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Abstract

Numerous studies indicate altered static local and long-range functional connectivity

of multiple brain regions in schizophrenia patients with auditory verbal hallucinations

(AVHs). However, the temporal dynamics of interhemispheric and intrahemispheric

functional connectivity patterns remain unknown in schizophrenia patients with

AVHs. We analyzed resting-state functional magnetic resonance imaging data for

drug-naïve first-episode schizophrenia patients, 50 with AVHs and 50 without AVH

(NAVH), and 50 age- and sex-matched healthy controls. Whole-brain functional con-

nectivity was decomposed into ipsilateral and contralateral parts, and sliding-window

analysis was used to calculate voxel-wise interhemispheric and intrahemispheric

dynamic functional connectivity density (dFCD). Finally, the correlation analysis was

performed between abnormal dFCD variance and clinical measures in the AVH and

NAVH groups. Compared with the NAVH group and healthy controls, the AVH group

showed weaker interhemispheric dFCD variability in the left middle temporal gyrus

(p < .01; p < .001), as well as stronger interhemispheric dFCD variability in the right

thalamus (p < .001; p < .001) and right inferior temporal gyrus (p < .01; p < .001) and

stronger intrahemispheric dFCD variability in the left inferior frontal gyrus (p < .001;

p < .01). Moreover, abnormal contralateral dFCD variability of the left middle tempo-

ral gyrus correlated with the severity of AVHs in the AVH group (r = �.319,

p = .024). The findings demonstrate that abnormal temporal variability of inter-

hemispheric and intrahemispheric dFCD in schizophrenia patients with AVHs mainly

focus on the temporal and frontal cortices and thalamus that are pivotal components

of auditory and language pathways.
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1 | INTRODUCTION

Auditory verbal hallucinations (AVHs) are a prominent symptom of

schizophrenia and affect approximately 60%–80% of patients (Bauer

et al., 2011). AVHs are defined as hearing and perceiving voices in the

absence of an external auditory stimulus. Based on the technology of

functional magnetic resonance imaging (fMRI), recent findings

suggested that AVHs might be traced back to abnormally intrinsic

functional organizations involving multiple brain regions and networks

(Cui et al., 2017; Hoffman et al., 2007; Kumari et al., 2010; Northoff &

Qin, 2011; Scheinost et al., 2019; Silbersweig et al., 1995; Simons

et al., 2010; Stripeikyte et al., 2021). Although multiple existing con-

ceptual models of AVHs, such as top-down and bottom-

up (Hugdahl, 2009), corollary discharge (Ford et al., 2007),

nondominant language intrusion (Sommer et al., 2008; van Lutterveld

et al., 2014), and interhemispheric miscommunication (Curcic-Blake

et al., 2013; Gavrilescu et al., 2010), were indicated by the previous

studies, it is unclear which model is the most relevant for AVHs.

A large number of resting-state fMRI studies indicate abnormal

local and long-range connectivity in AVHs (Chang et al., 2017;C. Chen,

Wang, et al., 2020; Hare et al., 2021; Mondino et al., 2016; Zhuo

et al., 2016). Local functional connectivity was usually estimated using

regional homogeneity (ReHo) analysis, and long-range connectivity

was usually estimated using resting-state functional connectivity

(rsFC) analysis (Hare et al., 2021). On the one hand, the researchers,

respectively, explored local and long-range connectivity and found

abnormal local and long-range connectivity mainly in the frontal and

temporal language-related areas (Chang et al., 2017; Hoffman &

Hampson, 2011; Vercammen et al., 2010; Wolf et al., 2021; Zheng

et al., 2017; Zhuo et al., 2016). On the other hand, Chen, Wang,

et al. (2020), Chen, Cui, et al. (2020), and Cui et al. (2016), respec-

tively, utilized both the two measurements and found that schizophre-

nia patients with AVHs showed stronger ReHo in the putamen and

the dorsolateral prefrontal cortex and weaker rsFC between the puta-

men and the inferior frontal gyrus (IFG). Moreover, structure func-

tional analysis also indicated stronger interhemispheric auditory

connectivity in schizophrenia patients with AVHs (Mulert et al., 2012;

