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Respiratory motion has been considered a clinical challenge for lung tumor 
treatments due to target motion. In this study, we aimed to perform an experi-
mental evaluation based on dynamic phantoms using MLC-based beam tracking. 
TrackBeam, a prototype real-time beam tracking system, has been assembled 
and evaluated in our clinic. TrackBeam includes an orthogonal dual-layer micro 
multileaf collimator (DmMLC), an on-board mega-voltage (MV) portal imaging 
device, and an image processing workstation. With a fiducial marker implanted in a 
moving target, the onboard imaging device can capture the motion. The TrackBeam 
workstation processes the online MV fluence and detects and predicts tumor motion. 
The DmMLC system then dynamically repositions each leaf to form new beam 
apertures based on the movement of the fiducial marker. In this study, a dynamic 
phantom was used for the measurements. Three delivery patterns were evaluated for 
dosimetric verification based on radiographic films: no-motion lung-tumor (NMLT), 
three-dimensional conformal radiotherapy (3DCRT), and four-dimensional tracking 
radiotherapy (4DTRT). The displacement between the DmMLC dynamic beam 
isocenter and the fiducial marker was in the range of 0.5 mm to 1.5 mm. With 
radiographic film analysis, the planar dose histogram difference between 3DCRT 
and NLMT was 48.6% and 38.0% with dose difference tolerances of 10% and 20%, 
respectively. The planar dose histogram difference between 4DTRT and NLMT was 
15.2% and 4.0%, respectively. Based on dose volume histogram analysis, 4DTRT 
reduces the mean dose for the surrounding tissue from 35.4 Gy to 19.5 Gy, reduces 
the relative volume of the total lung from 28% to 18% at V20, and reduces the 
amount of dose from 35.2 Gy to 15.0 Gy at D20. The experimental results show 
that MLC-based real-time beam tracking delivery provides a potential solution to 
respiratory motion control. Beam tracking delivers a highly conformal dose to a 
moving target, while sparing surrounding normal tissue.

PACS number: 87.55.de, 87.55.ne, 87.56.nk 
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I. InTroDuCTIon

Tumor motion, especially that caused by respiration, introduces technical challenges for radia-
tion treatment delivery. Management of respiratory motion has been outlined in the report of 
the American Association of Physicists in Medicine (AAPM) Task Group 76.(1) Respiratory 
motion affects tumor sites in the thorax and abdomen, resulting in tumor movement on the order 
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of several centimeters. This compromises the benefits of highly conformed dose delivery with 
three-dimensional conventional radiotherapy (3DCRT) or intensity modulated radiotherapy 
(IMRT) techniques.(1-3) Differences between planned and delivered radiation treatments may 
occur due to the respiration-induced tumor motion, leading to insufficient dose to the tumor 
and excess dose to the surrounding normal structures.(4-5) Existing methods that attempt to ac-
count for tumor motion can be grouped into two categories: discrete delivery methods (such 
as gating), and continuous delivery methods, known as beam tracking.(6-10)

For gating technology, the moving target is expected to be at a certain position during a 
specific interval of the respiratory cycle. The position and width of the gate within a respiratory 
cycle is determined by monitoring the patient’s respiratory motion.(1,11-14) Typically, an external 
marker may be placed halfway between the xiphoid and the umbilicus, or an internal fiducial 
marker may be implanted into the patient’s body. Respiratory-gated radiation delivery has been 
studied by several institutions.(8,15-16) In this method, a threshold is applied to define a gating 
window based on the respiratory signal, and the beam is turned on for the period of time when the 
target is within the desired window. Because beam delivery is not continuous, gated procedures 
are longer than non-gated procedures. Generally, a gating duty cycle of 30% to 50% leads to 
an increase in delivery time by a factor of 2 to 3.(17,18) For one feasibility study reported in the 
literature, the respiratory gating increased the delivery time by a factor of 4 to 15.(1,18-19)

Another solution to accommodate tumor motion is to use the beam to track tumor motion.(1, 20-21) 
Target tracking techniques use dynamic beam repositioning to follow the tumor position in 
real time. Theoretically, tracking provides an ideal solution to tumor motion by eliminating the 
need for a tumor motion margin and utilizing the full duty cycle of dose delivery.(1) The tumor 
tracking methods have their own clinical challenges including determining the tumor position, 
repositioning the beam, and synchronizing the beam delivery with tumor motion.(20,21) 

