations of words in a vector 

space, commonly used to enhance downstream machine learning applications. 

Traditional biomedical embedding techniques often replace all synonymous words 

representing biological or medical concepts with a unique token, ensuring consistent 

representation and improving embedding quality. However, the potential impact of 

replacing non-biomedical concept synonyms has received less attention. Embedding 

approaches often employ concept replacement to replace concepts that span mul-

tiple words, such as non-small-cell lung carcinoma, with a single concept identifier 

(e.g., D002289). Also, all synonyms of each concept are merged into the same identi-

fier. Here, we additionally leveraged WordNet to identify and replace sets of non- 

biomedical synonyms with their most common representatives. This combined 

approach aimed to reduce embedding noise from non-biomedical terms while pre-

serving the integrity of biomedical concept representations. We applied this method 

to 1,055 biomedical concept sets representing molecular signatures or medical 

categories and assessed the mean pairwise distance of embeddings with and with-

out non-biomedical synonym replacement. A smaller mean pairwise distance was 

interpreted as greater intra-cluster coherence and higher embedding quality. Embed-

dings were generated using the Word2Vec algorithm applied to a corpus of 10 million 

PubMed abstracts. Our results demonstrate that the addition of non-biomedical 

synonym replacement reduced the mean intra-cluster distance by an average of 8%, 

suggesting that this complementary approach enhances embedding quality. Future 

work will assess its applicability to other embedding techniques and downstream 

tasks. Python code implementing this method is provided under an open-source 

license.
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1  Introduction

Word embeddings are a cornerstone of natural language processing (NLP), enabling 
machines to represent words as dense vectors in a continuous space where seman-
tic relationships between words are captured by their proximity in that space. One 
of the most prominent models for generating embeddings is Word2Vec, a two-layer 
neural network that learns word representations by predicting the context in which a 
word appears [1]. By analyzing large text corpora, Word2Vec can generate embed-
dings that reflect linguistic patterns and relationships, supporting tasks such as text 
classification, clustering, and information retrieval.

Word embeddings are a cornerstone of natural language processing (NLP), 
enabling machines to represent words as dense vectors in a continuous space 
where semantic relationships between words are captured by their proximity in that 
space. One of the most prominent models for generating embeddings is Word2Vec, 
a two-layer neural network that learns word representations by predicting the context 
in which a word appears [1]. By analyzing large text corpora, Word2Vec can gen-
erate embeddings that reflect linguistic patterns and relationships, supporting tasks 
such as text classification, clustering, and information retrieval.

The core principle behind Word2Vec is distributional semantics, often summarized 
by the phrase “the company it keeps” [2]. This means that words occurring in similar 
contexts tend to have similar meanings and, therefore, similar vector representations. 
The model operates by training on a corpus of words and their contexts, adjusting 
the network’s parameters to maximize the likelihood of predicting surrounding words 
within a defined window size. The resulting vectors capture the syntactic and seman-
tic properties of words, clustering similar terms together in the embedding space [1].

However, while Word2Vec effectively handles individual tokens, it faces limitations 
when applied to specialized domains such as biomedicine, where multi-word expres-
sions and complex terminologies are prevalent. For example, the phrase “broncho-
pulmonary dysplasia” represents a single medical condition but would be treated 
as two unrelated tokens by Word2Vec, leading to fragmented embeddings that fail 
to capture the full semantic meaning. To address this, recent concept-replacement 
approaches consolidate multi-word biomedical terms into single tokens or identifiers, 
allowing embeddings to represent medical concepts more cohesively [3].

Concept replacement has been successfully implemented in biomedical NLP 
using tools such as the Narrative Information Linear Extraction (NILE) system, 
which maps terms to the Systematized Nomenclature of Medicine-Clinical Terms 
(SNOMED-CT), and PubTator, which annotates text with biomedical entities using 
identifiers from the Medical Subject Headings (MeSH) and other ontologies [4,5]. By 
replacing synonymous expressions (e.g., “Myocardial Infarction”, “Heart Attack”) with 
a shared identifier (e.g., MeSH D009203), these approaches standardize terminol-
ogy, enhance embedding performance, and facilitate downstream tasks such as 
entity recognition and relationship extraction.

