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Abstract: Using the crystal-structure search technique and first-principles calculation, we report a
new two-dimensional semiconductor, ZnSiP2, which was found to be stable by phonon, molecular-
dynamic, and elastic-moduli simulations. ZnSiP2 has an indirect band gap of 1.79 eV and exhibits
an anisotropic character mechanically. Here, we investigated the ZnSiP2 monolayer as an anode
material for K-ion batteries and gas sensing for the adsorption of CO, CO2, SO2, NO, NO2, and NH3

gas molecules. Our calculations show that the ZnSiP2 monolayer possesses a theoretical capacity of
517 mAh/g for K ions and an ultralow diffusion barrier of 0.12 eV. Importantly, the ZnSiP2 monolayer
exhibits metallic behavior after the adsorption of the K-atom layer, which provides better conductivity
in a period of the battery cycle. In addition, the results show that the ZnSiP2 monolayer is highly
sensitive and selective to NO2 gas molecules.

Keywords: two-dimensional ZnSiP2; first-principles calculations; K-ion batteries; gas sensing

1. Introduction

Two-dimensional semiconductor (2D) materials have potential applications in elec-
tronic equipment, catalysis, electrode materials, and gas sensors owing to their significant
electrical, physical, and chemical properties [1–4]. In particular, the large surface areas, ex-
cellent mechanical strengths, and strong surface activities of 2D materials provide excellent
advantages for the adsorption of certain metal atoms and gas molecules, which make 2D
materials suitable as anodes for metal-ion batteries and gas sensors [5,6]. Recently, many
novel 2D semiconductors [7–18] have attracted much attention due to their high stabilities,
good electronic properties, high capacities for metal-ion batteries, and high sensitivities
toward certain gases, such as NO2, SO2, and NH3.

As a new family of 2D materials, phosphorus carbides (PCs) with α phase and β
phase are semiconductors that exhibit highly anisotropic electronic characters with high
carrier mobilities. More importantly, α-PC and β-PC, as promising anode materials for
Li-, Na-, and K-ion batteries, having high capacities and fast diffusion channels for Li,
Na, and K ions [10,11]. It has also been predicted that α-PC, as a promising gas sensor,
exhibits superior selectivity and sensitivity for NO2 [12]. Buckled-graphene-like PC6, as a
semiconductor, has been predicted to have ultrahigh carrier mobility and, as an anode for
Li-ion batteries, a high capacity of 717 mAh/g and an open-circuit voltage of 0.21 V [13].
Furthermore, typical 2D metal-phosphide δ-InP3 exhibits high electron mobility and has
been shown to be usable as a N-based gas sensor with high selectivity and sensitivity
and good reversibility [16]. In addition, metal oxides, such as two-dimensional WO3 and
Pd-loaded ZnO monolayers, are important semiconductors applied in gas sensors, with
high sensitivities [19,20].

Apart from the excellent performances of binary semiconductors, ternary 2D semicon-
ductor materials have also attracted special interest. Using the epitaxial growth technique,
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Beniwal and co-workers [21] synthesized a 2D hexagonal graphenic BCN monolayer, which
showed semiconductor behavior with a band gap of 1.50 eV, high directional anisotropy, a
small Young’s modulus, high flexibility, and suitability as a potential electrode material
for Al-based dual-ion batteries [22]. Recently, a new semiconductor BCN structure, by
the global-optimization search method, was predicted to have high carrier mobility and
excellent optical properties [23]. Using first-principles simulations, two-dimensional BC2P
and BC3P3 monolayers were also predicted to present semiconductors with proper band
gaps and low barriers for the dissociation of water and hydrogen molecules and thus to
show promise for use in renewable energy [24]. Recently, Tang et al. [25] designed a BC6P
monolayer isostructural and isoelectronic to graphene that has high electron mobility and
can be used in K-ion batteries, with a high capacity of 1410 mAh/g.

In recent years, we have noticed that the bulk ternary chalcopyrite-structure compound
ZnSiP2 is a promising semiconductor that has been synthesized experimentally [26,27]
and used for optical, optoelectronic, photovoltaic, and thermoelectric applications [28–31].
However, its 2D structure is still unclear and has not been studied. In this paper, we
predicted a stable structure of the 2D semiconductor ZnSiP2 and studied its electronic,
mechanical properties as well as its electrode performance for K-ion batteries (KIBs). ZnSiP2,
as an electrode for K-ion batteries, has a high theoretical storage capacity of 517 mAh/g and
a low diffusion energy of 0.12 eV. In addition, its gas-sensing performance was investigated
by simulation of the adsorption of CO, CO2, SO2, NO, NO2, and NH3 gas molecules on
the ZnSiP2 monolayer. Our calculation results demonstrate that the strong adsorption
ability with respect to K ions and NO2 gas molecules on the ZnSiP2 monolayer makes it a
promising anode for K-ion batteries and gas sensors for NO2.

