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Abstract

Background

Fractures around the knee joint are inherently complex in terms of treatment; complication

rates are high, and they are difficult to diagnose on a plain radiograph. An automated way of

classifying radiographic images could improve diagnostic accuracy and would enable pro-

duction of uniformly classified records of fractures to be used in researching treatment strat-

egies for different fracture types. Recently deep learning, a form of artificial intelligence (AI),

has shown promising results for interpreting radiographs. In this study, we aim to evaluate

how well an AI can classify knee fractures according to the detailed 2018 AO-OTA fracture

classification system.

Methods

We selected 6003 radiograph exams taken at Danderyd University Hospital between the

years 2002–2016, and manually categorized them according to the AO/OTA classification

system and by custom classifiers. We then trained a ResNet-based neural network on this

data. We evaluated the performance against a test set of 600 exams. Two senior orthopedic

surgeons had reviewed these exams independently where we settled exams with disagree-

ment through a consensus session.

Results

We captured a total of 49 nested fracture classes. Weighted mean AUC was 0.87 for proxi-

mal tibia fractures, 0.89 for patella fractures and 0.89 for distal femur fractures. Almost ¾
of AUC estimates were above 0.8, out of which more than half reached an AUC of 0.9 or

above indicating excellent performance.

Conclusion

Our study shows that neural networks can be used not only for fracture identification but

also for more detailed classification of fractures around the knee joint.
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Introduction

Fractures around the knee joint are inherently complex with high risk of complications. For

instance, during the first decade after a tibial plateau facture 7% receive a total knee replace-

ment, five times more than the control population [1]. Bicondylar tibia fractures have a hazard

ratio of 1.5 for total knee replacement, while high age has hazard ratio of 1.03 [1]. While regu-

lar primary osteoarthritis replacements have a survival rate of at least 95% in a decade, post-

traumatic knee replacements have both higher complication rates and survival rates as low as

80% for the same time period [2]. There is a need to lessen complications from these fractures,

and a reliable diagnosis and description of the fracture is crucial for providing correct treat-

ment from the onset.

Experienced radiologists with extended orthopedic training constitute a scarce resource in

many hospitals, especially in the middle of the night. Fatigue, inexperience and lack of time

when interpreting diagnostic images increases the risk of human error as a cause for misdiag-

nosis [3–6]. Use of computed tomography (CT) might improve accuracy, but this is not uni-

versally true [7] and CT is not as readily available as plain radiographs. We believe that

computer aided interpretation of radiographs could be of use both in helping clinicians prop-

erly assess the initial fracture as well as in retrospectively reviewing a large amount of fractures

to better understand the optimal treatment regime.

Recent studies have shown promising results in applying deep learning, also known as deep

neural networks, a form of artificial intelligence [8], for image interpretation. In medicine,

deep learning has notably been explored in specialties such as endocrinology for retinal pho-

tography [9], dermatology for recognizing cancerous lesions [10] and oncology for recognizing

pulmonary nodules [11], as well as mammographic tumors [12]. In trauma orthopedics, the

last four years have yielded several studies on deep learning for fracture recognition with very

promising results [4, 13–15], yet its applications and limitations are still largely unexplored

[16].

There are to our knowledge no studies applying deep learning for knee fractures and there

are very few published studies on fracture classification [14, 17, 18]. The primary aim of this

study was therefore to evaluate how well a neural network can classify knee fractures according

to the detailed 2018 AO-OTA fracture classification [19].

Patients and methods

The research was approved by ethical review committee (dnr: 2014/453-31) (The Swedish Eth-

ical Review Authority).

Study design and setting

The study is a validation study of a diagnostic method based on retrospectively collected radio-

graphic examinations. These examinations were analyzed by a neural network for both pres-

ence and type of knee fracture. Knee fracture is defined in this study as any fracture to the

proximal tibia, patella or distal femur.

Data selection

We extracted radiograph series around the knee taken between the years 2002 and 2016 from

Danderyd University Hospital’s Picture Archiving and Communication System (PACS).

