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Background: Populations of natural killer cells lacking CD56 expression [CD56neg natural
killer (NK) cells] have been demonstrated to expand during human immunodeficiency virus
(HIV)-1 infection. However, their phenotypic and functional characteristics have not been
systematically analyzed, and their roles during disease progression remain poorly
understood.

Methods: In this study, 84 donors, namely 34 treatment-naïve HIV-1-infected patients
(TNs), 29 HIV-1-infected patients with successful antiretroviral therapy (ARTs), and 21
healthy controls (HCs), were enrolled. The phenotypic and functional characteristics of
CD56neg NK cells were analyzed using single-cell RNA-sequencing (scRNA-seq) and flow
cytometry. A potential link between the characteristics of CD56neg NK cells and the clinical
parameters associated with HIV-1 disease progression was examined.

Results: The frequency of the CD56neg NK cell population was significantly increased in
TNs, which could be partially rescued by ART. Flow cytometry analyses revealed that
CD56neg NK cells were characterized by high expression of CD39, TIGIT, CD95, and Ki67
compared to CD56dim NK cells. In vitro assays revealed reduced IFN-g and TNF-a
secretion, as well as decreased expression of granzyme B and perforin in CD56neg NK
cells. In line with the data obtained by flow cytometry, scRNA-seq analysis further
demonstrated impaired cytotoxic activities of CD56neg NK cells. Notably, a negative
correlation was observed between CD39, CD95, and Ki67 expression levels in CD56neg

NK cells and CD4+ T cell counts.

Conclusions: The results presented in this study indicate that the CD56neg NK cell
population expanded in HIV-1-infected individuals is dysfunctional and closely correlates
with HIV-1 disease progression.
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INTRODUCTION

Natural killer (NK) cells are crucial components of the innate
immune system and play a key role in the first-line of defense
against tumor cells and viral infections (1–3). Regulation of NK
cell effector functions is ensured by a dynamic equilibrium
between inhibitory and activating cell surface receptors (4, 5).
In healthy adults, NK cells constitute about 5–15% of peripheral
blood mononuclear cells (PBMCs), and three major NK cell
subsets can be identified based on the expression of CD56 and
CD16 surface markers: CD56brightCD16- (CD56bri) NK cells,
which are efficient producers of cytokines (6); CD56+CD16+

(CD56dim) NK cells, which represent the predominant NK cell
subset and display cytolytic functions by establishing direct
contacts or via antibody-dependent cell-mediated cytotoxicity
(7); and CD56-CD16+ (CD56neg) NK cells, which have been
shown to expand during viral infections to form an “anergic”
population. However, the CD56neg subset has not been studied
in-depth. Thus, further research is needed to provide a better
understanding of the immunological characteristics of CD56neg

NK cells.
NKcells are immune effectors, the functions ofwhich are closely

linked to human immunodeficiency virus (HIV)-1 disease
progression. It has been reported that during HIV-1 infection, the
activating receptor-encoding KIR allele KIR3DS1, in combination
with HLA-B alleles encoding an isoleucine at position 80 (HLA-B
Bw4-80Ile), was associatedwith delayed progression toAIDS (8). In
humanized mice, ALT-803, an IL-15 superagonist, could activate
NK cells in vivo to potently suppress acute HIV-1 infection (9).
Through single-cell RNA-sequencing (scRNA-seq) of PBMCs
during an acute HIV-1 infection, Kazer et al. found that two
participants who maintained viral loads < 1000 copies mL-1 at
2.75 years after infection without antiretroviral therapy (ART)
exhibited an increase in proliferative and cytotoxic NK cells
during the early stages of infection (10). In addition, inducible
expression of NKp46 and NKp30, as well as interferon gamma
(IFN-g) productionuponNKcell activationwere shown to correlate
inversely with the size of the HIV-1DNA reservoir (11).Moreover,
NK cells from elite controllers (EC) and long-term nonprogressors
displayed increasedNKG2D expression, significant upregulation of
HLA-DR, and increased CD57 expression (12). Thus, NK cells
constitutepromisingcandidates for thedevelopment of a functional
cure for HIV-1.