The CyberKnife (Accuray, Sunnyvale, CA) tracking system introduced by Schweikard et 
al.(22) is an example of a system that has beam tracking capabilities. The motion of the robot-
ically-controlled linac is synchronized to the patient’s external respiratory motion, allowing it 
to follow tumor motion in real time. Keall et al.(20) extracted motion envelopes from 4D CT 
scans and applied them to modify dynamic multileaf collimator (MLC) movements, thereby 
showing the feasibility of MLC-based adaptive tracking. A couch-based approach by D’Souza 
et al.(9) showed similar feasibility, allowing a clearer distinction of beam shaping and motion 
compensating movements. Neuci et al.(23) developed a technique to synchronize the moving 
radiation beam aperture with the tumor motion induced by respiration.

In this study, an MLC-based beam tracking system, TrackBeam (Initia Ltd, Israel) has been 
assembled and evaluated in our clinic. TrackBeam utilizes a dual-layer micro MLC (DmMLC) 
in combination with an online megavoltage (MV) portal imaging device (PID) and a gold fi-
ducial marker implanted inside the tumor.(24,25) The MV PID determines the target position in 
real time by processing the fiducial marker projection (FMP). The dual-layer MLC, offering 
orthogonal upper and lower banks of leaves, was used to reposition the beam aperture in two 
dimensions simultaneously. As a result, the dual-layer MLC provided less angular dependence 
compared with a standard single-layer MLC.(24,25) An integrated image processing tool (IPT) 
with an embedded adaptive functionality compensated for the latency of the dynamic beam 
isocenter and fiducial marker projection. In this study, we have investigated real-time beam 
tracking delivery based on dynamic phantoms. We present our results comparing this device 
with conventional delivery and tracking delivery patterns.

 
II. MATErIALS AnD METHoDS

A.  An MLC-based real-time Beam Tracking System
Beam tracking in radiation therapy is a delivery mode whereby a dynamic MLC tracks tumor 
motion in real time. Single or multiple implanted fiducial markers can be used to show tumor 
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motion. Real-time images can be obtained, processed, and transferred to a dynamic multileaf 
collimator (MLC) control unit. The dynamic MLC reshapes the beam aperture according to 
the fiducial marker motion. Challenges of beam tracking include detecting the tumor position 
in real time and synchronizing the MLC beam aperture with the motion of the target.

Figure 1(a) illustrates the schematic layout of dynamic MLC-based beam tracking system. 
A dynamic beam isocenter (DBI) was used as the reference point for the dynamic beam to 
reposition each leaf and form a new beam aperture. For instance, a round beam aperture was 
formed to cover a spherical shape target, in which the DBI was set to the center of the target. 
As the DBI moves, each MLC leaf is repositioned to generate new beam apertures. Figures 
1(b) and 1(c) show two beam apertures created for a moving DBI. The motion of the DBI was 
determined by the motion of a pre-implanted fiducial marker.

TrackBeam integrates an image processing tools (IPT) workstation, a dual-layer micro MLC, 
and a portal imaging device. Figure 2 shows the beam tracking setup for delivery to a moving 
target within a dynamic phantom. A DmMLC and an MV PID were attached to a Varian 600C 
linear accelerator (Varian Medical Systems, Inc., Palo Alto, CA, USA). A Quasar (Modus 
Medical Devices, Inc. London, ON Canada) respiratory phantom was used to simulate target 
motion due to breathing. 

Fig. 1.  Schematic layout of MLC-based beam tracking delivery for motion tumor: (a) dynamic beam isocenter;  
(b-c) dynamic beam apertures corresponding to dynamic beam isocenter

Fig. 2.  4D tracking radiotherapy experimental settings. The right side displays the process path of 4DTRT.
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The IPT workstation processed the online MV fluence images, detected the fiducial marker 
projection, and controlled the MLC leaf motion. The fiducial marker motion was captured by 
a CV-M300 industrial monochrome charge-coupled device (CCD) camera (JAI Corporation, 
Kanagawa, Japan). A frame grabber was used to capture the fiducial marker as the reference 
image, which was then processed by Sapera (DALSA Corporation, Waterloo, Ontario, Canada). 
Each leaf of the DmMLC was controlled by a separate motor traveling at maximum speed of 
20 mm/sec. The orthogonal layers of the DmMLC reduce MLC field dependence of the leaf 
stepping angle and provide fast beam response.(24,25) Both factors are important in MLC-based 
beam tracking. 