The benefits of concept replacement extend beyond simply collapsing multi-
word terms. By grouping synonymous but distinct expressions under a single token, 
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embeddings are trained on more diverse and informative contexts, enhancing the generalization and quality of word 
representations. This results in reduced intra-cluster distances for embeddings of related terms and clearer separation 
between unrelated terms. Additionally, the reduced vocabulary size can accelerate training convergence and improve 
model efficiency. Prior studies have demonstrated that biomedical concept replacement significantly improves embed-
dings for domain-specific tasks [3].

While these advancements have enhanced embeddings for biomedical terms, existing efforts have largely overlooked 
the impact of non-biomedical synonyms. In biomedical literature, non-biomedical terms (such as general descriptors or 
measurements) frequently appear alongside technical terms, contributing to noise in embeddings. We hypothesize that 
replacing non-biomedical synonyms in the same manner as biomedical terms could further improve embedding quality by 
reducing variability in the contextual environment.

In this study, we propose a simple yet effective heuristic for non-biomedical synonym replacement aimed at refining 
embeddings for biomedical texts. Building on the foundation of existing biomedical synonym replacement approaches, 
we apply our method to over 30 million PubMed abstracts and titles. Our analysis of 1055 gene sets demonstrates that 
replacing non-biomedical synonyms leads to an average improvement of 8% in embedding performance. The process 
is summarized in Fig 1 The results show that embedding homophily—reflected by tighter intra-cluster distances—can be 

Fig 1.  Schematic of the approach: This schematic illustrates the entire workflow of the project. The process begins with initial text preprocess-
ing using marea software to obtain the PM corpus [6]. The PM corpus is then processed through non-biomedical concept replacement, resulting in the 
WN corpus; to fairly assess the concept replacement proposal, both the PM and WN corpora are embedded using the same text-embedding algorithm 
(Word2Vec in our experiments - due to its broad usage and relative simplicity), and pairwise distances between sets of related biomedical concepts in 
the embedded PM corpus are compared to those in the embedded WN corpus.

https://doi.org/10.1371/journal.pone.0322498.g001
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enhanced not only by consolidating biomedical concepts but also by refining the non-biomedical terms that shape their 
contextual embeddings.

This work contributes to the broader field of biomedical NLP by addressing a previously unexplored gap: the role of 
non-biomedical synonyms in embedding performance. By extending synonym replacement beyond biomedical terms, 
this study highlights a scalable strategy to improve embeddings for complex biomedical corpora. Future work will explore 
the applicability of this approach to advanced models, such as BERT and BioBERT, to further enhance the accuracy and 
interpretability of biomedical embeddings.

2  Materials and methods

2.1  Input corpus retrieval and text pre-processing with MAREA

The corpus used to test our proposal consists of 10,584,195 abstracts and titles published between January 2010 and 
November 2020 and available in PubMed. They were downloaded from the National Center for Biotechnology Informa-
tion (NCBI) ‘s FTP site using MAREA, a software tool designed to automate the retrieval and parsing of PubMed meta-
data, including the extraction of PubMed IDs and publication dates [6]. Marea is freely available at https://github.com/
TheJacksonLaboratory/marea.

Marea was also employed to perform automatic text pre-processing and standardization of biomedical concepts across 
the corpus, reducing noise and improving consistency in preparation for embedding. As illustrated in Fig 2, the pre- 
processing pipeline begins with the application of PubTator Central, which replaces single- or multi-word concepts and 
synonyms with unique concept identifiers, such as MeSH IDs. This step is essential for handling multi-word noun phrases 
representing diseases, chemicals, or other biomedical entities, ensuring that all synonymous terms are treated uniformly 
during downstream processing. It is important to note that while PubTator effectively standardizes many biomedical entities, 
such as genes, diseases, and chemicals, its coverage may vary depending on the specific entity type and the availability of 
mappings within controlled vocabularies like MeSH, NCBI Gene, and Disease Ontology [5]. As a result, certain terms, such 
as “Lewy bodies (DLB)” or “multiple system atrophy (MSA),” may not always be directly standardized by PubTator.