Numerous studies have been carried out to characterize the
phenotypic and functional changes in NK cells during HIV-1
infection (13, 14). For example, expression of major triggering
receptors, such as NKp30, NKp46, and NKp44, was found to be
decreased in chronic HIV-1 infection (15, 16), whereas expression
of inhibitory receptors, such as T cell immunoreceptor with Ig and
ITIM domains (TIGIT), was increased (17, 18), leading to
impaired cytotoxic NK cell functions. It has been reported that
the unresponsiveness and impaired killing activity of NK cells
resulted from a downregulation of activating receptors and an
upregulation of inhibitory receptors during HIV-1 infection (19,
20). In 1995, unconventional CD56neg NK cell populations were
first discovered and demonstrated to be increased in HIV-1-
infected patients (21, 22). Subsequently, Alter et al. reported that
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an increase in CD56neg NK cell numbers was associated with a
high HIV-1 viral load (23). In addition, there was no significant
change in the proportion of CD56neg NK cells at the early stage,
but a significant increase during the chronic stage of HIV-1
infection, suggesting that sustained viral replication may be
related to the accumulation of CD56neg NK cells (24, 25).
Furthermore, the percentage of IL-10- and TGF-b-producing
CD56neg NK cells was higher than that of CD56dim NK cells.
These CD56neg NK cells could inhibit IFN-g production by
autologous CD8+ T cells (26). Collectively, these lines of
evidence suggest that the accumulation of CD56neg NK cells in
patients with chronic HIV-1 infection is significant. However, the
relationship between CD56neg NK cell characteristics and HIV-1
disease progression is not well understood.

In this study, the characteristics of CD56neg NK cells from
HIV-1-infected individuals were analyzed using flow cytometry
and scRNA-seq. Our findings revealed that CD56neg NK cell
populations expanded during chronic HIV-1 infection displayed
impaired cytotoxicity and reduced cytokine production. These
CD56neg NK cell-related immune dysfunctions correlated with
HIV-1 disease progression.
MATERIALS AND METHODS

Study Participants
A total of 63 HIV-1-infected patients and 21 healthy controls
(HCs) were recruited from the Fifth Medical Center of Chinese
PLA General Hospital, Beijing, China. Infected patients
comprised 34 treatment-naïve HIV-1-infected patients (TNs)
who exhibited typical progressive disease and did not receive
ART and 29 HIV-1-infected patients who received successful
ART (ARTs) for more than one year, with plasma HIV-1 RNA
levels below the detection limit (Table 1 and Supplementary
Table 1). Exclusion criteria included coinfection with hepatitis B
(HBV) or C virus (HCV), pregnancy, and a moribund status.

PBMC Isolation
PBMCs were isolated from EDTA anti-coagulated venous blood
by Ficoll-Hypaque (MD Pacific Biotechnology, Tianjin, China)
density gradient centrifugation. All blood samples were collected
with the approval of the Fifth Medical Center of Chinese PLA
General Hospital Research Ethics Committee. The study subjects
provided written informed consent to participate in this study,
which was in accordance with the principles laid down in the
Declaration of Helsinki.

Detection of Plasma HIV-1 RNA
The HIV-1 RT-PCR Fluorescence Quantitative Detection Kit
(Bioer Technology, Hangzhou, China) was used according to the
manufacturer’s instructions to quantify HIV-1 RNA levels in
plasma. PCR reactions were performed using a CFX96 real-time
polymerase chain reaction system (Bio-Rad, Hercules, CA, USA).