The latency between the DBI and fiducial markers is a critical factor in beam tracking de-
livery. A Kalman filter-based adaptive function introduced by Kalman and Bucy in the 1960s 
reduced the positioning lag.(26,27) The Kalman Filter (KF) is based on a linear dynamic system 
in which continuous models are transferred into discrete counterparts in the time domain. The 
KF is a predictor-corrector type of estimator that implements a set of mathematical models and 
minimizes the estimated error covariance when certain conditions are met. The Kalman filter 
is also a recursive estimator, which means that the estimated state from the previous time step 
and the current measurement are needed to compute the estimate for the current state. 

B.  Dynamic respiratory Phantoms and Fiducial Markers
The Quasar respiratory motion phantom is a thorax phantom capable of moving in the superior-
inferior direction with variable speed and amplitude. Major components of this respiratory 
phantom system, shown in Fig. 3(a), include a thorax phantom, a precise motion actuator, and 
a controller with preset motion profiles. Target motion in the respiratory phantom is achieved 
by the application of a sinusoidal pattern of motion. 

Another dynamic phantom used was the CIRSTM dynamic tissue equivalent thorax phantom, 
shown in Fig. 3(b). A CT of the CIRSTM phantom was used to develop 3DCRT and 4DTRT 
plans, and the resulting DVHs were compared. 

Acculoc gold fiducial markers (CIVCO Medical Solutions, Kalona, Iowa) were used to allow 
localization of the target in MV images. These fiducials are 3 mm × 1.2 mm gold cylinders that 
are specially knurled to inhibit migration. One fiducial was implanted in each phantom. 

C.  Beam Tracking Delivery Experimental Measurements
C.1 Latency Between Dynamic Beam Isocenter and Fiducial Marker
The latency between the DBI and fiducial marker projection (FMP) was the first parameter 
evaluated in this study. At the beginning of a treatment, the DmMLC leaves are not perfectly 
synchronized with the motion of the marker, resulting in a time lag between movement of the 

Fig. 3.  Respiratory motion phantom and fiducial markers: a) a Quasar phantom and its insert with Gafchromic EBT film 
and fiducial marker; b) a CIRSTM thorax tissue equivalent dynamic phantom and its insert with fiducial marker.
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marker and the formation of a new MLC pattern. The IPT workstation provides an adaptive 
function to calculate and forecast the latency between the DBI and FMP. 

In beam tracking delivery, it is important to evaluate the displacement between the dynamic 
beam isocenter and the fiducial marker. There exists a latent period between the movement 
of the target and that of the beam isocenter as it tracks the target. To quantify this latency, the 
displacement between the DBI and the FMP at various phases were measured. The latency 
was then calculated using the displacement of the DBI and FMP divided by the velocity at 
that given phase. The relationship of the fiducial marker movement as function of time was 
expressed as Eq. (1).

 FMP(t) = Asin(ωt+θ) (1)

where A is the fiducial marker projection amplitude, ω is the angular frequency of the sinusoidal 
motion, t is time and θ is the initial phase. Figure 4(a) shows the beam’s eye view (BEV) of the 
DmMLC leaf position and the dynamic beam isocenter (DBI). For the stationary lung tumor, 
we overlapped the beam isocenter with the fiducial marker at the center of the circular shape. 
Figures 4(b) and (c) were taken from the MV fluence video recorded by the PID using Sapera, 
with a recording rate of 12.5 frames per second. Figure 4(b) represents the ideal beam track-
ing case, in which the beam aperture formed by the DmMLC leaves is synchronized with the 
marker position. Figure 4(c) shows a scenario where the beam isocenter did not synchronize 
with the fiducial marker motion. 

The displacement between the DBI and FMP is shown by Eq. (2):

 ∆D(t) = DBI(t) – FMP(t) (2)

where the DBI(t) is the location of the dynamic beam isocenter relative to the original isocenter 
as a function of time. Therefore, the time latency can be obtained by dividing ∆D(t) by the 
marker’s velocity V(t): 

 ∆T = ∆D(t) / V(t) (3)

where velocity, V(t) ,is the derivative of FMP(t):
   
 V(t) = Aωcos(ωt+θ)  (4)

Fig. 4.  Beam’s eye view (BEV) of dynamic beam and MV fluence image in beam tracking: (a) BEV of dynamic beam 
isocenter overlapping with fiducial marker; (b) MV fluence image with synchronized dynamic beam isocenter and fiducial 
marker projection; (c) MV fluence image with unsynchronized dynamic beam isocenter and fiducial marker projection.
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When the marker velocity is close to zero (i.e. at the end of inhalation and the end of exha-
lation), Eq. (3) is no longer satisfied. In this situation, the latency was estimated by averaging 
the latency of two adjacent phases.