Following biomedical concept replacement, marea further streamlines the text by removing extraneous information, 
including punctuation, numerical values, and stop words. The vocabulary is further reduced through lemmatization, 
enhancing the focus on meaningful terms while preparing the corpus for subsequent embedding tasks.

2.2  Replacement of non-biomedical words by their WordNet synonym

The hypothesis of this research is that the replacement of sets of highly related non-biomedical concepts by their common 
synonym will increase the ability of an embedding algorithm, e.g., Word2Vec, to place related biomedical concepts close 
to each other in vector space.

To identify synonyms of common words, we queried WordNet, a lexical database of English that groups nouns, verbs, 
adjectives, and adverbs into sets of cognitive synonyms (synsets), each expressing a distinct concept [7]. Words are inter-
linked by conceptual-semantic and lexical relations (https://wordnet.princeton.edu/).

The replacement algorithm we devised starts by identifying the set of non-biomedical concepts (words) to be replaced. 
This choice is based on the overall frequency, f(w), of each token, w, in the corpus (multiple occurrences in one abstract 
were counted multiple times).

In particular, we reasoned that words frequently appearing in the corpus might be important and should not be 
replaced.

Therefore, the algorithm starts by selecting relatively infrequent words, i.e., words with f(w) < τ , being τ  a user-set 
replacement threshold, as candidates for replacement. These candidates are inserted in a “replacement set”, R. We 
experimentally chose τ  as the mean of the overall frequency for all tokens in the corpus in Section 2.3.2.

https://paperpile.com/c/fYDUqO/E1wDp
https://github.com/TheJacksonLaboratory/marea
https://github.com/TheJacksonLaboratory/marea
https://paperpile.com/c/fYDUqO/gmBvv
https://paperpile.com/c/fYDUqO/DDyhY
https://wordnet.princeton.edu/
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R contains infrequent words that can be clustered into two groups based on the overall frequency of their synonyms: 
(1) infrequent words whose synonyms are frequent in the corpus (e.g., loquacious, obfuscate) carry generic meanings and 
can therefore be replaced by their most frequent synonym; (2) infrequent words whose synonyms are also infrequent in 
the corpus (e.g., peregrinate, recondite). Our heuristic posits that such words are likely to have highly-specific meanings 
providing detailed, and possibly discriminatory, information and should therefore be retained.

Based on these considerations, the replacement algorithm uses WordNet to identify the synset (Sw) of each w ∈ R;  
next it selects the synonym of w  with the highest overall-frequency in the corpus, smax, and stores it in a dictionary, S, 
mapping the word w  to smax, i.e.,

Fig 2.  Text Transformation Pipeline: An example of the multi-stage text transformation pipeline applied to a sample abstract (PMID: 30609739). 
The process begins with the original text, followed by biomedical entity recognition and standardization using PubTator, which replaces medical terms 
and their synonyms with standardized identifiers (e.g., MeSH IDs). The text is then processed by MAREA, which simplifies and prepares it for machine 
learning by retaining standardized biomedical terms and ensuring consistent tokenization. In the final stage, non-biomedical synonyms are replaced 
using WordNet to further refine the embeddings. This figure illustrates the transformation applied across 30 million abstracts.

https://doi.org/10.1371/journal.pone.0322498.g002

https://doi.org/10.1371/journal.pone.0322498.g002
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S[w] = smax = argmaxx ∈ Sw f(s)

Words whose synonyms are all infrequent in the corpus are easily recognized through the dictionary because if the 
frequency of all synonyms of some word w  is below the threshold (f(s) < τ), Then clearly the frequency of the most 
common synonym is below the threshold. They are not replaced and removed from R. Each other word w ∈ R is instead 
replaced by its most frequent synonym S[w]. The algorithm pseudo code is available in Fig 3, and a practical example of 
the replacement process is reported in Fig 3 with a sample text we created to illustrate the algorithm implementation.