Steinmann et al., 2014). Chang et al. (2015) adopted a newly devel-

oped index, voxel-mirrored homotopic connectivity (VMHC), to quan-

titatively describe interhemispheric functional connectivity, and

showed aberrant bilateral connectivity of default mode network

(DMN), IFG, and cerebellum in the AVH group. These inconsistent

findings mean that it is important and necessary to investigate abnor-

mal interhemispheric and intrahemispheric functional connectivity in

AVHs across the board using a better approach. The analysis of func-

tional connectivity density (FCD) represents the number of connec-

tions between voxels throughout the global or interhemispheric and

intrahemispheric brain and is a data-driven graph theory method,

which can identify the distribution of highly connected hubs in brain

networks (Bullmore & Sporns, 2009; Lee et al., 2016; J. Zhu

et al., 2017). To the best of our knowledge, the previous studies

adopted FCD to explore altered voxel-wise interhemispheric and

intrahemispheric functional connectivity in schizophrenia patients

(Agcaoglu et al., 2018; Y. Zhang et al., 2019; F. Zhu et al., 2018;

F. Zhu et al., 2019) but not in AVHs. The previous studies only found

abnormal ROI-wise interhemispheric connections between auditory

and language-related areas (Curcic-Blake et al., 2013; Gavrilescu

et al., 2010). The language, auditory, and memory/limbic networks are

of particular relevance for AVHs (�Curči�c-Blake et al., 2017). Therefore,

voxel-wise interhemispheric and intrahemispheric FCD might be nec-

essary to identify the distribution of highly connected hubs in abnor-

mal brain networks for AVHs.

The above abnormal connections in schizophrenia patients with

AVHs are static. The traditional functional connectivity, including

interhemispheric and intrahemispheric parts, is based on the implicit

assumption of spatial and temporal stationary of fMRI data, which is

over simple for complex activities of the human brain (Allen

et al., 2014). When the mental activity is unconstrained, dynamics are

potentially even more prominent under the resting state. Evidence

suggested that dynamic functional connectivity supply us new infor-

mation about abnormal functional connectivity on the brain of

patients with various diseases (Chen et al., 2021; Y. Chen, Cui,

et al., 2020; Demirtaş et al., 2016; Y. Li et al., 2020; R. Wang, Sun,

et al., 2021; J. Zhu et al., 2021). Previous findings showed altered

dynamic functional connectivity in the DMN and the language net-

work in schizophrenia patients with AVHs (Geng et al., 2020; Weber

et al., 2020; W. Zhang et al., 2018). Moreover, Guo et al. (2020)

explored altered temporal variability of interhemispheric and intra-

hemispheric dynamic FCD (dFCD) using a sliding window approach in

autism spectrum disorder, and the interhemispheric and intra-

hemispheric FCD were discomposed from the whole-brain FCD.

Although numerous studies explored the neural mechanism of AVHs,

it was unclear whether schizophrenia patients with AVHs exhibited

abnormal intrahemispheric and interhemispheric dFCD.

In this study, we explored the temporal variability of voxel-wise

contralateral and ipsilateral dFCD, denoting the interhemispheric and

intrahemispheric parts, in drug-naïve first-episode schizophrenia (FES)

patients with AVHs. The intrahemispheric and interhemispheric of the

dFCD were further quantified using the standard deviation of dFCD

variance patterns across time. Then, we compared the temporal

changes of the intrahemispheric and interhemispheric dFCD between

schizophrenia patients with AVHs and without AVH (NAVH) and

healthy subjects. Moreover, the correlation analysis was performed

between clinical measures with significant results between groups. In

this study, we aimed to find abnormal temporal variability of inter-

hemispheric and intrahemispheric dFCD in schizophrenia patients

with AVHs and hypothesized that these might be exhibited in the piv-

otal components of auditory and language pathways.