2. Results and Discussion
2.1. Structure and Stability

By using the global-structure search method, we found a new ZnSiP2 monolayer with
the space group Pmc21 (no. 26) containing two formula units. The structure crystalized
in an orthorhombic structure, and the optimized lattice parameters were a = 3.7251 and
b = 6.1398 Å. As shown in Figure 1a, a remarkable feature is that the ZnSiP2 monolayer is
stacked as a bilayer hexagonal lattice, and the two layers are bonded by Si and P, with a
distance of 2.286 Å. Each layer was arranged alternately in two kinds of hexagonal rings.
One ring was composed of one Si, two Zn, and three P atoms; the other ring was composed
of one Zn, two Si, and three P atoms, which gave rise to two types of bonds: Si-P and Zn-P.
To understand the chemical-bonding nature, the charge density difference was calculated
and shown in Figure 1b, which is defined as the difference between the total electron
density of the ZnSiP2 monolayer and the charge density of isolated Zn, Si, and P atoms
at their specified positions. It can clearly be seen that there is a strong non-polar covalent
bond between Si and P [32]. Regarding the Zn-P bonds, the polar covalent bonds between
Zn and P atoms were due to the transfer charges shifted toward P atoms.

The cohesive energy is a key factor in experimental synthesis, which is calculated
by Ecoh = (2ESi + 2EZn + 4EP − EZnSiP2)/8, where ESi, EZn, EP, and EZnSiP2 represent the
energies of one Si, Zn, P, and perfect ZnSiP2, respectively. The calculated cohesive energy
of the ZnSiP2 monolayer was 4.36 eV/atom, which is comparable to those of phophorene
(3.30 eV/atom) [33], germanene (3.26 eV/atom), silicene (3.98 eV/atom) [34], and SiP
(4.16 eV/atom) [35]. We further calculated the formation energy of the ZnSiP2 monolayer
related to the SiP2 monolayer and Zn metal to investigate its stability, which was calculated
by E f = EZnSiP2 − µSiP2 − mµZn(bulk), where µSiP2 , µZn(bulk), and EZnSiP2 are the energies
of two-dimensional SiP2 [36], one Zn atom in bulk Zn metal, and the perfect ZnSiP2
monolayer, respectively, and m is the number of Zn atoms. The calculated formation
energy is −0.465 eV, the negative value further indicating that the ZnSiP2 monolayer may
be synthesized. The phonon spectrum was used to check the dynamic stability of the
ZnSiP2 monolayer. The calculated phonon dispersion curves for the ZnSiP2 monolayer
are shown in Figure 2a; all frequencies in the Brillouin region were positive, which means
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that the ZnSiP2 monolayer is dynamically stable. Furthermore, thermal stability was
checked by AIMD simulation running for 10 ps at 400 K (Figure 2b); the structure remained
almost intact at the end of the simulation, revealing that the ZnSiP2 monolayer has good
thermal stability. According to the above analysis, the predicted 2D ZnSiP2 is promising
for experimental synthesis.
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Figure 1. (a) The lowest-energy geometry of the ZnSiP2 monolayer, with top and side views.(b) The
charge density difference of the ZnSiP2 monolayer. (The gold coloring (i.e., 0.01 e/Å3) in the plot
indicates an electron-density increase after bonding, and the cyan coloring (i.e., 0.01 e/Å3) indicates
a decrease.) Zn atoms are gray, Si atoms blue and P atoms pink.
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Additionally, we further calculated the four independent elastic constants of the
ZnSiP2 monolayer, which were C11 = 106.2 Nm−1, C22 = 86.0 Nm−1, C12 = 8.6 Nm−1,
and C44 = 26.1 Nm−1. According to the obtained elastic constants, the ZnSiP2 monolayer
satisfied the mechanical stability standard: C11 > 0; C44 > 0; C11C22 > C2

12 [37]. Moreover,
the diagrams for the in-plane Young’s modulus and Poisson ratio with polar angle [38]
could be obtained and are depicted in Figure 3, showing that the ZnSiP2 monolayer is
anisotropic. The maximum Young’s modulus (105 N/m) was higher than that reported for
phosphorene (92 N/m) [39] and comparable to those of MoS2 (129 N/m) [40] and V2Te2O
monolayers (115.3 N/m) [41]. The anisotropy characteristic of mechanical properties also
has an important effect on electronic properties.
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2.2. Electronic and Adsorption Properties