Flow Cytometry
For phenotypic staining, PBMCs were stained extracellularly by
30 min of incubation with primary antibodies specific to the
January 2022 | Volume 12 | Article 811091
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respective makers at 4°C in the dark. Fluorescently conjugated
monoclonal antibodies and reagents were as follows: anti-CD3,
anti-CD14, anti-CD20, anti-CD16, anti-CD56, anti-CD39, anti-
CD62L, anti-NKp30, anti-NKp44, anti-NKp46, anti-NKG2A,
anti-Tim-3, anti-CD69, anti-NKG2C, anti-CD57, anti-CCR7,
anti-CD32, anti-CD95, anti-PD-1, anti-TIGIT, anti-CD7, and anti-
NKG2D. For subsequent staining of intracellular markers, the
cells were permeabilized using the Transcription Factor Staining
Buffer Set (Thermo Fisher Scientific, USA), followed by
incubation with the indicated antibodies (anti-Ki67, anti-
EOMES, and anti-T-bet). For functional tests, PBMCs were
cultured in RPMI 1640 medium containing 10% fetal calf
serum (Gibco, USA) and stimulated with IL-12 (10 ng/mL;
PeproTech, USA), IL-15 (10 ng/mL; BioLegend, USA), and
IL-18 (50 ng/mL; BioLegend, USA) for 20 h (27). To analyze
cytokine production by stimulated cells, GolgiStop (BD
Biosciences, USA) and CD107a were added 5 h before cell
harvest. Afterwards, the cells were harvested for detection of
intracellular IFN-g, TNF-a, granzyme B, and perforin. Specific
antibodies used for staining were employed as described in
Supplementary Table 2.
Data Source and Processing of
scRNA-seq Data
A previously obtained scRNA-seq dataset was downloaded from
the National Center for Biotechnology Information, U.S.
National Library of Medicine (https://www.ncbi.nlm.nih.gov/
sra/?term=SRP150325) (28). This dataset included three
individual datasets corresponding to the three subsets of NK
cells (CD56bri, CD56dim, and CD56neg). They were imported to
CellRanger (version 5.0.1) to map the reads against the human
reference genome 38 (GRCh38). Barcodes and unique molecular
identifiers (UMIs) were counted for each cell, and unexpressed
genes were filtered out. Then, three gene expression matrices
were obtained for each NK cell subset, which were integrated
using R tools. A stricter quality control was conducted, and the
cells were filtered according to the following criteria: (1) number
of genes > 500; (2) number of UMIs > 800; and (3) percentage of
mitochondria-expressed genes < 5%. Cells that did not meet the
afore mentioned criteria were excluded from subsequent
analyses. Next, the data were normalized for sequencing depth
Frontiers in Immunology | www.frontiersin.org 3
employing the “LogNormalize” method, and the 2,000 most
strongly varying genes were selected for further analyses. After
scaling the gene expression data, principal component analysis
was performed using the 2,000 hits described above. To perform
data visualization, the top 20 principal components were selected
for dimensionality reduction using the t-distributed Stochastic
Neighbor Embedding (t-SNE) method. To ensure all the cells for
further analysis were NK cells, some extra data cleaning
processes were performed. Firstly, these cells were clustered by
the ‘FindClusters’ function with the parameter “resolution=1”.
Then, the obtained clusters were annotated and these clusters
expressing the markers including CD3D (T cell), MS4A1 (B cell)
and LYZ (monocyte) were removed. Analyses were performed
under R (v.3.6.0) with Seurat (v3.2.3) packages.

Pseudotime Analysis
In order to predict the differentiation relationship among the
CD56bri, CD56dim and CD56neg NK cells, pseudotime analysis
was performed by monocle2 (29). The 2,000 most strongly
varying features were selected to order cells. The pseudotime
trajectory was plot by the function ‘plot_cell_trajectory’.
Significantly changed genes along the pseudotime trajectory
were identified using the ‘differentialGeneTest’ function and
the top 100 genes were clustered into 5 clusters and displayed
using the ‘plot_pseudotime_heatmap’ function.

Identification of Differentially Expressed
Genes (DEGs) and Gene Ontology
(GO) Enrichment
To identify the DEGs across the three NK cell subsets, the
“FindMarker” function of the Seurat package was employed
using multiple threshold parameters, including an average log2
fold change ≥ 0.5, with a Benjamini-Hochberg-corrected p value
≤ 0.05, as well as detection in ≥ 10% of cells in at least one
subtype. Obtained DEGs served as input for the “enrichGO”
function in the clusterProfiler package for “biological process
(BP)” enrichment analysis. Genome-wide annotation was
performed the org.Hs.eg.db (v.3.10.0) package as annotation
database. The top 15 most significantly enriched BP functions
for both up- and downregulated DEGs were separately selected
to be displayed by barplots (organized by gene count).
TABLE 1 | Clinical characteristics of study participants.

HCs (n = 21) TNs (n = 34) ARTs (n = 29)

Age, years, median (IQR) 29 (28~34) 32 (25~38) 32 (29~36)
Gender, male/female 11/10 34/0 29/0
Plasma level of HIV-1 RNA,
Log copies/mL, median (IQR)

NA 3.74
(3.19~4.18)

<LDL

CD4 count, cells/mL,
median (IQR)

783
(594~905)

358
(309~449)

516
(462~670)

CD8 count, cells/mL,
median (IQR)

595
(520~661)

1010.5
(660~1376)

736
(464~939)

CD4/CD8 ratio, median (IQR) 1.27
(1.05~1.49)

0.33
(0.22~0.53)