2 | METHODS

2.1 | Participants

This study randomly recruited 100 drug-naïve FES patients and

50 age- and sex-matched healthy controls (HCs) (Table 1). All patients
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did not take any antipsychotic drugs. Schizophrenia diagnosis by a

psychiatric specialist was made using the Diagnostic and Statistical

Manual of Mental Disorders, Fourth Edition (DSM-IV). The illness

duration of all patients was less than 3 years, and the diapause was

less than 6 months. Symptom severity of schizophrenia was assessed

with the Positive and Negative Syndrome Scale (PANSS). Fifty

patients reported experiencing AVHs within the past 4 weeks, most

within the past week, while the other 50 patients reported no AVH in

their lifetime or in the past 4 months. This was based on the PANSS

scores at the time of screening, as well as detailed information regard-

ing past symptomatology that was acquired in patient interviews and

examination of the patients' medical records. The severity of AVHs

was assessed using the Auditory Hallucination Rating Scale (AHRS).

Eleven patients reported that the voices appeared at least once a

week; the other 39 patients reported hearing these voices at least

once a day. Twelve patients reported that the voices continued for

several seconds at a time; 26 patients reported voices lasting several

minutes; 5 patients reported voices lasting more than an hour; and

7 patients reported that the voices could continue for several hours at

a time. We collected PANSS data for 33 of the AVH patients and for

all NAVH patients and collected AHRS data for all AVH patients. All

participants were right handed. Exclusion criteria for all participants

were as follows: (1) contraindications for MRI, (2) alcohol or drug

abuse, and (3) severe physical disability or traumatic head injury. HCs

had no history of neurological or psychiatric illness. All subjects gave

the informed consent, and this study was approved by the Ethics

Committee of the First Affiliated Hospital of Zhengzhou University.

2.2 | Data acquisition

All subjects were scanned using a 3.0 T MRI scanner (Discovery

MR750, GE, USA) with an eight-channel receiver array head coil.

Head motion and scanner noise were reduced using foam padding

and earplugs. All participants were asked to remain alert with their

eyes closed. We collected MRI data from all participants. Structural

images were acquired using a 3D T1 BRAVO sequence with the

following settings: repetition time (TR)/echo time (TE) = 8.2/3.2 ms,

slice number = 188, slice thickness = 1 mm, slice gap = 0 mm, flip

angle = 12�, field of view (FOV) = 25.6 � 25.6 cm2, number of aver-

ages = 1, matrix size = 256 � 256, voxel size = 1 � 1 � 1 mm3, scan

time = 4.33 min. Functional images were acquired transversely with

gradient spin echo planar imaging (EPI) sequence with the following

settings: TR/TE = 2000/30 ms, slice number = 32, slice

thickness = 4 mm, slice gap = 0.5 mm, flip angle = 90�,

FOV = 22 � 22 cm2, number of averages = 1, matrix size = 64 � 64,

voxel size = 3.4375 � 3.4375 � 4 mm3. A total of 180 volumes were

collected, resulting in a total scan time of 6 min. The patients in the

AVH group reported that they experienced no hallucinations during

scanning, and all participants also reported that they were alert in the

scanning session.

2.3 | Data preprocessing

Data were preprocessed using Data Processing Assistant for

Resting-State fMRI (DPARSF) programs, which are based on Statisti-

cal Parametric Mapping (SPM12) and MATLAB (MathWorks). The

first five volumes were discarded due to unsteady magnetization.

Slice-timing and realignment were performed. We excluded the sub-

jects whose head motion with translational or rotational motion was

higher than 3 mm or 3�, and three patients in the NAVH group

were excluded. Then, data were spatially normalized to the Mon-

treal Neurological Institute template (resampling voxel

size = 3 � 3 � 3 mm3), detrended, and filtered (0.01–0.08 Hz).