C.2 radiographic Films in Beam Tracking Delivery
In order to evaluate the dosimetric effect of beam tracking, we performed radiographic film 
comparisons using Gafchromic (International Specialty Products, NJ, USA) film inside the 
Quasar phantom for three delivery patterns (NMLT, 3DCRT, and 4DTRT). The NMLT case 
was an ideal scenario in which the lung tumor was assumed to be stationary and was used as 
the reference pattern to compare with 3DCRT and 4DTRT. In 3DCRT, an additional margin of 
1.0 cm to 1.5 cm was added to the clinical tumor volume to account for tumor motion. For the 
evaluated 4DTRT, the same beam aperture was used with NMLT pattern, but with no additional 
margin. Both dose profiles and planar doses were analyzed for these three evaluated patterns. 

 
III. rESuLTS 

The respiratory phantom was set to travel from the end-inhale phase to the end-exhale phase 
at a distance of 20 mm, with respiratory rate as 5 s/cycle. 

A.  Latency Measurement Between MLC Virtual Isocenter and Fiducial Marker
The real-time tracking system was found to have a latency time of 100 ms during the first one 
to two cycles. The synchronization of DBI to FMP was achieved after approximately three to 
four cycles. 

To measure the time difference between the dynamic beam aperture formation and position 
of the moving marker, 16 phases were selected for each sinusoidal cycle. In the DBI measure-
ments, the fiducial marker motion amplitude was set to 20 mm with a respiratory period of  
5.0 s/cycle. Figure 5 shows the position of DBI at each phase over 12 respiratory cycles. 

Fig. 5.  Dynamic beam isocenter and fiducial marker motion curve of a sinusoidal motion cycle at 16 phases over 12 
respiratory cycles.
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The DBI measurements and the fiducial marker calculation are listed in Table I. The target 
has very little instantaneous velocity at the end of inhalation and at the end of exhalation. For 
these cases, the latency was estimated by averaging two adjacent phases. 

Table 1.  Average latency of the DBI and FMP for a sinusoid cycle.

    DBI (t) (mm) SD (mm)  
Phase	 Radian	 FMP(t)	 Averaged		 Averaged	 ∆D	(t)	 V	(t)	 Latency 
 # (π) (mm) 12 cycles a 12 cycles (mm) (mm/sec) (ms) b

 P0 0     0.0 0.3 0.7 0.3 12.6 21

 P1  1/8 3.9 3.8 0.6 0.0 11.6 3

 P2  1/4 7.1 7.1 0.6 0.1 8.9 6

 P3  3/8 9.3 9.3 0.6 0.0 4.8 5

 P4  1/2 10.0 9.4 0.4 0.6 0.0 35 (est.)

 P5  5/8 9.2 8.9 0.6 0.3 4.8 61

 P6  3/4 6.9 6.8 0.6 0.1 8.9 7

 P7  7/8 3.6 3.8 0.7 0.2 11.6 15

 P8 1     -0.3 0.0 0.5 0.3 12.6 22

 P9 1 1/8 -4.2 -3.5 0.6 0.7 11.6 59

 P10 1 1/4 -7.3 -7.1 0.6 0.2 8.9 25

 P11 1 3/8 -9.4 -9.0 0.5 0.4 4.8 74

 P12 1 1/2 -10.0 -9.5 0.4 0.5 0.0 40 (est.)

 P13 1 5/8 -9.0 -9.1 0.6 0.0 4.8 7

 P14 1 3/4 -6.7 -7.3 0.6 0.6 8.9 65

 P15 1 7/8 -3.3 -3.9 0.6 0.7 11.6 57

aAveraged measurements of DBI for 12 respiratory cycles after the DBI was synchronized with the FMP.
b  Marker’s momentary velocity at the end of inhalation and the end of exhalation is very low, so the latency was 
 estimated using the average latency of two adjacent phases.