Images along with corresponding radiologist reports were anonymized. Using the reports, we

identified phrases that suggested fractures or certain fracture subtypes. We then selected ran-

dom subsets of image series from both the images with phrases suggesting that there may be a
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fracture and those without. This selection generated a bias towards fractures and certain frac-

ture subtypes to reduce the risk of non-fracture cases dominating the training data and rarer

fractures being missed.

Radiograph projections included were not standardized. Trauma protocols as well as non-

trauma protocols were included. Diaphyseal femur and tibia/fibula protocols were included as

these display the knee joint although not in the center of the image. For each patient we only

included the initial knee exam within a 90-day period to avoid overestimating the network by

including duplicate cases of the same fracture at different stages. Images of knee fractures on

children were tagged for exclusion by the reviewer upon seeing open physes as these are classi-

fied differently and Danderyd University Hospital only admits patients that are 15 years or

older. Image series where the quality was deemed too poor to discern fracture lines were also

tagged for exclusion by the reviewer. All tagged exclusions were then validated by MG before

removal from the dataset.

Method of classification

In this method of machine learning the neural network identifies patterns in images. The net-

work is fed both the input (the radiographic images) and the information of expected output

label (classifications of the fractures) in order to establish a connection between the features of

a fracture and corresponding category [8].

Prior to being fed to the network the exams along with radiologist’s reports were labelled

using a custom-built platform according to AO/OTA-class (v. 2018) by AL, SO, MG & EA.

The AO/OTA classification system was chosen as it can be applied to all three segments of the

knee joint [19] and because of its level of detail. The classification system has more than 60

classes of knee fractures, many of which are nested and interdependent, e.g. the A1.1 is a subset

of both A and A1 [19]. Fractures were classified down to lowest discernable subgroup or quali-

fier. (See S1 File for details). We also created custom output categories such as displacement/

no displacement and lateral/medial fracture as it is interesting to see how well the network can

discern these qualities regardless of AO/OTA class.

Data sets

The data was randomly split into three sets: test, training and validation. The split into sets was

constructed so that the same patient seeking and receiving an x-ray of the knee joint on multi-

ple occasions with a> 90-day separation could be included multiple times in the same set, but

there was no patient overlap between the training, validation and test sets.

The test set consisted of 600 cases, which were classified by two senior orthopedic surgeons,

MG, OS and EA, working independently. Any disagreement was dealt with by a joint reevalua-

tion session until a consensus between the two surgeons was reached. Out of the 600 cases, 71

cases had disagreement regarding type of fracture (see S1 File for details). The test set then

served as the ground truth that the final network was tested against. A minimum of 2 captured

cases per class was required for that class to be included in the test set. All images contained at

least an AP and a lateral view and had to have the knee joint represented.

During training two sets of images were used, the training set which the network learned

from and a validation set for evaluating performance and tweaking network parameters. The

validation set was prepared in the same way as the test set but by AL and SO, two 4th year med-

ical students. The training set was labeled only once by either AL or SO. MG validated all

images with fractures or by the students marked for revisit. Initially, images were randomly

selected for classification and fed to the network i.e. passive learning. As the learning pro-

gressed cases were selected based on the networks output: 1) initially cases with high
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probability of a class were selected to populate each category, and then 2) cases where the net-

work is the most uncertain to define the border was used i.e. active learning [20]. Due to the

number of classes available the category used for selection changed depending on which cate-

gories were poorly performing at that stage. During this process the predictions from the net-

work were fed back into the labeling interface as an additional feedback loop to the reviewers

so that the error modes became clearer and could be addressed. The reviewers were presented

with probabilities in the form of continuous color scale and categories with probability over

60% were preselected by the interface.

Neural network setup

We used a convolutional neural network that was a modification of a ResNet type. The net-

work consisted of a 26-layer architecture with batch normalization for each convolutional

layer and adaptive max pool (See Table 1 for structure). Each class had a single endpoint that

was converted into a probability using a sigmoid function. We randomly initialized the net-

work and trained using stochastic gradient descent.

The training was split into several sessions with different regularizes for controlling overfit-

ting. Between each session we re-set the learning rate and trained according to Table 2. We

trained the network initially with dropout without any noise. In subsequent sessions we

applied regularizers such as white noise, auto-encoders [21], semi-supervised learning with

teacher-student networks [22] and stochastic weighted averaging [23]. During training we

Table 1. General network architecture.