Image volumes with framewise displacement (FD) >0.2 mm were

scrubbed to reduce the effect of head motion using spline interpola-

tion (He et al., 2018). In this study, we failed to find significant dif-

ferences in FD between groups (F = 0.302, p = .740). Nuisance

covariates were regressed, including Friston 24 head motion (Friston

et al., 1996) parameters and white matter and cerebrospinal fluid

signals). The global signal was not regressed out as has been

recently suggested (Yang et al., 2017) when processing functional

data from patients with schizophrenia.

TABLE 1 The demographic and clinical data of schizophrenia patients, with and without AVH, and healthy controls

AVH NAVH HC F/X2/t values p values

Age (SD, n = 50) 21.3 (7.7) 21.9 (7.2) 22.0 (7.7) 0.130 .871

Sex (M/F, n = 50) 24/26 25/25 24/26 0.053 .974

AHRS (SD, n = 50) 23.86 (5.99) - - - -

PANSS (SD) (AVH: n = 33; NAVH: n = 50)

PANSS total 83.3 (14.6) 83.0 (14.8) - 0.098 .922

PANSS positive 20.3 (5.4) 19.2 (6.3) - 0.774 .441

PANSS negative 20.8 (4.8) 21.1 (5.7) - �0.209 .835

PANSS general 42.2 (7.5) 42.6 (7.9) - �0.264 .793

PANSS hallucinations 4.1 (1.5) 2.2 (1.5) - 5.041 .00002

Abbreviations: AHRS, Auditory Hallucination Rating Scale; AVH, auditory verbal hallucination; F, female; HC, healthy control; M, male; NAVH, without

auditory verbal hallucination; PANSS, Positive and Negative Syndrome Scale.
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2.4 | dFCD estimation and temporal variability

Global, contralateral, and ipsilateral dFCD were computed using a

sliding-window method. The length of the window we set was 50 TRs

(He et al., 2018; R. Li et al., 2018), and this window was used to slide

on the time course with a step of 1 TR (2 s). In total, 126 (175–

50 + 1) temporal windows were produced, then we calculated FCD

for each window. We first calculated the global FCD for each window

as the mean number of functional connectivity between one voxel

(seed) and other voxels (target voxels) in the whole brain. The global

FCD was limited voxels within the gray matter template. Functional

connectivity between voxels was calculated using Pearson's correla-

tion, with a correlation coefficient threshold of p < .05, uncorrected.

Then we discomposed the global FCD into contralateral and ipsilateral

FCD based on the relative positions of seed and target voxels. Contra-

lateral (interhemispheric) FCD at each voxel referred to the number of

functional connectivity with all voxels in the opposite hemisphere,

and ipsilateral (intrahemispheric) FCD at each voxel referred to the

number of functional connectivity with all voxels in the same hemi-

sphere. To examine the reproducibility of our findings, we repeated

our findings with different window lengths (30 TRs and 80 TRs), cor-

relation thresholds (p < .01 and p < .001) and shifting step (2 TRs)

(Figures S1–S3). We employed one common metric to describe its

dynamic characteristics in global, contralateral, and ipsilateral dFCD

that was the standard deviation of the dFCD variance patterns over

time. After that, Z-transformed dFCD variance maps were obtained

and spatially smoothed using an isotropic Gaussian kernel (full width

at half maximum [FWHM] = 6 mm).

When we set the window length as 175 TRs, global, contralateral,

and ipsilateral static FCD (sFCD) was obtained in accordance with

FCD analysis for each window. For comparing with dFCD, we also cal-

culated sFCD using Pearson's correlation, with a correlation coeffi-

cient threshold of p < .05, uncorrected. Finally, Z-transformed

connectivity maps were also obtained and were spatially

smoothed (6 mm).

2.5 | Statistical analysis

One-way analysis of variance (ANOVA), two-sample t test, and χ2

tests were, respectively, used to compare demographic data between

groups with SPSS software. One-way ANOVA was also performed to

compare the group differences in global, contralateral, and ipsilateral

dFCD variances and sFCD between the AVH, NAVH, and HC groups,

with age, sex and mean FD as covariates. The statistically significant

threshold was set at voxel-wise p < .001, cluster-wise p < .05, and the

minimum cluster size of 19 voxels after Gaussian random field (GRF)

correction. We extracted the average dFCD variance or sFCD values

of all voxels within each cluster from corrected statistical maps and

performed post hoc comparisons using Bonferroni's test. Moreover,

the correlation analysis was performed for clinical measures with sig-

nificant results between groups. Multiple comparisons were corrected

using the Bonferroni method (p < .05/92 = .0005).