0.83
(0.67~1.09)
January 2022 | Volume 12 |
IQR, interquartile range; HCs, healthy controls; TNs, treatment-naïve HIV-1-infected patients; ARTs, HIV-1-infected patients with successful antiretroviral therapy (ART); n, number of
individuals per group; NA, not applicable; LDL, low detection limit.
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Calculation of Function Module Scores for
Each Cell
Weused functionmodule scores to compare the differences in specific
cell states or functionsbetween the three typesofNKcells. These scores
were calculated by the “AddModuleScore” function in the Seurat R
package. Genes categorized into “cytotoxicity”, “cytokine and
chemokine receptors”, “adhesion molecules”, and “exhaustion”
function modules have been reported by others (30, 31). Genes
involved in “apoptosis” were selected from the GO term
APOPTOTIC SIGNALING PATHWAY (GO:0097190). The details
of these function modules are listed in Supplementary Table 3.

Enzyme-Linked Immunosorbent
Assay (ELISA)
Concentrations of sCD14, sCD163, and TGF-b1 were measured
in patient-derived frozen plasma specimens stored at -80°C using
ELISA kits (R&D systems, Minneapolis, USA) according to the
manufacturer’s instructions.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism
software (version 8.0; GraphPad Software, San Diego, CA,
USA). Continuous measurements are displayed as median
(interquartile range, IQR) and categorical variables are
expressed as count (%). Mann-Whitney U-tests were used for
comparisons between two groups, and theWilcoxon signed-rank
test was used for matched pairs. Correlations between two
quantitative variables were evaluated using Pearson’s rank
correlation test. Statistical significance was set at a p < 0.05.

RESULTS

Accumulation of CD56neg NK Cells in
Patients With HIV-1 Infection
To investigate the effect of HIV-1 infection on the proportions of
NK cell subsets, three groups of individuals were included in this
study: HCs (n = 17), TNs (n = 34), and ARTs (n = 29). Our gating
strategy excluded CD3+ T cells, CD14+ monocytes, and CD20+ B
cells. Three subsets of NK cells were identified based on CD56 and
CD16 expression (Figure 1A). Compared with HCs, the
frequencies of CD3/CD14/CD20- cells and NK cells in PBMCs
weredecreased in theTNs (Figure1B). Inaddition, the frequencyof
CD56dimNK cells in total NK cells was also decreased compared to
that observed in HCs. This was particularly pronounced in TNs
(72.72% vs 85.72%, p = 0.0034). In contrast, the CD56neg NK cell
population was significantly expanded in TNs, but ART could
partially restore the frequency of CD56neg NK cells (Figure 1C).
Taken together, these data indicate thatCD56negNKcells expanded
at the expense of a decrease in CD56dim NK cells upon HIV-1
infection, which could not be fully rescued by ART.

scRNA-seq-Based Characterization of
CD56neg NK Cells in an HIV-1-Infected
Individual
To detect the characteristics of the CD56neg NK cells in HIV-1-
infected patients, we collected an scRNA-seq dataset (SRP150325)
Frontiers in Immunology | www.frontiersin.org 4
from the Sequence Read Archive (SRA). The goal of this approach
was toanalyze thedatasetwith respect to the threeNKcell subsets in
peripheral blood fromanHIV-1-infected individualbasedonCD56
surface marker expression (bright, dim, and negative) (28). After
removing cellswith lowquality, a total of 22,226 cellswere identified
in this dataset. T cells, B cells and monocytes were identified and
exclude for further analysis (Supplementary Figures 1A–C). We
obtained 20,140 NK cells, including 2,820 CD56bri, 6,154 CD56dim,
and 11,166 CD56neg cells (Figure 2A). Some markers of three NK
cell subsets were discovered (Figure 2B). GZMK and XCL1 were
well-defined markers of CD56bri NK cells, SPON2 and ALOX5AP
were highly expressed in CD56dim NK cells, while TRAC and
ITM2A were highly expressed in CD56neg NK cells.