Type Blocks Kernel size Filters Section

Convolutional 1 5x5 32 Core

Convolutional 1 3x3 64 Core

ResNet block 4x2 3x3 64 Core

ResNet block 2x2 3x3 128 Core

ResNet block 2x2 3x3 256 Core

ResNet block 2x2 3x3 512 Core

Image max 1 - - Pool

Convolutional 1 1x1 72 Classification

Fully connected 1 - 4 Classification

Fully connected 1 - 4 Classification

All images were individually processed in the core section of the network and then merged at the pool stage using the adaptive max function. The final classification

section was then used for generating the AO/OTA classes.

https://doi.org/10.1371/journal.pone.0248809.t001

Table 2. The training setup of the network.

Session Epochs Initial learning rate Noise Teacher-student pseudo labels Autoencoder SWA

Initialization 70 0.025 none no no no

Noise 80 0.025 5% no no no

Teacher-student 40 0.010 5% yes no no

Autoencoder 20 0.025 10% no yes no

SWA 20 x 5 0.010 5% no no yes

All sessions used standard drop-out in addition to the above.

https://doi.org/10.1371/journal.pone.0248809.t002
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alternated between similar task for other anatomical sites, e.g. our ankle fracture dataset [17],

using additional 16 172 exams. During the teacher student session, we augmented the dataset

with unlabeled exams using a ratio of 1:2 where the teacher network had access to the radiolo-

gist report in addition to the images. The learning rate was adjusted at each epoch and followed

the cosine function.

Input images

The network was presented with all available radiographs in each series. Each radiograph was

automatically cropped to the active image area, i.e. any black border was removed, and the

image was reduced to a maximum of 256 pixels. We then added padding to the rectangular

image so that the network received a square format of 256 x 256 pixels.

Outcome measures & statistical analysis

Network performance was measured using area under curve (AUC) as primary outcome mea-

sure and sensitivity, specificity and Youden J as secondary outcome measures. Proportion of

correctly detected fractures was estimated using AUC—the area under a receiver operating

curve (ROC)—which is a plot of true positive rate against the false positive rate and suggests

the networks ability to sort the class from low to high likelihood. An AUC value of 1.0 signifies

prediction that is always correct and a value of 0.5 is no better than random chance. There is

no exact guide for how to interpret AUC values, but in general an AUC of<0.7 is considered

poor, 0.7–0.8 is considered acceptable, 0.8–0.9 is considered good to excellent and� 0.9 is

considered excellent or outstanding [24–26]. Youden Index (J) is a value also used in conjunc-

tion with the ROC curve, it is a summary of sensitivity and specificity. It has a range of 0 to 1

and is defined as [26]:

J ¼ sensitivityþ specificity � 1

As there are many categories, we also presented a weighted mean of each measure that

included all the subclasses, e.g. A-types will not only include the A-type but also all available

groups and the subgroups into one measure. The weighting was according to the number of

positive cases as we wanted small categories that may perform well by chance to have less influ-

ence on the weighted mean, for AUC the calculation was:

AUCweighted ¼

Pcategories
i¼1

AUCi � ni
Pcategories

i¼1
ni

Cohens kappa, a measure of interrater reliability [27], was used to measure the level of

agreement between the two human reviewers assessing the test set, as differences in interpreta-

tion between human reviewers could be a confounder in fairly assessing the network.

We implemented integrated gradients [28] as a method to access which image features the

network analyzed to arrive at its output, as this is not otherwise immediately accessible. Inte-

grated gradients displays this information as a heatmap where the color red illustrates image

features that contribute positively to a certain output i.e. fracture category and blue illustrate

features that contribute against that output [28].