3 | RESULTS

3.1 | Demographic and clinical data

No significant between-group differences in age or sex were found,

and no significant between-group differences in PANSS total, positive,

negative, or general scores between the AVH and NAVH groups,

except for hallucination scores (Table 1).

3.2 | dFCD variance

The mean global, contralateral, and ipsilateral dFCD variance maps for

the HC, AVH, and NAVH groups were presented in Figure 1. DFCD

variance patterns in the HC group were maximal in the bilateral supe-

rior and middle temporal gyri, medial part of bilateral superior frontal

gyri, bilateral middle and inferior occipital gyri, bilateral lingual and fusi-

form gyri, left IFG, whereas minimal in the right inferior parietal lobe,

bilateral subcortical regions (thalamus, caudate, and hippocampus).

One-way ANOVA revealed significant between-group differences

in global dFCD variance in the left middle temporal gyrus (MTG), left

IFG and medial dorsal (MD) nuclei of the bilateral thalami, contralateral

dFCD variance in the left MTG, anterior nucleus (AN) of the right thala-

mus and right inferior temporal gyrus (ITG), and ipsilateral dFCD vari-

ance in the left MTG and left IFG (Table 2 and Figure 2, left). We

extracted global, contralateral, and ipsilateral dFCD variance values for

each subject in the above regions that had significant between-group

differences and performed one-way ANOVA followed by post hoc

comparisons using Bonferroni's test. Compared with the HC group, the

AVH and NAVH groups showed weaker global and ipsilateral dFCD

variances in the left MTG and stronger global dFCD variance mainly in

the MD nuclei of the bilateral thalami (Figure 2, right). Compared with

the HC and NAVH groups, the AVH group showed stronger global and

ipsilateral dFCD variances in the left IFG, stronger contralateral dFCD

variance in the AD of the right thalamus and right ITG and weaker con-

tralateral dFCD variance in the left MTG (Figure 2, right). Moreover,

compared with the HC group, the NAVH group showed weaker global

and ipsilateral dFCD variances in the left IFG (Figure 2, right).

In the AVH group, the global dFCD variance of the left MTG nega-

tively correlated with PANSS general scores (r = �.351, p = .045,

uncorrected; Figure 3, left), and the contralateral dFCD variance of the left

MTG negatively correlated with the AHRS scores (r = �.319, p = .024,

uncorrected; Figure 3, central) and PANSS general scores (r = �.356,

p = .042, uncorrected; Figure 3, right). However, these significances did

not remain after Bonferroni correction (p < .05/92 = .0005). We did not

find any significant correlation between clinical measures and significant

results in the NAVH group.

3.3 | Static FCD

One-way ANOVA revealed significant between-group differences in

global, contralateral, and ipsilateral sFCD mainly in the MD nuclei of
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F IGURE 1 Average dynamic functional connectivity density (dFCD) variance for healthy controls (HCs) and schizophrenia patients with
auditory verbal hallucinations (AVHs) and without auditory verbal hallucination (NAVH)

TABLE 2 Between-group differences in the global, contralateral, and ipsilateral dFCD variances

dFCD variance Regions Hemisphere Cluster size (voxels)