B. Dosimetric Analysis of radiographic Films
Figure 6(a) shows a schematic layout of a 3DCRT plan for a mobile tumor. To account for the 
target motion, an additional margin is needed along the direction of target motion to ensure 
adequate coverage of the target. The superior–inferior (S–I) direction is the axis of greatest 
motion for most patients.(28) An elliptical target was obtained by giving an additional X margin 
to both sides of the target along the target motion direction. The outer field shape (dashed line) 
was the dose delivered to the moving target and its surrounding tissue. When the tumor moved 
by a distance of X, the field shape was extended by a distance of up to 2X.

The 4DTRT test cased utilized real-time tracking beam to account for tumor motion. The 
DmMLC was set to generate a 4.0 cm circular aperture with the beam perpendicular to the 
plane of motion. The tumor motion was simulated by a 5.0 s/cycle sinusoidal pattern with an 
amplitude of ±10 mm in the superior-inferior (SI) direction.

Figures 6(b) to (d) show the results of the analysis of Gafchromic EBT films for the NMLT, 
3DCRT and 4DTRT patterns. With 3DCRT, the field was blurred due to tumor motion and 
resulted in a distorted shape along the direction of motion. The field delivered with 4D tumor 
tracking was rounded and had much less blur compared to the 3DCRT pattern. The 4DTRT 
provided a dose distribution that closely matched the pattern that could be expected in the 
absence of tumor motion. 

Figure 7 shows the vertical profiles of the 3DCRT, 4DTRT and NMLT patterns. The 
3DCRT plan overdosed surrounding tissues because an additional margin had to be added to 
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 accommodate the target motion. The 4DTRT overdosed a small percentage of tissue outside 
the field edge and underdosed a small percentage of the tumor due to beam latency. The profile 
analysis of the three patterns demonstrated that 4DTRT better approximates the NMLT case 
than does the 3DCRT plan. To get quantitative results, additional analyses, including planar 
dose differences, were applied to compare the dose characteristics of the three patterns.

Planar dose subtraction was used to compare the difference between two dose distributions. 
The difference plot is based on pixel by pixel subtraction of two co-registered images. This 
type of plot is not only capable of showing the amplitude of the dose difference between two 
images, but also the location of the difference. 

Figures 8(a) to (c) show the planar dosimetric comparison of the co-registered images 
from the NMLT, 3DCRT and 4DTRT patterns. All the three patterns were based on the same 
planning tumor volume, which was a 4 cm diameter sphere. For the NMLT and 4DTRT cases, 

Fig. 6.  Films of the three evaluated patterns: (a) layout of the 3DCRT pattern; (b) NMLT; (c) 3DCRT; (d) 4DTRT.

Fig. 7.  Radiographic films of the three evaluated patterns: (a) NMLT; (b) 3DCRT; (c) 4DTRT.
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the same circular beam apertures (4 cm in diameter) were used. For the 3DCRT, an elliptical 
aperture was created using 1 cm additional margin extended from the round beam shape along 
the fiducial marker motion direction. 

Figure 8(a) shows that 3DCRT induced an unavoidable over-delivery of dose to the sur-
rounding tissue. Compared to the 3DCRT, 29.9% of the NMLT total pixel count exceeded the 
desired dose difference of ±5%, with a maximum dose difference of 69.0%. Figure 8(b) shows 
the dosimetric comparison of the 4DTRT and NMLT pattern. The 4DTRT pattern delivers con-
formal dose to the tumor with less than 5% difference in dose when compared to the NMLT 
case. In addition, less surrounding tissue received excess dose. Figure 8(c) directly compares 
the planar dose between the 3DCRT and the 4DTRT patterns. 

To quantify the dose difference of these three evaluation patterns, we selected a region of 
interest (ROI) based on the isodose line of the 3DCRT film. A rectangle with dimensions of 
4.4 cm × 7.75 cm was selected for all the three radiographic films. The planar dose difference 
histogram of the 3DCRT, 4DTRT and NMLT patterns are shown in Table II. The dosimetric 
analysis of radiographic films show 48.6%, 38.0%, 31.1% 22.5% and 11.1% of pixels exceeding 
the dose difference tolerance of 10%, 20%, 30%, 40% and 50%, respectively, when comparing 
the 3DCRT pattern to the NMLT pattern. Comparing the film of 4DTRT to the NNLT, 15.2% 
and 4.0% of pixels exceeding the dose difference tolerance were measured with dose differ-
ence tolerance at 10% and 20%, respectively. When comparing 4DTRT and NMLT patterns, 
27.5% of the pixels of the co-registered images exceeded the selected dose difference tolerance 
of 5.0%. Figure 9 shows the dose histogram difference of co-registered calibrated films of the 
NMLT, 3DCRT, and 4DTRT patterns.