The calculated band structure and density of states for the ZnSiP2 monolayer are
shown in Figure 4a,b. The valence band maximum (VBM) is at point Γ, and the conduction
band minimum (CBM) is at point Y. Therefore, as an indirect semiconductor, the band-gap
values derived from the PBE and HSE calculations were 1.04 and 1.79 eV, respectively. The
band dispersion near the VBM and CBM shows an anisotropic character, which results in
the anisotropy of the effective masses. According to the formula m∗ = }2

∂E2/∂k2 , the obtained
electron effective masses near the CBM were 1.364 m0 and 0.333 m0 along the x-and y-
directions, while the hole effective masses near the VBM were 1.019 m0 and 0.433 m0 along
the x- and y-directions, respectively. The density of states in Figure 4b shows that the VBM
and CBM are both mainly contributed to by P 2p and Zn 4d orbitals.
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To further study the performance of the ZnSiP2 monolayer as an electrode material,
we investigated the adsorption properties of one K atom on its surface using a 3 × 2 × 1
supercell as the substrate. According to the structural symmetry, ten possible K-atom
adsorption sites (S1–S10) with adsorption energies based on Equation (1) were considered
and calculated, as shown in Figure 5. After geometric-structure optimization, we found
some equivalent sites due to the transfer of K atoms from one site to another site. As can be
clearly seen in Figure 5b, the equivalent sites were S1 = S2 = S3 = S9 = S10 and S5 = S7 = S8,
so only four sites S2, S4, S5, and S6 were left, with adsorption energies of −0.68, −0.57,
−0.55, and −0.35 eV, respectively. Thus, the adsorption energy of the K atom at S2 site was
the lowest, which means that the adsorbed K atoms prefer to stay at the bridge position of
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Si-P to reduce the Coulomb repulsion between K and Zn. The nearest K-P, K-Zn and K-Si
distances are 3.30 Å, 3.92 Å and 3.53 Å, respectively.
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To assess the adsorption behavior of the K atoms, we calculated the charge-density
differences shown in Figure 6a, which is defined by:

∆ρ = ρ(KZn12Si12P24)− ρ(K)− ρ(Zn12Si12P24)

where ρ(Zn12Si12P24), ρ(KZn12Si12P24), and ρ(K) are the charge densities of the Zn12Si12P24
monolayer with adsorbed K atoms, the substrate Zn12Si12P24, and an isolated K atom,
respectively. Obvious charge transfer could be observed, and the K atoms had a net charge
of 0.84|e| based on the Bader charge analysis, which implies charge transfer from the K
atoms to the adjacent P and Si atoms in the Zn12Si12P24 surface.
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The diffusion barrier of K ions is a key parameter in estimating the performance of
a battery. Next, the diffusion of one K ion on the ZnSiP2 surface was investigated. The
possible diffusion path (inset of Figure 6b) between the lowest-energy adsorption sites
and the calculated results is shown in Figure 6b. The diffusion barrier of the path was
0.12 eV, which is comparable to the result for ReN2 (0.127 eV) [42]. Compared with other
anode materials, ZnSiP2 has a low K-ion diffusion barrier that is smaller than those of BP
(0.155 eV) [43], PC6 (0.26 eV) [44], and SnC (0.17 eV) [45]. However, this value is larger
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than those of GeS (0.05 eV) [46], Ti3C2 (0.103 eV) [47], and C6BN (0.087 eV) [48]. The low
diffusion barrier can result in ultrafast charging–discharging cycles in K-ion batteries.