Peak MNI coordinate

Peak F valuesX Y Z

Global MTG L 49 �60 �42 �6 12.65

IFG L 20 �51 18 15 17.30

Thalamus B 19 3 �15 6 11.04

Contralateral MTG L 62 �57 �42 �3 14.89

Thalamus R 22 15 �6 6 12.51

ITG R 50 45 �15 �30 12.46

Ipsilateral MTG L 32 �60 �33 �3 11.56

IFG L 44 �51 18 15 25.39

Abbreviations: B, bilateral; dFCD, dynamic functional connectivity density; IFG, inferior frontal gyrus; ITG, inferior temporal gyrus; L, left; MTG, middle

temporal gyrus; R, right.
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F IGURE 2 Between-group differences for global, contralateral and ipsilateral dFCD variances. AVH, auditory verbal hallucination; HC, healthy
control; IFG, inferior frontal gyrus; ITG, inferior temporal gyrus; L, left; MTG, middle temporal gyrus; NAVH, without auditory verbal
hallucination; R, right. *p < .05, **p < .01, ***p < .001

F IGURE 3 Relationships between abnormal global and contralateral dynamic functional connectivity density (dFCD) variances and
schizophrenia symptom severity. AHRS, Auditory Hallucination Rating Scale; MTG, middle temporal gyrus; PANSS, Positive and Negative
Syndrome Scale
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the bilateral thalami, and ipsilateral sFCD in the right IFG (Table 3 and

Figure 4, upper). We extracted global, contralateral, and ipsilateral

sFCD values for each subject in the above regions that had significant

between-group differences and performed one-way ANOVA followed

by post hoc comparisons using Bonferroni’ s test. Compared with the

HC group, the AVH and NAVH groups showed higher global, contra-

lateral, and ipsilateral sFCD mainly in the MD nuclei of the bilateral

thalami (Figure 4, lower). Moreover, compared with the HC and

NAVH groups, the AVH group showed weaker ipsilateral sFCD in the

right IFG (Figure 4, lower). No significant correlation was found

between abnormal global, contralateral, or ipsilateral sFCD and symp-

tom severity in the AVH or NAVH groups.

4 | DISCUSSION

Using the methods of FCD and sliding-widow analysis, we character-

ized the temporal variability of interhemispheric and intrahemispheric

dFCD in drug-naïve FES patients, with total PANSS-matched AVHs

and NAVH, and HCs. Compared with the NAVH and HC groups, the

AVH group showed weaker interhemispheric dFCD variability in

the left MTG, as well as stronger interhemispheric dFCD variability in

the right ITG and the AN of the right thalamus and stronger intra-

hemispheric dFCD variability in the left IFG. Both the AVH and NAVH

groups showed weaker intrahemispheric dFCD variability in the left

MTG than the HC group. Moreover, abnormal contralateral dFCD

TABLE 3 Between-group differences in the global, contralateral, and ipsilateral sFCD

sFCD Regions Hemisphere Cluster size (voxels)

Peak MNI coordinate

Peak F valuesX Y Z

Global Thalamus B 112 0 �15 9 13.65

Contralateral Thalamus B 97 0 �15 9 13.82

Ipsilateral Thalamus B 118 3 �18 9 13.55

IFG R 32 27 24 �21 13.77

Abbreviations: B, bilateral; IFG, inferior frontal gyrus; R, right; sFCD, static functional connectivity density.

F IGURE 4 Between-group differences for global, contralateral and ipsilateral static functional connectivity density (sFCD). AVH, auditory
verbal hallucination; HC, healthy control; IFG, inferior frontal gyrus; L, left; NAVH, without auditory verbal hallucination; R, right.
**p < .01, ***p < .001

WEI ET AL. 4353



variance of the left MTG correlated with the severity of auditory hal-

lucinations in the AVH group. These findings help us further under-

standing the abnormal functional connectivity in AVHs.