The network was implemented and trained using PyTorch (v. 1.4). Statistical analysis was

performed using R (4.0.0). The research was approved by ethical review committee (dnr: 2014/

453-31).
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Results

From 42 163 available knee examinations 6188 exams were classified for the training set and

605 for the test set. A total of 70 images were excluded during classification, a majority as they

contained open physes, leaving the training set with 6003 exams from 5657 separate patients

and the test set with 600 from 526 patients (see Fig 1). Out of these 6003 exams, 5700 were

used for training with an average 4.5 radiographs per exam (ranging 2 to 9 radiographs) while

the remaining 303 were used for evaluating network performance and tweaking network

Fig 1.

https://doi.org/10.1371/journal.pone.0248809.g001
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parameters (the validation set). The test set had slightly fewer radiographs per exam, on aver-

age 4.1 (ranging from 2 to 7 radiographs). There was no patient overlap between the test and

training datasets. We evaluated the network performance for a total of 49 fracture categories,

40 of which were AO/OTA classes and 9 custom classes.

Proximal tibia (AO/OTA 41)—621 training cases and 68 evaluation cases

The weighted mean AUC for all tibial plateau fractures was 0.87 (95% CI, 0.82–0.92), sensitiv-

ity, specificity and Youden J were 0.83 (95% CI, 0.80–0.92), 0.91 (95% CI, 0.85–0.93) and 0.74

(95% CI, 0.69–0.83) respectively. As shown in Table 3, the A-types, which consisted mostly of

tiny avulsions, performed the worst, around 0.7. B-types was closer to 0.9 and the C-types with

subclasses just above 0.8. For the split-depression fractures (B3-group) performed excellently

with all estimates above 0.9 Among the custom descriptors, medial and lateral performed with

AUC scores of 0.89 and 0.81 respectively. The custom displacement class performed well with

an AUC of 0.91.

Patella (AO/OTA 34)—525 training cases and 40 evaluation cases

The weighted mean AUC for patella was 0.89 (95% CI, 0.83–0.94), sensitivity, specificity and

Youden J were 0.89 (95% CI, 0.81–0.96), 0.88 (95% CI, 0.85–0.93) and 0.77 (95% CI, 0.70–

0.87) respectively. Similar to proximal tibia fractures, the A-types (extraarticular fracture) had

the lowest performance with AUC just under 0.8. The B-types, partial articular sagittal frac-

tures, had the highest AUC-scores with around AUC 0.9 for the main group and all subgroups.

The C-types, complete articular fractures, also performed well, only C1.3 (fractures in the dis-

tal third of the patella) performed below 0.8 (Table 4).

Distal femur (AO/OTA 33)—147 training cases and 12 evaluation cases

Distal femur fractures were rare both in the training and the test data. Despite this, the

weighted mean AUC was 0.89 (95% CI, 0.78–0.96), sensitivity, specificity and Youden J were

0.90 (95% CI, 0.82–1.00), 0.92 (95% CI, 0.79–0.97), and 0.81 (95% CI, 0.71–0.96) respectively.

Only the B-type (partial articular fractures) performed lower at AUC 0.72. However, the num-

ber of cases were few and many of the confidence intervals were wide (Table 5).

Inter-rater results

The Cohen’s kappa between MG and EA ranged between 0 and 1 with a large variety between

categories (see S2 Table in S1 File). High Cohen’s kappa appeared to correspond weakly to

classes where the network also performed well and there were indications that the number of

training cases facilitated this effect (Fig 2). The correlation was however not strong enough to

provide significant results using a linear regression.

Network insight and example images

We sampled cases where the network was most certain of a prediction, whether correct or

incorrect, for analysis. Case images for the most common fracture type in the data, proximal

tibia B-type, and the adjacent C-type are shown below (Fig 3A to 3C). Also shown are heat-

maps visualizing which areas in the images the network focuses on as colored dots. There were

no clear discernable trends among these cases as to what made the network fail or succeed.

Colored dots were concentrated to the joint segment of the bone and often seemed to cluster

close to fracture lines, suggesting that the network appropriately finds these areas to contain

relevant information.
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Discussion

This is, to our knowledge, the first study to evaluate a deep neural network for detailed knee

fracture diagnostics. We evaluated a total of 49 fracture categories. In general, the network per-

formed well with almost ¾ AUC estimates above 0.8. Out of these, a little more than half

reached an AUC of 0.9 or above indicating excellent performance.

We conducted no direct comparison between network performance and performance of

clinicians. Chung et al [14] in a similar study on deep learning for fracture classification found

Table 3. Network performance for proximal tibia.