Fig 4 illustrates the synonym replacement process applied to a sample abstract. The transformation pipeline demon-
strates how non-biomedical terms are replaced using their most frequently occurring synonym from WordNet synsets. 
The figure shows the initial sentence before transformation, the word frequency counter, the ordered vocabulary list by 
frequency, and the resulting sentence after transformation.

In this example, the terms “amount,” “bill,” and “step” are replaced by the synonym “measure” because they all belong 
to the same WordNet synset. The synset for “measure” includes: [‘measure’, ‘step’, ‘quantity’, ‘amount’, ‘bill’, ‘measure-
ment’, ‘standard’, ‘criterion’, ‘touchstone’, ‘meter’, ‘metre’, ‘cadence’, ‘bar’]. Since “measure” appears most frequently in 
the corpus, the algorithm selects it as the main term.

Similarly, the term “13” replaces variations such as “thirteen” and “xiii” as they are part of the same synset: [‘thirteen’, 
‘13’, ‘XIII’, “baker’s dozen”, ‘long dozen’, ‘xiii’].

Fig 3.  Non-biomedical word replacement algorithm: This algorithm outlines the process for replacing non-biomedical words in a corpus 
using WordNet.

https://doi.org/10.1371/journal.pone.0322498.g003

https://doi.org/10.1371/journal.pone.0322498.g003
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The replacement ensures that numerical references are consistently represented by the most dominant form (“13”). 
The result is a more uniform representation of non-biomedical terms, reducing variability and enhancing embedding qual-
ity by consolidating terms under their most frequently occurring synonym.

2.3  Experiments

In the following sections we will refer to datasets processed only by MAREA as PubMed-MAREA, or “PM”; PM datasets 
further processed to substitute (not-frequent) non-biomedical concepts by their WordNet synonyms will be referred to as 
“WN”. While the number of unique biomedical concepts did not change between the PM and the WN corpus, there were 
more unique non-biomedical concepts in PM (3,018,918) than in WN (2,992,978).

We derived embeddings representing the concepts in the input corpora (the 10,579,997 PM or WN abstracts) by adapt-
ing the Word2Vec [1] implementation provided by the Gensim library [8]. In particular, we used skip-gram architecture with 
embedding size 128 (meaning that all concepts in PM and WN were represented as 128-dimensional vectors), window 
size 10, included words in the vocabulary that appear at least once in the corpus (mincount = 1), and applied a sampling 
threshold of for downsampling high-frequency words. The initial learning rate was set to 0.03 (alpha = 0.03) and was 
linearly decreased to a minimum of 0.0001 (min-alpha = 0.0001) during training; we fixed the number of negative samples 
per positive context word to 5.

2.3.1  Concept sets.  Our assumption is that the quality of embeddings can be assessed by measuring the pairwise 
distances between the embeddings of related concepts. To evaluate our proposal we therefore identified subsets of 
related genes and medical concepts prior to performing the testing and validation described in the following section. The 
sets are available in the project’s GitHub repository. Files containing the sets can be identified by the suffix “-set” in their 
filenames. https://github.com/TheJacksonLaboratory/wn2vec/tree/main/data.

961 gene subsets were retrieved from the Molecular Signatures Database (MSigDB) [9] (Table 1). In addition, 94 sub-
sets of related medical concepts were retrieved from the Medical subject headings (MeSH) resource [10].

Concept subsets were deleted if they contained less than 5 concepts that were represented in the test (PM or WN) cor-
pus. The minimum number of concepts in a set to be considered was fixed to 5 concepts under the assumption that larger 
sets would have less semantic focus.