2.3. Capacity and Open-Circuit Voltage

After studying the adsorption and diffusion behavior of one K atom on the supercell
of the ZnSiP2 monolayer, we then explored the behavior of K adsorption concentration.
Five K concentrations (KxZn2Si2P4, x = 1–4, 6) were considered, and the average adsorption
energies acquired according to Equation (2) were −0.30, −0.46, −0.16, −0.12, and −0.03 eV,
respectively. It is to be noted that the K concentration reached x = 6, still showing negative
adsorption energy, which means that K atoms can be adsorbed on the ZnSiP2 monolayer.
The three stable adsorption configurations (K2Zn2Si2P4, K4Zn2Si2P4, and K6Zn2Si2P4) are
shown in the inset of Figure 7. The first and the second K atom layers are located at S2
and S5 sites, with both sides of the ZnSiP2 monolayer. As for the third K-atom layer, the K
atom prefers to stay at the S2 site. The stoichiometry K6Zn2Si2P4 can provide the maximal
storage capacity 517 mAh/g, according to Equation (4), which is higher than other reported
values for 2D materials, such as GeS (256 mAh/g) [46], ReN2 (250 mAh/g) [42], Ti3C2 (191
mAh/g) [47], MoS2/Ti2CS2 (141 mAh/g) [49], and MoN2 (432 mAh/g) [50], but lower than
the capacities for BC3 (858 mAh/g) [51], BC6P (1410 mAh/g) [25], C6BN (533 mAh/g) [48],
BP (570 mAh/g) [43], and V2S2O (883.6Ah/g) [41]. Based on Equation (3), OCVs were
obtained and are shown in Figure 7, and the calculated values for different concentrations,
KZn2Si2P4, K2Zn2Si2P4, K3Zn2Si2P4, K4Zn2Si2P4, and K6Zn2Si2P4, were 0.30, 0.46, 0.16,
0.12, and 0.03 V, respectively. The Bader analysis showed that every K atom transfers 0.58 e
to ZnSiP2 when two K atoms are absorbed on the surface of 2D ZnSiP2, while every K atom
transfers 0.51 e to ZnSiP2 when only one K atom is absorbed on the surface of 2D ZnSiP2,
implying that two K atoms are more easily absorbed on the surface of 2D ZnSiP2 than one
K atom. So, the OCV increases as x increases from 1 to 2, as shown in Figure 7. However,
the overall voltage decreases as the capacity increases.
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Importantly, the density states of the three stable adsorption configurations (KZn2Si2P4,
K2Zn2Si2P4, and K3Zn2Si2P4) were calculated using the PBE functional, and ZnSiP2, after
the adsorption of K atoms, showed metallic behavior, as shown in Figure 8, which is
beneficial for the ZnSiP2 monolayer as an electrode material.
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2.4. Gas-Sensing Properties

To further study the gas-sensing ability of the ZnSiP2 monolayer, we systematically
studied the adsorption behavior of gas molecules (CO, CO2, SO2, NO, NO2, and NH3) on its
surface by first-principles simulations. The most stable configurations of the gas molecules
adsorbed on the ZnSiP2 monolayer are shown in Figure 9, and the corresponding adsorption
energies (Ead), adsorption distances (d0), band gaps after molecule adsorption (Eg), and
charge transfers (Q) are listed in Table 1. A positive charge for Q means charge transfer
from the monolayer to the gas molecules. The equilibrium distance of 1.53 Å between
NO2 and the monolayer revealed that NO2 forms a stable chemical bond. Moreover, the
NO2 molecules showed high adsorption energies, indicating that ZnSiP2 is more sensitive
to NO2 molecules than the other five molecules. As shown in Table 1, the Bader charge
analysis indicated that there were 0.24, 0.12, 0.67, and 0.13 electron transfers between the
molecules and the substrates for SO2, NO, NO2, and NH3, which further implies that NO2
molecules have strong chemical interactions with the ZnSiP2 monolayer.

Table 1. The adsorption energy, equilibrium distance, energy band gap, and charge transfer for
different gas molecules adsorbed on the ZnSiP2 monolayer.

Molecule CO CO2 SO2 NO NO2 NH3

Ead (eV) −0.74 −0.55 −1.09 −0.75 −1.30 −1.14
d0 (Å) 1.54 2.29 1.73 1.68 1.53 1.53

Eg (eV) 1.04 1.04 0.9 metal metal 1.04
Q (e) 0 0 −0.24 0.12 0.67 −0.13

The electronic band structures and densities of states for gas-ZnSiP2 are shown in
Figures 10 and 11, respectively. All the systems, except for NO and NO2, that adsorbed
the ZnSiP2 monolayer became direct band-gap semiconductors, and both VBM and CBM
were at the Gamma point. It can be clearly seen from Figures 10 and 11 that the NO and
NO2 adsorbed on the ZnSiP2 monolayer introduced a high density of states at the Fermi
surface, which made the ZnSiP2 exhibit a metallic character and changed the electronic
properties of the ZnSiP2 monolayer easily. The adsorption of CO, CO2, and NH3 had no
significant effect on the band structure, and the band gaps did not change much. For SO2
adsorption (see Figure 10c), the shallow donor energy levels were introduced into the
energy band, resulting in the narrowing of the band gap. Combining all the above results,
we can conclude that the ZnSiP2 monolayer is promising as a sensor of NO2 gas molecules
with high selectivity and sensitivity.
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3. Computational Methods