Proximal tibia

Observed cases (n = 600) Sensitivity (%) Specificity (%) Youden’s J AUC (95% CI)

A

A 10 50 94 0.44 0.72 (0.52 to 0.91)

1 8 60 82 0.42 0.73 (0.52 to 0.94)

. . .3 5 80 79 0.59 0.78 (0.52 to 0.95)

. . .!a 3 100 76 0.76 0.86 (0.76 to 0.95)

A displaced 3 67 93 0.60 0.87 (0.68 to 1.00)

B

B 47 83 88 0.71 0.89 (0.83 to 0.95)

1 11 73 85 0.58 0.78 (0.60 to 0.91)

. . .1 6 67 81 0.48 0.76 (0.59 to 0.91)

. . .2 2 100 94 0.94 0.97 (0.93 to 1.00)

. . .3 3 67 92 0.59 0.72 (0.24 to 1.00)

2 10 67 90 0.57 0.74 (0.49 to 0.94)

. . .1 6 83 93 0.76 0.89 (0.73 to 0.98)

. . .2 4 100 81 0.81 0.88 (0.81 to 0.97)

3 26 92 92 0.84 0.97 (0.95 to 0.99)

. . .1 12 100 94 0.94 0.99 (0.97 to 0.99)

. . .3 14 93 88 0.81 0.93 (0.85 to 0.98)

B! x 5 100 93 0.93 0.97 (0.94 to 0.99)

B! t 7 100 97 0.97 0.99 (0.97 to 0.99)

B! u 6 83 93 0.76 0.88 (0.68 to 0.98)

C

C 11 82 95 0.77 0.83 (0.60 to 0.99)

1 2 50 100 0.50 0.53 (0.06 to 1.00)

2 4 100 98 0.98 0.99 (0.98 to 1.00)

3 5 80 95 0.75 0.79 (0.43 to 0.98)

. . .1 4 75 95 0.70 0.74 (0.30 to 0.98)

Custom classes

Displaced 29 83 97 0.80 0.91 (0.82 to 0.98)

Lateral 14 75 90 0.65 0.81 (0.62 to 0.97)

Medial 10 78 89 0.67 0.89 (0.74 to 0.98)

C2 or C3 5 80 94 0.74 0.80 (0.43 to 0.99)

Lateral B2 or B3 18 94 95 0.90 0.96 (0.88 to 0.99)

Medial B2 or B3 3 100 75 0.75 0.86 (0.76 to 0.96)

Table showing network performance for the different AO-OTA classes as well as other fracture descriptors, first letter corresponds to fracture type, first number to

group, second number to subgroup and last letter to qualifiers. The observed cases column correspond to the number of observed fractures by the reviewers. Note that

an exam can appear several times as the category A1.3 will belong to both the overall A-type, A1 group and A1.3 subgroup at the same time.

https://doi.org/10.1371/journal.pone.0248809.t003
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that orthopedic surgeons specialized in shoulders performed with a Youden J, a summary of

sensitivity and specificity, of 0.43–0.86 at classifying shoulder fractures. By that standard, our

network performed with Youden J ranging from 0.42–0.98 and mean weighted Youden J

0.74–0.81 which would likely indicate similar results compared to orthopedic surgeons, with

the caveat that fractures to the shoulder and knee might differ in diagnostic difficulty.

Table 4. Network performance for patella.

Patella

Observed cases (n = 600) Sensitivity (%) Specificity (%) Youden’s J AUC (95% CI)

A

A 5 80 83 0.63 0.79 (0.67 to 0.86)

1 5 80 85 0.65 0.81 (0.68 to 0.89)

1a 2 100 94 0.94 0.97 (0.93 to 0.99)

B

B 6 100 90 0.90 0.94 (0.91 to 0.97)

1 6 100 90 0.90 0.93 (0.90 to 0.97)

. . .1 3 100 78 0.78 0.86 (0.76 to 0.95)

. . .2 3 100 89 0.89 0.95 (0.89 to 0.99)

C

C 29 90 86 0.75 0.90 (0.79 to 0.97)

1 11 91 86 0.76 0.89 (0.74 to 0.97)

