
Copyedited by: MANUSCRIPT CATEGORY: APPLICATIONS NOTE

[19:02 19/7/2012 Bioinformatics-bts345.tex] Page: 2191 2191–2192

BIOINFORMATICS APPLICATIONS NOTE Vol. 28 no. 16 2012, pages 2191–2192
doi:10.1093/bioinformatics/bts345

Structural bioinformatics Advance Access publication June 19, 2012

Accelerated protein structure comparison using TM-score-GPU
Ling-Hong Hung∗ and Ram Samudrala
Department of Microbiology, University of Washington, Seattle, WA 98195-7735, USA
Associate Editor: Anna Tramontano

ABSTRACT

Motivation: Accurate comparisons of different protein structures
play important roles in structural biology, structure prediction and
functional annotation. The root-mean-square-deviation (RMSD) after
optimal superposition is the predominant measure of similarity due
to the ease and speed of computation. However, global RMSD is
dependent on the length of the protein and can be dominated by
divergent loops that can obscure local regions of similarity. A more
sophisticated measure of structure similarity, Template Modeling
(TM)-score, avoids these problems, and it is one of the measures
used by the community-wide experiments of critical assessment
of protein structure prediction to compare predicted models with
experimental structures. TM-score calculations are, however, much
slower than RMSD calculations. We have therefore implemented
a very fast version of TM-score for Graphical Processing Units
(TM-score-GPU), using a new and novel hybrid Kabsch/quaternion
method for calculating the optimal superposition and RMSD that
is designed for parallel applications. This acceleration in speed
allows TM-score to be used efficiently in computationally intensive
applications such as for clustering of protein models and genome-
wide comparisons of structure.
Results: TM-score-GPU was applied to six sets of models from
Nutritious Rice for the World for a total of 3 million comparisons.
TM-score-GPU is 68 times faster on an ATI 5870 GPU, on average,
than the original CPU single-threaded implementation on an AMD
Phenom II 810 quad-core processor.
Availability and implementation: The complete source, including
the GPU code and the hybrid RMSD subroutine, can be
downloaded and used without restriction at http://software.compbio.
washington.edu/misc/downloads/tmscore/. The implementation is in
C++/OpenCL.
Contact: ram@compbio.washington.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.

Received on April 10, 2012; revised on May 23, 2012; accepted on
June 9, 2012

1 INTRODUCTION
For protein structure comparisons, the simplest method is to
calculate a transformation that superimposes corresponding atoms
from one structure onto a second structure and minimizes the root-
mean-square-deviation (RMSD) between the coordinates of the
superimposed structures [Equation (1)]. This can be obtained from
the single value decomposition of the covariance matrix (Kabsch,
1976) or from the solution of the eigenvalue equation of a quaternion

∗
To whom correspondence should be addressed.

derived matrix (Hung et al., 2011; Liu et al., 2010). Although
RMSD is a fast and easily calculated metric of structural similarity,
a globally optimal transformation that minimizes the distances
between all superimposed atom pairs can be dominated by a small
set of divergent atoms in loop regions. Furthermore, RMSD is not
only dependent on the overall goodness of fit but also dependent on
the length of the proteins. TM-score (Zhang and Skolnick, 2004)
uses a variant of the Levitt–Gerstein (LG) metric (Gerstein and
Levitt, 1998) that provides a length independent measure and limits
the impact of divergent pairs of atoms in superimposed structures
[Equation (1)].