Fig. 8.  Planar dose difference percentages of co-registered calibrated films: (a) 3DCRT – NMLT; (b) 4DTRT – NMLT; 
(c) 3DCRT – 4DTRT.
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Table 2.  Planar dose difference histogram of the patterns of 3DCRT, 4DTRT and NMLT. 

 Percentage of pixels exceeding the dose difference tolerance

Tolerance (%) 5 10 15 20 25 30 35 40 45 50 55 60

3DCRT vs. NMLT 65.8 48.6 42.0 38.0 34.6 31.1 27.2 22.5 16.7 11.1 7.3 2.9

3DCRT vs. 4DTRT 61.9 47.8 40.8 35.3 30.7 26.2 20.3 12.0 1.7 - - -

4DTRT vs. NMLT 27.5 15.2 8.9 4.0 0.9 - - - - - - -

IV. DISCuSSIon

A. DVH Comparison of a 3DCrT and a 4DTrT Planning to the CIrSTM Dynamic 
Phantom
The CIRSTM dynamic phantom was scanned in the LightSpeed CT scanner (GE Healthcare, 
USA) with a slice thickness of 2.5 mm (120 kVp and 80 - 440 mA). A treatment plan was devel-
oped using anterior/posterior (AP) and posterior/anterior (PA) beam arrangements. A ring-shaped 
structure was created at a radius of 2.5 cm outside the PTV to allow assessment of the dose 
delivered to surrounding healthy tissue. An additional margin of 1.5 cm was added, accounting 
for the tumor motion with the 3DCRT compared with 4DTRT, as shown in Fig. 10.

The DVH comparisons indicate that 4DTRT reduces the dose to the ring structure from 
97.5% to 61.5% of the volume at V20, and reduces the dose to 80% of the volume (D80) from 
33.5 Gy to 11.5 Gy. 4DTRT also reduces the relative volume of the total lung from 28% to 18% 
at V20, and reduces the dose from 35.2 Gy to 15.0 Gy at D20. The lung V5, V10, and V20 were 
35.0%, 31.0% and 28.0%, respectively, for the 3DCRT for a prescribed dose of 45 Gy. For the 
4DTRT delivery, the lung V5, V10, and V20 were 30.0%, 22.0% and 18.0%, respectively. The 
mean dose to the ring was 35.4 Gy for the 3DCRT, and 19.5 cGy for the 4DTRT. 

Fig. 9.  Planar dose percent difference histograms of co-registered calibrated films: (a) 3DCRT – NMLT; (b) 4DTRT – 
NMLT; (c) 3DCRT – 4DTRT.
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B.  rigid/Deformable Target
We have implemented beam tracking delivery to compensate for rigid tumor motion in a 
phantom-based experiment. To implement this technique in a clinical setting, we must assume 
a rigid transformation of the PTV with no deformation of the PTV. One case in which this may 
be appropriate has been reported by Deurloo(29) who found that the prostate exhibits shape 
deformations that are small relative to its motion. A first order correction is therefore feasible 
for setup errors and organ motion only.

Traditionally, tumor movement has been compensated for by applying greater margins so that 
the tumor is always covered by the beam. Studies in the lung by Engelsman and Beckham(30,31) 
have both found dose errors of 5%. However, the change in equivalent uniform dose was 0.5%. 
Therefore, it could be argued that for realistic organ displacements and multiple field treatments, 
the dose error is small with the appropriate algorithm. This renders the delivered dose invariant 
to tissue displacement, as long as full coverage of the tumor is achieved.(32) 

Testing of periodic asymmetric motion tracking, as exhibited by many organs affected by 
breathing (such as lung and liver), and further testing of realistic motion patterns are needed 
to understand and account for motion drift over prolonged periods of treatment. Evaluation 
of the effects of rapid changes of motion, such as that caused by coughing, will be conducted 
in the future. 