Fig 4.  Illustration of the text transformation process before and after synonym replacement: The process begins with a sample initial text 
segment (Sample text before synonym replacement’), followed by a word frequency count (‘Counter’). This count generates a ‘Vocabulary List 
by Frequency’, which informs the final modified text (‘Sample text after synonym replacement’). The procedure exemplifies the algorithm’s systematic 
approach to replacing non-biomedical tokens.

https://doi.org/10.1371/journal.pone.0322498.g004

https://paperpile.com/c/fYDUqO/TGZS7
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https://paperpile.com/c/fYDUqO/kJhft
https://paperpile.com/c/fYDUqO/g3wEQ
https://doi.org/10.1371/journal.pone.0322498.g004


PLOS One | https://doi.org/10.1371/journal.pone.0322498  May 5, 2025 8 / 13

For example, if a gene set had 100 genes but, in our corpus, only 3 genes belonging to the gene set were mentioned, 
then that gene set was deleted.

2.3.2  Testing and validation.  We first checked that the scale and distribution of PM and WN vectorial space did not 
change. To this aim, we randomly sampled 1M vector-pairs in each dataset. We then calculated the distance between 
pairs of vectors and then plot the Empirical Cumulative Distribution Function (ECDFs) and Empirical Q-Q Plot of the 
computed distances (Fig 5). We visually verified that the two distributions had only slight differences.

Next, we analyzed the embedded representations obtained after PM and WN processing by focusing on individual 
subsets, X  (Section 2.3.1), and employing cosine similarity to evaluate all pairwise distances among the embedded con-
cepts within X ’s representation post-PM processing versus post-WN processing. We then used the t-test to compare the 
pairwise-distances computed within the PM subset against those within the WN subset.

We observed that the application of our replacement strategy leads to an intra-cluster mean distance that is smaller 
than for the non-replaced data. Indeed, over 1,055 sets of related gene and MeSH concepts sets, we found that, on aver-
age, the mean intra-cluster distance was reduced of the 8% - for sets where a significant difference was found, and by the 
12% - on the average of all the comparisons (Fig 6).

Table 1.  Comparison of mean interconcept distance for embedding with WordNet synonym replacement (WN) and without (PM). The initial 
number of unique concepts in the total corpus was 3,018,918. The Table summarizes results for different thresholds (τ) and categories of 
concept/gene sets (M,B,K,G,P). Columns: τ: Replacement threshold; replaced: Unique Replaced Concepts; Category: M = MeSH, B = Biocarta, 
K = KEGG, G = GP(bp), P = PID; # sets: Number of concept/gene sets in the categories; #Concepts: number of concept vectors in the category; 
WN better: The count and percentage of concept/gene sets for which the mean interconcept distance was smaller for WN than for PM. “Win-
ners” are shown in bold.; PM better: Analogous to “WN better” but for PM.

Significant All

τ Replaced % of unique concepts replacement Category # sets #
Concepts

WN better PM better WN better PM better

0.5 · µ 24,294 0.80 % M 94 2503 12 (12.8%) 4 (4.3%) 40 (42.6%) 48 (51.1%)

B 285 1480 22 (7.7%) 19 (6.7%) 145 (50.9%) 140 (49.1%)

K 182 4941 32 (17.6%) 21 (11.5%) 90 (49.5%) 92 (50.5%)

G 300 7030 36 (12.0%) 31 (10.3%) 137 (45.7%) 135 (45.0%)

P 194 2507 18 (9.3%) 26 (13.4%) 96 (49.5%) 98 (50.5%)

1∙μ 25,940 0.86% M 94 2503 13 (13.8%) 9 (9.6%) 46 (48.9%) 42 (44.7%)

B 285 1480 32 (11.2%) 12 (4.2%) 154 (54.0%) 131 (46.0%)

K 182 4941 35 (19.2%) 13 (7.1%) 112 (61.5%) 70 (38.5%)

G 300 7030 36 (12.0%) 27 (9.0%) 147 (49.0%) 125 (41.7%)

P 194 2507 29 (14.9%) 5 (2.6%) 115 (59.3%) 79 (40.7%)