RMSD=
√√√√ 1

L

L∑
i=1

dz
i LG= 1

L

L∑
i=1

1

1+
(

di
d0

)2
. (1)

In the above formula, L is the length of the protein, di is the
distance between the ith matched Cα atom and d0 a scaling factor
to normalize the matches. For small proteins the optimal value of
d0 is 4.5 Å. The LG-based metric gives a value between 0 and 1
where 1 is an exact match. The maximum value of LG that can
be obtained by superposition is the TM-score. Unlike RMSD, there
is no simple relationship between the covariance matrix and the
optimal transformation that maximizes LG. Instead, different subsets
of atoms are superimposed using the Kabsch algorithm and the LG
score evaluated over the entire protein. By sampling a large number
of subsets, an approximately optimal superposition can be obtained.
Because of the numerous local superpositions that must be sampled,
the TM-score algorithm is much slower than the calculation of
global RMSD. We present TM-score-GPU which is a fast Graphical
Processing Unit (GPU) implementation of TM-score using a new
hybrid RMSD algorithm that is suitable for parallel single instruction
multiple data (SIMD) applications.

2 METHODS
GPUs rely on the same instructions being executed simultaneously on
different data (SIMD) to accelerate the calculations. For each group of
data (wavefront), all branches of conditional code are executed which
makes complicated branching of code slow for GPUs. Iteration can also
be expensive for SIMD applications as all threads wait for the longest
iteration to finish. Our hybrid implementation first calculates the eigenvalues
of the square of the covariance matrix R by analytically solving for the
roots of the cubic characteristic polynomial [Equation (3)]. This is the first
part of the Kabsch algorithm. The quaternion algorithm obtains the optimal
superposition and RMSD by solving for the eigenvalues and eigenvectors
of matrix S in Equation (4). d from Equation (3) is also an eigenvalue of
matrix S. The fast analytical method from qcprot (Liu et al., 2010) is then
used to solve for the eigenvectors of matrix S and construct the rotation
matrix [Equations (2–4) and Equations (1–8) in Supplemental materials].
This hybrid method avoids the complicated branching code used to calculate

© The Author(s) 2012. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/ by/3.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://bioinformatics.oxfordjournals.org/cgi/content/full/bts345/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts345/DC1


Copyedited by: MANUSCRIPT CATEGORY: APPLICATIONS NOTE

[19:02 19/7/2012 Bioinformatics-bts345.tex] Page: 2192 2191–2192

L.-H.Hung and R.Samudrala

Fig. 1. Speed of TM-score-GPU versus CPU implementations. The times
required to calculate the TM-score between all pairs of structures in six
different ensembles of 1000 models are shown. The models are from the
Nutritious Rice for the World project and range in size from 70 to 150
residues, which was the largest size predicted. Timings are averages over
three replications with the standard error too low (<0.2%) to be visible
on the graph. The different algorithms compared are the original TM-score
(Fortran77 version) (black), an implementation of TM-score using qcprot
(Liu et al., 2010) (red) and the CPU and GPU versions of our implementation
(green and yellow). TM-score-GPU is on average 68 ± 3 times faster than the
original implementation run on an AMD Phenom II 810 quad-core processor.
When comparing single-threaded CPU implementations, our hybrid RMSD
algorithm gives rise to a 45 ± 0.4% speedup over the original code and 58
± 1% speedup over an implementation using qcprot

rotations in the Kabsch method and avoids the iterative methods used to
solve for the eigenvalues of the S matrix used in quaternion methods. The
resulting algorithm has a non-divergent code path, has no iteration and is
significantly faster. The single-threaded TM-score implementation using the
hybrid method is 45% faster than the original Kabsch-based implementation
and 58% faster than qcprot (see Fig. 1).

(S−dI)v=0 (2)

where v are the eigenvectors of S, R is the covariance matrix and d is derived
from the eigenvalues of R2:

R=V

⎡
⎣

e12 0 0
0 e22 0
0 0 e32

⎤
⎦WT, d=e1+e2+(sign(det(R))min

(
e1,e2,e3)

)
,

(3)

S=

⎡
⎢⎢⎣

R11+R22+R33 R23−R32 R31−R13 R12−R21
R23−R32 R11−R22−R33 R12+R21 R13+R31
R31−R13 R12+R21 −R11+R22−R33 R23+R32
R12−R21 R13+R31 R23+R32 −R11−R22+R33