. . .1 6 100 85 0.85 0.94 (0.89 to 0.99)

. . .3 5 60 89 0.49 0.75 (0.44 to 0.96)

2 8 100 88 0.88 0.97 (0.93 to 0.99)

3 10 80 97 0.77 0.88 (0.70 to 0.98)

Custom classes

Displaced 21 81 91 0.72 0.88 (0.76 to 0.97

Table showing network performance for the different AO-OTA classes as well as other fracture descriptors, letter corresponds to fracture type, first number to group,

second number to subgroup and last letter to qualifiers. The observed cases column correspond to the number of observed fractures by the reviewers. Note that an exam

can appear several times as the category B1.1 will belong to both the overall B-type, B1 group and B1.1 subgroup at the same time.

https://doi.org/10.1371/journal.pone.0248809.t004

Table 5. Network performance for distal femur.

Distal femur

Observed cases (n = 600) Sensitivity (%) Specificity (%) Youden’s J AUC (95% CI)

A

A 5 100 83 0.83 0.94 (0.88 to 0.99)

2 4 100 97 0.97 0.99 (0.97 to 1.00)

B

B 4 75 83 0.58 0.72 (0.31 to 0.96)

C

C 3 100 97 0.97 0.98 (0.97 to 1.00)

Custom classes

B11 or C11 4 75 94 0.69 0.81 (0.49 to 0.98)

Table showing network performance for the different AO-OTA classes as well as other fracture descriptors, letter corresponds to fracture type, first number to group

and second number to subgroup. The observed cases column correspond to the number of observed fractures by the reviewers. Note that an exam can appear several

times as the category A2 will belong to both the overall A-type, and A2 group at the same time.

https://doi.org/10.1371/journal.pone.0248809.t005
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Some fractures were classified with significantly better prediction than others, though in

many cases differences in performance between categories were not significant. During train-

ing, we could see a trend where categories with few training cases performed worse, however

this correlation diminished later on due to the active learning approach. There were also ini-

tially indications that fractures with low Cohen’s kappa values were more challenging, but

after re-visiting all fractures in the training set this effect was no longer detectable. The impor-

tance of reducing label noise i.e. disruptions which obscure the relationship between fracture

characteristics and correct category [29],—sometimes stemming from incorrect or inconsis-

tent labelling by the image reviewers—is well-established [30] and our experience aligns with

prior findings.

Our diagnostic accuracy is somewhat lower than that reported in previous studies on deep

learning for fracture diagnostics. Langerhuizen et al found in their 2019 systematic review [16]

that six studies using a convolutional neural network to identify fractures on a plain radio-

graph [3, 4, 13, 14, 31, 32] reported AUC ranging from 0.95–1.0 and/or accuracy ranging from

83–97%. One of the studies in the review, Chung et al [14], also investigated fracture classifica-

tion using a convoluted neural network, with an AUC of 0.90–0.98 depending on category.

The difference in performance could partly be due to the complexity of the task at hand; our

study had 49 nested fracture categories whereas Chung et al. [14] had 4. Another likely cause is

that this study made use of a less strictly controlled environment in which to train and test the

network. Four of the six mentioned studies in the systematic review only used one radio-

graphic projection, [4, 14, 31, 32] a fifth study used two projections [3]. This study made use of

Fig 2.

https://doi.org/10.1371/journal.pone.0248809.g002
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several projections not all centered on the knee joint. Furthermore, our images where not cen-

tered around the fracture to the extent that images from the previous studies were and we did

not remove images containing distracting elements such as implants, as Urakawa et al. did

[31].

Fig 3.

https://doi.org/10.1371/journal.pone.0248809.g003
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Strengths and limitations

This study aimed to retain the full complexity a random influx of patients brings. We did not

introduce selection bias by automatically excluding knees with contractures, implants, thick

casts, and other visual challenges. Our study should thus be less likely to overestimate the AI

by simplifying the diagnostic scenario and closer to achieving a clinically relevant setting as

requested by Langerhuizen et al in their systematic review [16]. However, we did not avoid

selection bias completely as we removed images where the image quality was to poor for the

human reviewers to establish a correct fracture label. In the test set 5 cases where excluded,

four due to open physes and one because it did not include the knee joint, see Fig 1. We

actively selected rare fracture patterns, both to be able to capture all AO/OTA classes but also

because we believe that, in the long run, the potential clinical value of a computer assisted diag-

nosis will not only be in everyday fractures but in rare cases where even the clinician is uncer-

tain. This could however also be considered a limitation as we did introduce a bias towards

having rare fractures overrepresented in our data compared to how often they appear in clinic.