2∙μ 27,317 0.90% M 94 2503 13 (13.8%) 6 (6.4%) 49 (52.1%) 39 (41.5%)

B 285 1480 22 (7.7%) 28 (9.8%) 153 (53.7%) 132 (46.3%)

K 182 4941 37 (20.3%) 24 (13.2%) 105 (57.7%) 77 (42.3%)

G 300 7030 34 (11.3%) 37 (12.3%) 148 (49.3%) 124 (41.3%)

P 194 2507 27 (13.9%) 22 (11.3%) 105 (54.1%) 89 (45.9%)

4∙μ 28,418 0.94% M 94 2503 14 (5.1%) 7 (2.5%) 53 (19.2%) 35 (12.7%)

B 285 1480 26 (8.8%) 36 (12.1%) 121 (40.7%) 164 (55.2%)

K 182 4941 37 (11.6%) 21 (6.6%) 96 (30.1%) 86 (27.0%)

G 300 7030 33 (9.7%) 32 (9.4%) 144 (42.4%) 128 (37.6%)

P 194 2507 18 (5.0%) 34 (9.4%) 89 (24.6%) 105 (29.0%)

https://doi.org/10.1371/journal.pone.0322498.t001

https://doi.org/10.1371/journal.pone.0322498.t001
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We also tested different thresholds for replacing non-biomedical terms (i.e., 214, 854, 1708, and the mean value of 
427). We found that using the mean value yielded the best results (Table 1). Lower thresholds resulted in fewer words 
being replaced, while higher thresholds risked losing context by replacing too many words.

In addition, we investigated the impact of different parameters on the performance of our method. We varied the win-
dow size number, the higher the window size (i.e., 2, 5, and 10), the stronger the embeddings, and the more the WordNet 
synonym replacement had an impact on biomedical concept embeddings. The best results were obtained with a window 
size of 10 (Table 2).

“WN better” means that WN embedding produced concept vectors that were closer to each other than PM, and “PM 
better” means that the PM produced vectors that were closer to each other. Data are shown for statistically significant 
(Sig) differences and for all comparisons (All). The “winner“ in each comparison is shown in bold. For significant differ-
ences, WN was superior in 14 of 16 cases; For all differences, WN was superior in 13 of 16 cases. The analysis was 
performed at a window size of 10.0.

3  Discussion

3.1  Interpretation

This study demonstrates that replacing non-biomedical concepts with their synonyms enhances the quality of biomedical 
embeddings. By applying the Word2Vec algorithm to over 30 million PubMed abstracts and titles, we evaluated 1,055 
gene sets and observed an 8% improvement in embedding performance. This improvement suggests that synonym 
replacement of non-biomedical terms enhances homophily in the embedding space, resulting in reduced intra-cluster 
distances and clearer separations between related and unrelated biomedical concepts. Homophily in this context reflects 

Fig 5.  Comparative analysis of WordNet replacement impact on data distribution. Figure (a) presents the Empirical Cumulative Distribution Func-
tions (ECDFs), showcasing the cumulative frequency distribution before and after WordNet replacement, while Figure (b) illustrates the corresponding 
Empirical Q-Q Plot, detailing the quantile comparison between the original and the WordNet-replaced datasets. The close alignment of data points with 
the reference line in the Q-Q Plot and the overlap of the ECDF curves suggest minimal distributional deviation post-replacement.

https://doi.org/10.1371/journal.pone.0322498.g005

https://doi.org/10.1371/journal.pone.0322498.g005
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Fig 6.  Comparative analysis of WN and PM methodologies: Figure (a) displays the bar chart comparing WN and PM across five distinct 
concept sets (Methods), highlighting the number of concept sets where the cluster mean distance is significantly lower, indicative of superior 
embeddings. ‘Significant’ designates those with a statistically significant difference in cluster mean distances (p < 0.05), while ‘All Comparisons’ encom-
passes the entire dataset. Figure (b) illustrates the spread of mean distances within the PID Gene Sets, detailing the variance and central tendency 
across 194 gene sets. ‘Significant’ encompasses gene sets with notable mean distance variations between ‘PM’ and ‘WN’ (p < 0.05), and ‘All compari-
sons’ includes all evaluated gene sets.