The gene expression among three NK cell subsets were further
explored. We compared the average expression of all genes from
cells in each subset. Euclidean distances analysis reveals that
CD56neg NK cells were transcriptionally similar to CD56dim NK
cells (Figure2C).These observationswere consistentwith the result
obtained in a previous study showing that CD56neg NK cells were
similar to CD56dim NK cells, but only to a certain extent (32). To
further investigate the features of CD56neg NK cells compared with
the other two NK cell subsets, we first identified those genes
differentially expressed between the three types of NK cells
(Supplementary Figure 2A). We obtained 391, 459, and 331
downregulated DEGs in the “neg vs dim,” “neg vs bri,” and “dim
vs bri” groups, respectively. Similarly, we also separately obtained
162, 422, and 636 upregulated DEGs, respectively. Then,
pseudotime analysis was used to investigate the developmental
course of NK cells (Figure 2D). As shown in the trajectory, the
CD56bri and CD56neg NK cells dominated the two ends of the
progression trajectory. The CD56dim cells dominated another end
of the progression trajectory but some cells also distributed in all the
three branches (Supplementary Figure 3). Based on the current
humanNKdevelopmentmodel,weassigned theCD56bri cells as the
least mature branch in the pseudotime. The CD56bri, CD56dim and
CD56neg cells emerged in turn as the pseudotime. This result
provided evidence from transcriptional profiling supporting
CD56dim NK cells as the precursors of CD56neg NK cells. The
change processes of the 100 most significantly changed genes were
displayed along the pseudotime (Figure 2E). These genes were
clustered into 5 clusters and each cluster of genes displayed similar
changing tendency.

Finally, we focused on the functional changes among the three
NK cell subsets, especially between CD56dim and CD56neg cells.
The 391 downregulated and 162 upregulated DEGs between
CD56neg and CD56dim NK cells were displayed (Supplementary
Figure 2B) and GO enrichment analysis of biological process was
performed (Figure 2F and Supplementary Table 4). GO terms
associated with protein synthesis (“SRP-dependent cotranslational
protein targeting to membrane”, “protein targeting to ER”,
“cotranslational protein targeting to membrane” and
“establishment of protein localization to endoplasmic”) were
upregulated in CD56neg compared with CD56dim NK cells. In
contrast, GO terms including “response to IFN-g” and “cellular
response to IFN-g” were downregulated. Then, we used function
module scores to evaluate functions in each NK cell subset, such as
January 2022 | Volume 12 | Article 811091

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Cao et al. Dysfunctions of CD56neg NK cells
“cytotoxicity”, “cytokine and chemokine receptors”, “adhesion
molecules”, “exhaustion”, and “apoptosis” (Figure 2G).
Compared with CD56dim NK cells, CD56neg NK cells showed a
lower cytotoxicity level. The module scores of “cytokine and
chemokine receptors” and “adhesion molecules” decreased
gradually in the order of CD56bri, CD56dim, and CD56neg NK
cells. However, the “exhaustion” module scores increased in the
same order as the NK cell subtypes. Accordingly, “apoptosis”
module scores of CD56neg NK cells were also higher than those of
CD56bri and CD56dim NK cells.

Phenotypic Profiles of CD56neg NK
Cells in TNs
To characterize the phenotypic features of the accumulating
CD56neg NK cells in more detail, we measured the expression
of a series of markers on CD56bri, CD56dim, and CD56neg NK
cells from TNs by flow cytometry (Figure 3A). We found that
CD56neg NK cells expressed higher levels of CD39, TIGIT, CD95,
and Ki67 compared to CD56dim NK cells (Figure 3B). In line
with these results, higher levels of transcripts encoding these four
proteins were observed in the corresponding scRNA-seq dataset
Frontiers in Immunology | www.frontiersin.org 5
(Supplementary Figure 4). In addition, we also compared the
expression of these makers on CD56neg NK cells among HCs,
TNs and ARTs. We found that CD56neg NK cells in TNs
expressed higher levels of CD39, TIGIT, CD95, PD-1, NKG2C,
and CD32 compared to that in HCs (Supplementary Figure 5).

CD56neg NK Cell Dysfunction Is
Associated With HIV-1 Disease
Progression
Chronic inflammation and immune activation play a central role
in the progression of HIV-1 infection. To explore the level of
inflammation in HIV-1-infected patients, wemeasured the plasma
concentrations of sCD14, sCD163, and TGF-b1. Compared with
HCs, the concentrations of the three inflammatory molecules were
significantly higher in TNs (Supplementary Figure 6).
Subsequently, an association of differentially expressed markers
on CD56neg NK cells and HIV-1 clinical parameters, including
CD4+ T cell count, CD4/CD8 ratio, and HIV-1 viral load, was
analyzed. Statistical correlations were analyzed using matched
measurements presented in a dot heatmap (Figure 4A). The
frequencies of CD39+, CD95+, and Ki67+ CD56neg NK cells
A