Fractures overall were also overrepresented as otherwise the data would be dominated by

healthy images. This would present less challenge for the network and would likely yield the

appearance of a better performing network but would hinder the goal of the study to evaluate

network performance for classification of different fracture types. We believe that the mixed

inter-rater agreement between the orthopedic surgeons reviewing the test sets also reflects that

the network was evaluated on cases that would be of varying difficulty for clinicians instead of

more trivial cases only.

A central limitation is that we did not have a sophisticated method of establishing ground

truth labels such as utilizing CT/MRI scans or operative findings or other clinical data to aid

the research team in interpreting the images. Including CT/MRI:s for 6000 exams was deemed

unfeasible as this would have vastly increased the time to review each exam and something

more suited for follow-up studies. Image annotation was instead aided by the radiologist

report, written with access to patient history and other exams. Unfortunately, this report was

often too simplistic to help in subgrouping AO/OTA-classes. Double audits were used for frac-

ture images but there is still a risk of misclassification. This misclassification bias could have

resulted in an underestimate in the number of complex fractures. However, we believe that

fractures that may require surgery will be subjected to CT/MRI exams, even with the aid of

computer-assisted diagnosis, as these are incredibly useful before entering the operating

theatre.

The AO/OTA classification system leaves room for differences in interpretation

between image reviewers—as demonstrated by Cohen kappa values between MG and EA—

which likely impaired a completely fair judgement of network performance. The AO/OTA

fracture classification system is also perhaps not the most commonly applied knee fracture

classifier, as it is impractically extensive for many clinical settings. However, its level of

detail can be useful for research purposes, and while some fractures where difficult to

categorize, once we super-grouped many of the estimates we saw a significant boost, sug-

gesting that this detailed classification can easily be simplified into one with fewer categories

if need be.

While the fractures were collected from over a decade long period with a large sample of

patients, our data selection was limited in that the data source is a single hospital in Stockholm.

A fracture recognition tool developed from this network might not perform as well on the frac-

ture panoramas of other cities or countries. Furthermore, findings are only applicable to an

adult population.
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Clinical applications

The study evaluates a potential diagnostic tool with the ability to generate classifications or

information which otherwise might fall into the area of knowledge for an orthopedic specialist

rather than a radiologist. The AO-OTA classification carries relatively detailed information on

properties usually not mentioned in the radiologist report, addition of a network report would

provide extra information of value for the clinician treating the patient. This tool could also

aid in alerting clinicians of otherwise potentially missed fissures and could serve as a built-in

fail-safe or second opinion for clinicians.

Future studies

Future studies could likely benefit from bringing in further information from medical records

and x-ray referral and using more detailed imaging methods such as CT or MRI or operative

findings as possible ways to refine the answer key the network is evaluated against. By using

pre-training network as presented, it should be feasible to fine-tune the network using a more

detailed but smaller subset of the cases used here.

In this study we relied on anonymized cases without patient data, adding patient outcomes

can be of great interest as we usually want to connect the fracture pattern to the risk of compli-

cations. Having a computer aided diagnostic tools allows us to do this on an unprecedented

scale.

Conclusion

In conclusion, we found that a neural network can be taught to apply the 2018 AO/OTA frac-

ture classification system to diagnose knee fractures with an accuracy ranging from acceptable

to excellent for most fracture classes. It can also be taught to differ between medial and lateral

fractures as well as non-displaced and displaced fractures. Our study shows that neural net-

works have potential not only for the task of fracture identification but for more detailed

description and classification.
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Visualization: Max Gordon.

Writing – original draft: Anna Lind.

Writing – review & editing: Anna Lind, Ehsan Akbarian, Simon Olsson, Hans Nåsell, Olof
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