Our findings showed some pattern in interhemispheric and intra-

hemispheric FCD abnormalities in drug-naïve FES patients with AVHs,

which further supported the findings of abnormal local and long-range

connectivity in the previous studies (Chang et al., 2017; C. Chen,

Wang, et al., 2020; Hare et al., 2021; Mondino et al., 2016; Zhuo

et al., 2016). It suggests the importance to consider the factors of

topological location and anatomical distance in future research inves-

tigating abnormal brain network in AVHs. Moreover, we explored

voxel-wise interhemispheric and intrahemispheric dFCD variances

and sFCD in drug-naïve FES patients with AVHs. In our previous

study, we investigated voxel-wise resting-state functional connectiv-

ity of the thalamic nucleus in drug-naïve FES patients with AVHs and

found that the critical structure in the thalamus underlying AVHs is

the PuM nucleus, and the DM nucleus and AN of the thalamus dys-

connectivity are specific for schizophrenia, but not AVHs (Wei

et al., 2022). Here, we found abnormal interhemispheric dFCD vari-

ance of the thalamic AN in AVHs and abnormal dFCD and sFCD of

the bilateral thalamic DM nuclei in drug-naïve FES patients. Therefore,

dynamic functional connection or a combination of static and dynamic

functional connectome approaches may provide more evidence for

the neural substrate of AVHs.

Similar to global FCD, contralateral and ipsilateral FCD show

interhemispheric and intrahemispheric functional hubs in the neural

networks (Guo et al., 2020; Tomasi & Volkow, 2010, 2011). The AVH

group showed abnormal interhemispheric and/or intrahemispheric

dFCD variability in the left MTG, left IFG, right ITG, and AN of the

right thalamus. The upper regions are the pivotal components of audi-

tory and language pathways (Acheson & Hagoort, 2013; Nauchi &

Sakai, 2009; Opitz et al., 2002; Wahl et al., 2008) and highly associate

with the neural mechanism of AVHs (Shergill et al., 2004; Silbersweig

et al., 1995; Vercammen et al., 2011; Wei et al., 2020). Abnormal acti-

vations and connectivity in auditory and language pathways have

highly linked to schizophrenia patients with AVHs (Benetti

et al., 2015; Chang et al., 2017; Lavigne & Woodward, 2018;

Steinmann et al., 2019; Xie et al., 2019). Our findings also indicated

that interhemispheric dFCD variance could clearly distinguish the

AVH group from the NAVH and HC groups. Moreover, the inter-

hemispheric dFCD variance of the MTG correlated with the AHRS

scores and PANSS general symptom scores. Our previous findings

indicated aberrant cerebello-thalamo-cortical functional and effective

connectivity in drug-naïve FES patients with AVHs, and the cortex

also included the MTG and IFG (Wei et al., 2022). A significant deficit

in the static interhemispheric and intrahemispheric connectivity in the

left MTG was revealed in schizophrenia (Y. Zhang et al., 2019), which

is similar to our findings. The previous study also indicated that aber-

rant bilateral static interhemispheric dysconnectivity of the IFG might

contribute to the occurrence of AVHs (Chang et al., 2015). The previ-

ous studies utilized the parameter of asymmetry (PAS) (static inter-

hemispheric functional connectivity subtracts static intrahemispheric

functional connectivity) to describe functional asymmetry, and

reduced PAS scores of the MTG was found in schizophrenia patients

and unaffected siblings compared with healthy subjects (F. Zhu

et al., 2018). Abnormal activations and connectivity in these regions

might be the core neurobiological markers of auditory and language

impairments in schizophrenia patients with AVHs (Hashimoto

et al., 2010; Hoffman & Hampson, 2011; Lavigne &

Woodward, 2018). From a dynamic perspective, our present findings

supplement evidence for the neural mechanism of AVHs and provide

sensitive views of the temporal variability changes of functional con-

nection hubs that may be masked in conventional static studies. The

previous and present studies consistently demonstrate the important

role of the auditory and language pathways associated with the MTG,

IFG, and thalamus in the pathophysiological mechanisms

underlying AVHs.