https://doi.org/10.1371/journal.pone.0322498.g006

Table 2.  Comparison of window size for embedding with Wordnet synonym replacement (WN) and without (PM). While Table 1 compared the 
effects of different values of τ  using a window size of 10, this Table shows the results for three different window sizes at a τ=1 · µ. Abbrevia-
tions are the same as for Table 1.

Significant All

Window Size Category # sets #
Concepts

WN better PM better WN better PM better

2 MESH 94 2503 9 (9.6%) 10 (10.6%) 37 (39.4%) 51 (54.3%)

Biocarta 285 1480 33 (11.6%) 30 (10.5%) 152 (53.3%) 133 (46.7%)

KEGG 182 4941 34 (18.7%) 20 (11.0%) 101 (55.5%) 81 (44.5%)

GO(bp) 300 7030 39 (13.0%) 40 (13.3%) 144 (48.0%) 128 (42.7%)

PID 194 2507 39 (20.1%) 24 (12.4%) 96 (49.5%) 98 (50.5%)

5 MESH 94 2503 14 (14.9%) 12 (12.8%) 43 (45.7%) 45 (47.9%)

Biocarta 285 1480 27 (9.5%) 21 (7.4%) 152 (53.3%) 133 (46.7%)

KEGG 182 4941 37 (20.3%) 17 (9.3%) 104 (57.1%) 78 (42.9%)

GO(bp) 300 7030 36 (12.0%) 27 (9.0%) 144 (48.0%) 128 (42.7%)

PID 194 2507 27 (13.9%) 20 (10.3%) 102 (52.6%) 92 (47.4%)

10 MESH 94 2503 13 (13.8%) 9 (9.6%) 46 (48.9%) 42 (44.7%)

Biocarta 285 1480 32 (11.2%) 12 (4.2%) 154 (54.0%) 131 (46.0%)

KEGG 182 4941 35 (19.2%) 13 (7.1%) 112 (61.5%) 70 (38.5%)

GO(bp) 300 7030 36 (12.0%) 27 (9.0%) 147 (49.0%) 125 (41.7%)

PID 194 2507 29 (14.9%) 5 (2.6%) 115 (59.3%) 79 (40.7%)

https://doi.org/10.1371/journal.pone.0322498.t002

https://doi.org/10.1371/journal.pone.0322498.g006
https://doi.org/10.1371/journal.pone.0322498.t002
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the natural tendency for embeddings of related biomedical terms to cluster together, fostering greater semantic coherence 
across the vector space.

The experiments conducted with varying thresholds revealed that larger datasets generally yielded better embedding 
performance. Using a replacement threshold equal to the mean frequency of concepts in the overall corpus emerged as 
the most effective strategy. Excessive synonym replacement, driven by overly high thresholds, diminished the quality of 
embeddings; this may be related to inadvertent replacement of biomedical terms. Additionally, the results indicated that 
larger window sizes in the Word2Vec algorithm led to tighter intra-cluster distances, suggesting that expanding the con-
text window enables embeddings to capture richer contextual relationships and further improve clustering after synonym 
replacement.

3.2  Limitations

Despite the improvements demonstrated in this study, several limitations must be acknowledged. First, our approach is 
constrained by its reliance on English-language resources such as WordNet and PubTator, and thus is currently only avail-
able for English. The absence of robust synonym databases in other languages poses a significant barrier to extending 
this method to other languages.