 
V. ConCLuSIonS

MLC-based beam tracking delivery provides an opportunity to achieve conformal coverage 
of moving tumors and reduce the dose to the surrounding normal tissue by reducing target 
margins. The dosimetric analysis between the 3DCRT and NMLT experiments indicate that a 
total of 48.6%, 38.0%, 31.1%, 22.5%, and 11.1% of the pixels in the region of interest (ROI) 
of the dose image exceed the dose difference tolerances of 10%, 20%, 30%, 40% and 50%, 
respectively. However, when comparing the 4DTRT to the NMLT, only 15.2% and 4.0% of 
the pixels exceeded the dose difference tolerances of 10% and 20%, respectively. The DVH 
comparisons indicate that 4DTRT reduces the V20 of the surrounding tissue from 97.5% to 

Fig. 10.  Tissue equivalent dynamic phantom: (a) 3D view of lung phantom with tumor in left lung; (b) AP/PA beam setting 
with total lung, cord, ring, and target contours; (c) DVH comparison for the 3DCRT and the 4DTRT planning.
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61.5%, and reduces the D80 from 33.5 Gy to 11.5 Gy. 4DTRT also reduces the amount of dose 
to the total lung from 28% to 18% of the total lung volume at V20, and reduces the D20 from 
35.2 Gy to 15.0 Gy.

The beam tracking method examined in this study compensated for the tumor motion in 
two dimensions, providing improvement in both dose distribution and coverage while reducing 
the dose to surrounding tissue. Deformable targets and IMRT implementation of 4DTRT are 
forthcoming as an extension of our current study. 

 
ACknowLEDGEMEnTS

This work was partially supported by Grants from Initia Ltd. and a National Institutes of 
Health/National Library of Medicine grant (1R01LM009362-01). The authors would like to 
acknowledge Dr. Shifeng Chen (Duke University) and Courtney Buckey (University of Texas 
Health Science Center) for their help on the manuscript. 

 
rEFErEnCES

 1. Keall PJ, Mageras GS, Balter JM, et al. The management of respiratory motion in radiation oncology: report of 
AAPM Task Group 76. Med Phys. 2006;33(10):3874–3900.

 2. Shirato H, Oita M, Fujita K, Shimizu S, et al. Three-dimensional conformal setup (3D-CSU) of patients using 
the coordinate system provided by three internal fiducial markers and two orthogonal diagnostic X-ray systems 
in the treatment room. Int J Radiat Oncol Biol Phys. 2004;60(2):607–12.

 3. Brandner ED, Wu A, Chen H, et al. Abdominal organ motion measured using 4D CT. Int J Radiat Oncol Biol 
Phys. 2006;65(2):554–60.

 4. Chi PC, Mawlawi O, Nehmeh SA, et al. Design of respiration averaged CT for attenuation correction of the PET 
data from PET/CT. Med Phys. 2007;34(6):2039–47.

 5. Guckenberger M, Wilbert J, Krieger T, et al. Four-dimensional treatment planning for stereotactic body radio-
therapy. Int J Radiat Oncol Biol Phys. 2007;69(1):276–85.

 6. Kubo HD, Wang L. Introduction of audio gating to further reduce organ motion in breathing synchronized 
 radiotherapy. Med Phys. 2002;29(3):345–50.

 7. Jiang SB, Pope C, Al Jarrah KM, Kung JH, Bortfeld T, Chen GT. An experimental investigation on intra-fractional 
organ motion effects in lung IMRT treatments. Phys Med Biol. 2003;48(12):1773–84.

 8. George R, Ramakrishnan V, Siebers JV, Chung TD, Keall PJ. Investigation of patient, tumour and treatment 
variables affecting residual motion for respiratory-gated radiotherapy. Phys Med Biol. 2006;51(20):5305–19.

 9. D’Souza WD, Naqvi SA, Yu CX. Real-time intra-fraction-motion tracking using the treatment couch: a feasibility 
study. Phys Med Biol. 2005;50(17):4021–33.

 10. Qiu P, D’Souza WD, McAvoy TJ, Ray Liu KJ. Inferential modeling and predictive feedback control in real-time 
motion compensation using the treatment couch during radiotherapy. Phys Med Biol. 2007;52(19):5831–54.

 11. Li XA, Stepaniak C, Gore E. Technical and dosimetric aspects of respiratory gating using a pressure-sensor 
 motion monitoring system. Med Phys. 2006;33(1):145–54.

 12. Kubo HD, Wang L. Introduction of audio gating to further reduce organ motion in breathing synchronized 
 radiotherapy. Med Phys. 2002;29(3):345–50. 