The findings of interhemispheric and intrahemispheric dFCD for

AVHs also support hybrid models of AVH (i.e., top-down and bottom-

up, corollary discharge, nondominant language intrusion, and inter-

hemispheric miscommunication) that was overviewed by �Curči�c-Blake

et al. (2017). Part of our findings might support one of the above-

mentioned models, and another part of our findings might support

anther model. First, abnormal interhemispheric and intrahemispheric

dFCD of the MTG might correspond to impaired bottom-up sensory

processing (perception deficit) and abnormal interhemispheric dFCD

of the thalamus and intrahemispheric dFCD of the IFG might corre-

spond to impaired top-down prior expectation (attention deficit),

which might also suggest the imbalance in top-down/bottom-up influ-

ences (Hugdahl, 2009). Second, abnormal intrahemispheric dFCD of

the MTG and IFG might also correspond to impaired corollary dis-

charge. The previous studies showed deficient corollary discharge in

schizophrenia patients with AVHs (Ford et al., 2007) and indicated

that fronto-temporal transcranial direct current stimulation improved

corollary discharge function in schizophrenia (Bose et al., 2019). Third,

our findings also showed abnormal interhemispheric dFCD and intra-

hemispheric sFCD in nondominant language areas, such as the right

ITG and IFG, which was similar to the previous studies (Sommer

et al., 2008; van Lutterveld et al., 2014). Finally, our findings directly

support interhemispheric miscommunication (Curcic-Blake

et al., 2013; Gavrilescu et al., 2010). Compared with the NAVH and

HC groups, the AVH group showed weaker interhemispheric dFCD

variability in the left MTG, as well as stronger interhemispheric dFCD

variability in the right thalamus and ITG.

We also investigated abnormal interhemispheric and intra-

hemispheric sFCD in drug-naïve FES patients with AVHs. The findings

showed higher interhemispheric and intrahemispheric sFCD on the

DM nuclei of bilateral thalami in drug-naïve FES patients with AVHs

and NAVH and weaker intrahemispheric sFCD on the right IFG in

patients with AVHs. As an important component of aberrant neural

circuitry in schizophrenia, the gray matter volume of the DM nucleus

of the thalamus is impaired in schizophrenia (Gilbert et al., 2001; Sui

et al., 2015), higher functional connection might be a compensatory

response to structural impairments. Moreover, the previous studies

found reduced PAS scores of the thalamus and IFG was found in

schizophrenia patients and ultra-high risk for psychosis (F. Zhu
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et al., 2019). However, we found opposite pattern between the

whole-brain and intrahemispheric dFCD variances and sFCD in drug-

naïve FES patients with AVHs or NAVH, which is consistent with the

findings in the previous study exploring the neural substrates of other

neurological diseases, such as bipolar depression and major depressive

disorders (Pang et al., 2020), generalized anxiety disorder (Lu

et al., 2020), and Parkinson's disease (S. Wang, Cai, et al., 2021).

Higher dFCD may reflect the indicative of flexible communication, but

it may also be a sign of unstable interactions (S. Wang, Cai,

et al., 2021). And weaker sFCD may be the result of unstable

interactions.

Several limitations should be noted when interpreting our find-

ings. First, although we designed three groups that included 50 sub-

jects for each group, the sample size is small. The future study

should increase the sample size to make the findings more reliable.

Second, we showed abnormal interhemispheric and intrahemispheric

dFCD in drug-naïve FES patients with AVHs, but how temporal

dynamics of interhemispheric and intrahemispheric dFCD develop in

other illness stage was unclear. The interhemispheric connectivity

between posterior auditory regions may depend on the phase of ill-

ness, with increases in nonpsychotic individuals and FES patients

and decreases in chronic patients (�Curči�c-Blake et al., 2017). The

future study should explore whether the illness stage affect inter-

hemispheric and intrahemispheric dFCD in AVHs. Third, we col-

lected resting-state fMRI data, and it remains unknown whether

abnormal interhemispheric and intrahemispheric dFCD in AVHs

associated with impaired auditory processing. Future task state fMRI

studies are needed to examine the association between inter-

hemispheric and intrahemispheric dFCD variability and auditory cog-

nitive function.

In conclusion, the findings demonstrate that abnormal temporal

variability of interhemispheric and intrahemispheric dFCD in drug-

naïve FES patients with AVHs mainly focuses on interhemispheric

pattern in temporal cortex and thalamus and intrahemispheric pattern

in the frontal cortex, and these regions are pivotal components of

auditory and language pathways.
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