B C

FIGURE 1 | CD56neg NK cells are expanded in peripheral blood of HIV-1-infected participants. (A) Gating strategy for flow cytometry analyses. NK cells were
defined as negative for CD3, CD14, and CD20, but positive for either CD56 or CD16. NK cell subsets were further identified based on CD56 and CD16 expression
on cells derived from healthy controls (HCs) and HIV-1-infected participants. The numbers indicate the percentages of cells within the gates. (B, C) HIV-1-infected
participants included treatment-naïve HIV-1-infected patients (TNs) and HIV-1-infected patients with successful antiretroviral therapy (ARTs). Comparisons of the
percentages of CD3/CD14/CD20- cells, total NK cells (B) and the three NK cell subsets, namely CD56bri, CD56dim, and CD6neg NK cells (C) in HCs (n = 21), TNs
(n = 34), and ARTs (n = 29). Each dot represents one participant. Statistical significance between two groups was determined by Mann-Whitney U-test. *p < 0.05,
**p < 0.01, and ****p < 0.0001.
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A

D

F

G

B

C

E

FIGURE 2 | Single-cell gene expression analysis using peripheral blood from HIV-1-infected patients shows lower cytotoxicity, but higher exhaustion of CD56neg NK
cells. (A) t-SNE method was used to present the distribution of the three types of NK cells analyzed (CD56bri, CD56dim, and CD56neg). Each dot corresponds to a
single cell, which is colored according to the cell type. (B) Dotplot showed the expression of some markers in three NK cell subsets. The dot size represented the
percentage of the gene expression in the subset of NK cells and the color represented the average expression of the gene. (C) The transcriptome similarity among
three NK cell subsets was evaluated by the Euclidean distance and visualized via heatmap. Each column represented a variable gene among three NK cell subsets,
and each row represented one NK cell subset. (D) The DDRTree method were used for dimension reduction to display the distribution of cell types and pseudotime
along the trajectory. (E) The expression of some genes that changed significantly over pseudotime were shown via heatmap. The x-axis represented the pseudotime.
The color bar represented the levels of gene expressions. These genes were clustered into 5 clusters by the default “ward.D2” method. (F) Global transcriptome
differences between CD56neg and CD56dim NK cells were evaluated by overrepresentation analysis of up- and down-regulated biological processes. Avg_log2FC =
0.25 and p_val_adj = 0.05 (Mann-Whitney U-test for significant difference testing, Benjamini-Hochberg method for multiple testing) were selected as thresholds for
differentially expressed genes (DEGs). (G) Violin plots of module scores for each cell across clusters derived from CD56bri, CD56dim, and CD56neg groups, which are
highlighted in different colors. Horizontal lines represent median values. The significance of the differences was determined using Mann-Whitney U-test and labeled
accordingly. ****p < 0.0001.
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showed significant negative correlations with CD4+ T cell counts
(Figures 4B–D, r = 0.5144, p = 0.0415; r = 0.5405, p = 0.0306; and
r = 0.5164, p = 0.0406, respectively). In addition, a positive
correlation was observed between the frequencies of Ki67+

CD56neg NK cells and HIV-1 viral load (Figure 4D). These data
highlight that immune dysregulation of CD56neg NK cells is
associated with HIV-1 disease progression.

Functional Impairment of CD56neg NK
Cells in TNs
NK cells are best characterized by their cytotoxic functions and
their ability to produce cytokines. Thus, NK cells from TNs were
stimulated by treatment with IL-12, IL-15, and IL-18. Expression
of CD107a, IFN-g, TNF-a, granzyme B, and perforin was
subsequently determined by flow cytometry (Figure 5A).
Compared with CD56dim NK cells, the expression of IFN-g
and TNF-a was significantly decreased in CD56neg NK cells
(p = 0.0214 and p = 0.0207, respectively; Figures 5B, C). In
addition, CD56neg NK cells expressed lower levels of granzyme B
and perforin than CD56dim NK cells (p < 0.0001 and p < 0.0001,
respectively; Figures 5D, E). Moreover, we compared the
expression of the four genes of interest between the three
subtypes of NK cells at the transcriptional level based on the
scRNA-seq dataset (Supplementary Figure 7). The transcript
levels of GZMB and PRF1 genes analyzed corresponded to the
Frontiers in Immunology | www.frontiersin.org 7
respective protein levels in the three NK cell subtypes.
Simultaneously, we found the expression of TNF-a of CD56neg

NK cells was significantly decreased in TNs and ARTs compared
to HCs (Supplementary Figure 8).