To find the lowest energy structure of 2D ZnSiP2, a swarm-intelligence-based PSO
method, implemented in CALYPSO code [52,53], combined with first-principles calcula-
tions, was employed, which has been used to successfully predict many 2D systems, such
as Cu2Si, PC6, SnP3, and B2N3 [19,34,54,55]. The structures of 2D ZnSiP2 were searched
with the simulation cells containing 1–4 formula units. The population size and the number
of generations were both set to 30, which have been tested to give convergent results. In the
first generation, a population of the structures was generated randomly. In the following
generation, 60% of the population was generated from the lowest energy structures in
the previous generation and all of the structures were fully relaxed, including the atomic
positions and the lattice parameters.

The first-principles calculations based on density functional theory were performed using
the projector-augmented wave (PAW) method, as implemented in VASP software [56–58].
The exchange correlation potential was described using Perdew–Burke–Ernzerhof (PBE)
generalized gradient approximation [59] and corrected by the van der Waals (vdW) inter-
action in the calculation of the adsorption properties of ZnSiP2. The plane-wave energy
cut-off and Monkhorst–Pack K-point mesh density were set to 500 eV and 2π × 0.03 Å−1,
respectively. All geometries were optimized and relaxed until a total energy change smaller
than 10−6 eV and a force tolerance acting on each atom less than 0.001 eVÅ−1 was achieved.
In order to make the band-gap calculation more accurate for semiconductors, the HSE06
functional was employed [60]. A vacuum thickness of 25 Å was used to avoid the interlayer
interactions. The nudged elastic band (NEB) method was used to obtain the K-ion diffusion
energy barrier. To assess the dynamic stability, phonon spectra were calculated using the
PHONOPY code [61]. In addition, ab initio molecular dynamics (AIMD) were explored
with the NVT ensemble to examine the thermal stability.

In order to study the interactions between metals (gas molecules) and substrates,
adsorption energies and adsorption distances were systematically calculated, according to
the following equation:

Ead =
(Etotal − nEmetal(gas) − EZnSiP2)

n
(1)
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where Etotal, EZnSiP2 , and Emetal(gas) represent the total energy of the metal (gas molecules)
adsorbed on the ZnSiP2 monolayer, the perfect ZnSiP2 monolayer, and the metal in the
bulk metal or gas molecules, respectively, and n is the number of adsorbed metal atoms.

The adsorption stability of the K-ion layer on the ZnSiP2 monolayer is estimated by
average adsorption energy, which is calculated using the following formula:

Eav =
Entotal − E(n−1)total −mEK

m
(2)

where Entotal and E(n−1)total refer to the total energies of the ZnSiP2 monolayer with n and
(n−1) layers and m is the number of K atoms in every layer.

For a given concentration x of KxZn2Si2P4, the open-circuit voltage (OCV) can be
obtained with the following equation:

V =
E(x2)− E(x1)− (x2 − x1)EK

e(x2 − x1)
(3)

where E(x2) and E(x1) are the total energies of KxZn2Si2P4 at two adjacent K-ion concen-
trations x2 and x1, e is the element charge, and EK is the energy of one K atom in the bulk
K metal.

The theoretical capacity can be evaluated from:

CM =
cF
M

(4)

where c is the number of adsorbed K atoms per ZnSiP2 unit, F is the Faraday constant
(26,801 mAhmol−1), and M is the molar weight of ZnSiP2 in gmol−1.

4. Conclusions

In summary, we predicted the ZnSiP2 monolayer as a new 2D semiconductor material
which can be used as an anode material for K-ion batteries and NO2 gas sensors by the
global-optimization algorithm combined with first-principles calculation. Phonon simu-
lation, molecular dynamics, and elastic-constant calculations confirmed its stability. The
calculated electronic structure and mechanical properties indicate that ZnSiP2 has an indi-
rect band gap of 1.79 eV and exhibits anisotropic mechanical characteristics. Furthermore,
we investigated 2D ZnSiP2 as an anode for KIBs. The ZnSiP2 monolayer has a theoretical
capacity of 517 mAh/g for K-ions and a low diffusion barrier of 0.12 eV. In addition, we also
investigated the gas-sensing properties of the ZnSiP2 monolayer with six gas molecules
(CO, CO2, SO2, NO, NO2, and NH3). The results show that the ZnSiP2 monolayer is a
promising gas sensor for NO2 with high sensitivity and selectivity.
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