Additionally, the study employed Word2Vec, a widely used but relatively simple embedding algorithm, to evaluate the 
effects of synonym replacement. While Word2Vec provides a solid foundation for demonstrating the utility of non- 
biomedical synonym replacement, the performance of more advanced models, such as transformer-based architectures, 
may yield different results. Transformer models were developed for NLP problems to address long-range dependencies 
through the attention mechanism [11]. Large language models (LLMs) are a class of foundation models with billions of 
parameters trained on language corpora with billions of words to generate human-like language and solve many NLP tasks. 
Most LLMs use the Transformer architecture [12]. While the non-biomedical synonym replacement strategy presented here 
could be applied to transformed-based models, the computational costs went beyond the scope of the current pilot study.

Another limitation of this study lies in the variability of biomedical terminology, particularly in patient narratives or 
informal texts. While the synonym replacement approach effectively standardizes non-biomedical terms, it may not fully 
capture the contextual variability inherent in less formal biomedical texts. This variability can introduce inconsistencies that 
reduce the effectiveness of synonym replacement, particularly when dealing with highly specialized or colloquial expres-
sions. Furthermore, certain biomedical terms may lack standardized mappings in existing databases, resulting in incom-
plete synonym replacement and limiting the overall impact on embedding quality.

3.3  Future directions

The findings of this study provide a foundation for future research exploring the integration of synonym replacement 
strategies into more advanced embedding models. While the current study focused on Word2Vec, the methodology can 
be extended to transformer-based models such as BERT, BioBERT, and SciBERT, [13] which have demonstrated superior 
performance in biomedical text processing. Transformer models, with their capacity to capture complex linguistic patterns 
and polysemy, may benefit significantly from synonym replacement during the pre-training or fine-tuning phases. This 
could lead to enhanced contextual embeddings and further improvements in downstream biomedical tasks, including 
named entity recognition, relation extraction, and document classification.

Moreover, applying synonym replacement strategies to other types of biomedical text, such as clinical trial reports, 
electronic health records (EHRs), and patient narratives, represents a promising avenue for future research. These text 
sources frequently contain a mix of biomedical and non-biomedical terminology, and refining embeddings in these con-
texts could yield significant benefits for clinical decision support systems and predictive modeling. Improved embeddings 
may enhance the extraction of insights from diverse biomedical datasets, ultimately contributing to advancements in 
biomedical informatics and precision medicine.

https://paperpile.com/c/fYDUqO/YlKd
https://paperpile.com/c/fYDUqO/jDcf
https://paperpile.com/c/fYDUqO/WwnH9
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While Word2Vec continues to serve as a lightweight and computationally efficient tool for large-scale corpus analysis, 
its limitations compared to transformer-based models underscore the need for continued exploration of more sophisticated 
architectures. Nevertheless, the improvements observed in this study demonstrate that even simple embedding models 
can benefit from synonym replacement, offering practical enhancements for existing biomedical pipelines that may lack 
the resources to implement more computationally intensive models. By refining embeddings through synonym replace-
ment, this study addresses a critical gap in biomedical text processing, laying the groundwork for more accurate and 
meaningful vector representations across various biomedical domains.

4  Conclusion

The results of this study highlight the potential of non-biomedical synonym replacement to enhance the quality of bio-
medical embeddings, offering practical applications across multiple domains of biomedical informatics. By refining the 
representation of non-biomedical terms, this approach improves the clustering of related biomedical concepts, thereby 
enhancing the performance of embedding models in downstream tasks. This advancement has the potential to improve 
information retrieval, facilitate gene-disease association extraction, and support literature-based discovery by producing 
embeddings with greater semantic coherence.

Furthermore, the synonym replacement strategy holds promise for enhancing the construction of biomedical knowledge 
graphs, where accurate embeddings are essential for representing entities such as genes, proteins, and phenotypes. 
Improved embeddings can refine node representations and lead to more accurate predictions of relationships between 
biomedical entities, contributing to the advancement of computational biology and biomedical research.

In conclusion, the methodology presented in this study offers a scalable and effective means of improving biomed-
ical embeddings through non-biomedical synonym replacement. This approach not only enhances the utility of exist-
ing embedding models but also provides a foundation for future work aimed at integrating similar strategies into more 
advanced architectures, further driving innovation in biomedical text analysis.
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