 13. Timinger H, Krueger S, Borgert J, Grewer R. Motion compensation for interventional navigation on 3D static 
roadmaps based on an affine model and gating. Phys Med Biol. 2004;49(5):719–32.

 14. Wang Z, Willett CG, Yin FF. Reduction of organ motion by combined cardiac gating and respiratory gating. Int 
J Radiat Oncol Biol Phys. 2007;68(1):259–66.

 15. Dietrich L, Tucking T, Nill S, Oelfke U. Compensation for respiratory motion by gated radiotherapy: an experi-
mental study. Phys Med Biol. 2005;50(10):2405–14.

 16. Keall PJ, Chang M, Benedict S, Thames H, Vedam SS, Lin PS. Investigating the temporal effects of respira-
tory-gated and intensity-modulated radiotherapy treatment delivery on in vitro survival: an experimental and 
theoretical study. Int J Radiat Oncol Biol Phys. 2008;71(5):1547–52.

 17. Vedam SS, Keall PJ, Kini VR, Mohan R. Determining parameters for respiration-gated radiotherapy. Med Phys. 
2001;28(10):2139–46.

 18. Kubo HD, Wang L. Compatibility of Varian 2100C gated operations with enhanced dynamic wedge and IMRT 
dose delivery. Med Phys. 2000;27(8):1732–38.

 19. Mageras GS, Yorke E. Deep inspiration breath hold and respiratory gating strategies for reducing organ motion 
in radiation treatment. Semin Radiat Oncol. 2004;14(1):65–75.

 20. Keall PJ, Joshi S, Vedam SS, Siebers JV, Kini VR, Mohan R. Four-dimensional radiotherapy planning for DMLC-
based respiratory motion tracking. Med Phys. 2005;32(4):942–51.

 21. Ruan D, Fessler JA, Balter JM. Mean position tracking of respiratory motion. Med Phys. 2008;35(2):782–92.



33  Liu et al.: Beam Tracking Delivery for moving target with dynamic phantom 33

Journal of Applied Clinical Medical Physics, Vol. 10, no. 2, Spring 2009

 22. Schweikard A, Shiomi H, Adler J. Respiration tracking in radiosurgery. Med Phys. 2004;31(10):2738–41.
 23. Neicu T, Shirato H, Seppenwoolde Y, Jiang SB. Synchronized moving aperture radiation therapy (SMART): 

average tumour trajectory for lung patients. Phys Med Biol. 2003;48(5):587–98.
 24. Bucciolini M, Russo S, Banci Buonamici F, Pini S, Silli P. Dosimetric characterization of a bi-directional micro-

multileaf collimator for stereotactic applications. Med Phys. 2002;29(7):1456–63.
 25. Liu Y, Shi C, Tyran P, Papanikolaou N. Dosimetric characteristics of dual-layer multileaf collimation for small-

field and intensity-modulated radiation therapy applications. J Appl Clin Med Phys. 2008;9(2):15–29.
 26. Kalman RE. A new approach to linear filtering and prediction problems. Transactions of the ASME - Journal of 

Basic Engineering. 1960;82:35–45.
 27. Kalman RE, Bucy RS. New results in linear filtering and prediction theory. Transactions of the ASME - Journal 

of Basic Engineering. 1961;83:95–107.
 28. Alasti H, Cho YB, Vandermeer AD, et al. A novel four-dimensional radiotherapy method for lung cancer: imag-

ing, treatment planning and delivery. Phys. Med. Biol. 2006;(51):3251–67.
 29. Deurloo KE, Steenbakkers RJ, Zijp LJ, et al. Quantification of shape variation of prostate and seminal vesicles 

during external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2005;61(1):228–38.
 30. Engelsman M, Damen EM, De Jaeger K, van Ingen KM, Mijnheer BJ. The effect of breathing and set-up errors 

on the cumulative dose to a lung tumor. Radiother Oncol. 2001;60;(1):95–105.
 31. Beckham WA, Keall PJ, Siebers JV. A fluence-convolution method to calculate radiation therapy dose distribu-

tions that incorporate random set-up error. Phys Med Biol. 2002;47(19):3465–73.
 32. Bortfeld T, Jiang SB, Rietzel E. Effects of motion on the total dose distribution. Semin Radiat Oncol. 2004;14(1):41–51.