⎤
⎥⎥⎦. (4)

Memory I/O is the other major bottleneck for GPU implementation. It is
advantageous to buffer coordinates into fast local and register memory.
The number of superpositions increases roughly by N log N , where N is
the number of residues whereas the cost to buffer the coordinates grows
linearly. Therefore, the caching of coordinates is especially beneficial for
larger proteins. A greater number of active threads can also be beneficial by
allowing the scheduler to switch between threads when one is stalled during a
memory wait state. The application therefore calculates the optimal number
of SIMD threads that can be launched without exhausting the scarce fast
memory resources. The implementation also rearranges the coordinates into
vectors of four floating point values. ATI GPUs are optimized for I/O and

compute operations on 4-vectors. The implementation is in C++/OpenCL
using AMDAPP2.5 for Linux and is optimized for ATI cards. However, the
OpenCL code can be compiled and optimized for other GPUs and CPUs that
support double precision arithmetic.

3 RESULTS
TM-score-GPU was applied to six sets of 1000 de novo protein
models from Nutritious Rice for the World. The TM-score between
each pair of structures within an ensemble was then calculated. TM-
score-GPU is 68 ± 3 times faster on an ATI 5870 GPU, on average,
than the original CPU single-threaded implementation on an AMD
Phenom II 810 quad-core processor (see Fig. 1).

We have implemented a very fast version of the structural
comparison TM-score algorithm using a novel hybrid
Kabsch/quaternion method for superposition that is suitable
for SIMD applications. We anticipate that TM-score-GPU will
be useful in applications such as clustering and in methods that
compare structures with different sequences such as TM-align
(Zhang and Skolnick, 2005). Our particular application is for large
community grid projects where few volunteers have access to CPU
computational clusters but where GPUs are commonplace and
provide most of the compute cycles. In addition, the new SIMD
friendly superposition routine will be useful in software where fast
parallel superpositions are required. Finally, our implementation is
in OpenCL, which is a very new language for GPUs. We anticipate
that our implementation be of interest to others who wish to port
code from languages that have been deprecated (Brook+) or may
soon be deprecated (CUDA). The complete source code, including
the GPU and superposition subroutines, is available for unrestricted
use from http://software.compbio.washington.edu/misc/downloads/
tmscore/

4 ACKNOWLEDGEMENTS
The authors thank Yang Zhang for making the TM-score code freely
available; Gaurav Chopra, Jeremy Horst and Ambrish Roy for their
helpful comments on the manuscript and Thomas Wood for testing
the source distribution.

Funding: The NIH Director’s Pioneer Award 1DP1OD006779-01.

Conflict of Interest: None declared.

REFERENCES
Gerstein,M. and Levitt,M. (1998) Comprehensive assessment of automatic structural

alignment against a manual standard, the scop classification of proteins. Protein
Sci., 7, 445–456.

Hung,L.H. et al. (2011) GPU-Q-J, a fast method for calculating root mean square
deviation (RMSD) after optimal superposition. BMC Res. Notes., 4, 97.

Kabsch,W. (1976) A solution for the best rotation to relate two sets of vectors. Acta
Crystallogr. A, 32, 922–923.

Liu,P. et al. (2010) Fast determination of the optimal rotational matrix for
macromolecular superpositions. J. Comput. Chem., 31, 1561–1563.

Zhang,Y. and Skolnick,J. (2004) Scoring function for automated assessment of protein
structure template quality. Proteins, 57, 702–710.

Zhang,Y. and Skolnick,J. (2005) TM-align: a protein structure alignment algorithm
based on the TM-score. Nucleic Acids Res., 33, 2302–2309.

2192


	Accelerated protein structure comparison using TM-score-GPU
	1 INTRODUCTION
	2 METHODS
	3 RESULTS
	4 ACKNOWLEDGEMENTS