Taken together, these data indicate that chronic HIV-1
infection drives the expansion of CD56neg NK cells that
express lower levels of granzyme B and perforin and display
defective production of cytokines, such as IFN-g and TNF-a.
DISCUSSION

The NK cell compartment is heterogeneous in nature and
contains a variety of subsets with different maturities,
phenotypes, and functions. One factor that is known to drive
this heterogeneity is viral infection (22, 33). HIV-1 infection has
been associated with severe disruption of the NK cell
compartment (34). HIV-1 affects the homeostasis of NK cell
subsets by inducing a reduction in CD56dim NK cells and an
accumulation of CD56neg NK cells (14, 21). However, the
immunological characteristics of CD56neg NK cell populations
are still poorly understood. In this study, we uncovered an
association between the accumulation of dysfunctional
CD56neg NK cells and disease progression in chronic HIV-
1 infection.
A B

FIGURE 3 | Characteristics of CD56neg NK cells in peripheral blood of treatment-naïve HIV-1-infected patients (TNs) according to flow cytometry analyses. (A)
Heatmap showing the percentage of cells with specific protein expression across three NK cell subsets, which was determined by flow cytometry. Data were scaled
using z-score. (B) Expression of CD39, TIGIT, CD95, and Ki67 in NK cell subsets was determined by flow cytometry (n = 16). Dashed lines represent the median
expression level of the proteins indicated with respect to the total NK cell population. Each dot represents one participant. For statistical analyses, Wilcoxon signed-
rank tests were performed. **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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Previous studies have indicated decreases in both frequency
and absolute numbers of CD56dim NK cells, with a concomitant
increase in the CD56neg NK cell population in HIV-1 infection
(21, 35). Consistently, in our study, we confirmed the expansion
of the CD56neg NK cell population. Similarly, expansion of
CD56neg NK cells has also been observed during infections
with other viruses, including HCV, cytomegalovirus, Epstein–
Frontiers in Immunology | www.frontiersin.org 8
Barr virus, and HBV (36–39). More recently, unconventional
CD56neg NK cells were shown to result from aberrant maturation
of conventional NK cells, and a high frequency of CD56neg NK
cells was found to be associated with adverse clinical outcomes in
acute lymphoblastic leukemia (40). To our knowledge, an in-
depth study in the context of HIV-1 infection has not been
undertaken to this point.
A

B

C

D

FIGURE 4 | The relationship between the frequencies of CD39+, CD95+, and Ki67+ CD56neg NK cells and peripheral CD4+ T cell count, CD4/CD8 ratio, and viral
load in treatment-naïve HIV-1-infected patients (TNs). (A) Dot heatmap showing Pearson correlations between selected proteins and clinical indicators. (B–D)
Correlations between the frequencies of CD39+ (B), CD95+ (C), and Ki67+ CD56neg NK cells, (D) with CD4+ T cell count, CD4/CD8 ratio, and viral load in TNs. Each
dot represents one participant. Associations were evaluated using Pearson’s rank correlation test. *p < 0.05 and **p < 0.01.
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CD56neg NK cells have been reported to be similar to CD56dim

NK cells in healthy individuals but with phenotypic differences in
CD56neg NK cells (32). In this study, we collected an scRNA-seq
dataset obtainedusingNKcells in theperipheralbloodofanHIV-1-
infected individual from SRA. Consistent with proteomics data, we
also demonstrated that CD56neg NK cells were closer to CD56dim

NKcells thanCD56briNKcells according to theEuclideandistances
andpesudotimeanalysis among threeNKcell subsets.Module score
analysis showed that CD56neg NK cells exhibited lower cytotoxicity
and adhesion, but higher levels of exhaustion and apoptosis,
suggesting that these CD56neg NK cells were dysfunctional. By
employingflowcytometry,weobserved thatCD56negNKcells from
patients infected with HIV-1 exhibited a lower production capacity
for IFN-g and TNF-a, as well as reduced cytotoxic functions in
response to stimulation by IL-12, IL-15, and IL-18 compared to
CD56dim NK cells. During our enrichment analysis, we found that
multiple GO terms related to cell activation were decreased,
including “T cell activation” and “neutrophil activation” which
suggested that viral infectionmay also significantly impair CD56neg

cell functions. We observed that the expression of two genes,
including killer cell lectin-like receptor subfamily C member 1
(KLRC1) 1 andkiller cell lectin-like receptor subfamilyDmember 1
(KLRD1) were downregulated in CD56neg NK cells. KLRC1 has
been proposed to function as an immune inhibitory receptor
involved in self–nonself discrimination. Complexes of KLRC1
and KLRD1 enable cytotoxic cells to monitor the expression of
Frontiers in Immunology | www.frontiersin.org 9
major histocompatibility complex (MHC) class I molecules in
healthy cells to mediate self-tolerance (41–43). Deregulation of
these genesmaybe responsible for the increased levelsof exhaustion
and apoptosis and the decrease in cytotoxicity observed inCD56neg

NK cells.
NK cell function relies on the expression patterns of activating

and inhibitory receptors. Phenotypic characterization of CD56neg

NK cells revealed a loss of certain activating receptors, such as the
natural cytotoxicity receptors NKp30 and NKp46, as well as
decreased expression of NKG2A (14, 44). Given that NK cell
activation relies on an integration of signals from activating and
inhibitory receptors, the alteration of NK cell receptor expression
may indirectly influence the CD56neg NK cell response in HIV-1-
infected patients. CD39, a member of the ecto-nucleoside
triphosphate diphosphohydrolase family, converts ATP and ADP
to AMP, which is a newly recognized “immune checkpoint
mediator.” TIGIT, an inhibitory receptor, binds to its ligand
CD155 to generate inhibitory signals. Cell surface expression of
TIGIT is higher onNKcells frompatients infectedwithHIV-1 than
on those from HIV-1-negative HCs (18). In our study, we
demonstrated that the expression of CD39 and TIGIT was higher
on CD56neg than on CD56dim NK cells. Notably, the frequencies of
CD39 and TIGIT on CD56neg NK cells correlated negatively with
the absolute number of CD4+ T cells, which is an important
indicator of HIV-1 disease progression. Moreover, we also found
that CD95 and Ki67 expression levels were higher in CD56neg than
A B C

D E

FIGURE 5 | CD56neg NK cells derived from treatment-naïve HIV-1-infected patients (TNs) display impaired immune functions. (A) Heatmap showing the percentage
of cells featuring specific gene expression patterns across the three subtypes of NK cells. Data were scaled using z-score. (B–E) Peripheral blood mononuclear cells
(PBMCs) from TNs were stimulated with IL-12 (10 ng/mL), IL-15 (10 ng/mL), and IL-18 (50 ng/mL) for 20 h. Comparisons between CD56bri, CD56dim, and CD56neg

NK cells regarding the frequencies of cells producing IFN-g (B) and TNF-a (C), and those expressing granzyme B (D) and perforin (E). Dashed lines indicate the
median levels of makers with respect to the total NK cell population. Each dot represents one participant. For statistical analyses, Wilcoxon signed-rank tests were
performed. *p < 0.05, **p < 0.01, and ****p < 0.0001.
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in CD56dim NK cells. This indicated that both proliferation and
apoptosis of CD56neg NK cells were increased, which ultimately led
to the observed accumulation of CD56neg NK cells. Furthermore,
the expression of CD39 and TIGIT onCD56neg NK cells correlated
negatively with the absolute number of CD4+ T cells. Although
further mechanisms of dysregulation of CD56neg NK cell functions
need to be addressed in the future, this is the first study to
demonstrate the relationship between the phenotypic profile of
CD56neg NK cells and HIV-1 disease progression.

We acknowledge the limitations of our study. First, since this
was a cross-sectional study, the causal relationship between the
accumulation of CD56neg NK cells and disease progression is not
yet known. It is thus suggested to carry out further studies in a
longitudinal ART cohort. Secondly, scRNA-seq data from only
one HIV-1 infected patient with bnAb production is included.
Future studies should aim to ascertain whether the gene
expression pattern of CD56bri, CD56dim and CD56neg NK cells
characterized here are similar to those in HIV-infected patients
without bnAb production. In addition, the main conclusions of
this study were based on observations made using PBMCs.
Considering that HIV-1 persists mainly in tissues, additional
attention should be paid to the function and distribution of
CD56neg NK cells in tissues.

In conclusion, our study demonstrated the impact of chronic
HIV-1 infection on the immune characteristics of CD56neg NK
cells and revealed that immune dysfunctions of CD56neg NK cells
are associated with HIV-1 disease progression. Thus, exploration
of the mechanisms involved in the expansion of CD56neg NK
cells could prove helpful in the development of novel
immunotherapies to restore or reinvigorate dysfunctional NK
cells during chronic HIV-1 infection.
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