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abundance, and geographical variation in health and disease
Tarini Shankar Ghosh a*, Jerome Arnouxa,b*, and Paul W. O’Toole a

aDepartment: School of Microbiology and APC Microbiome Ireland Institution, University College Cork, Cork, Ireland; bDepartment: UFR des 
Sciences et Techniques Institution, Université De Rouen, Normandie, France

ABSTRACT
Lactobacilli are exploited extensively for food fermentation and biotechnology. Some food and gut 
isolates have been developed as probiotics, for which species that may be commensal to the 
human host are considered desirable. However, the robustness of defining original niches for 
lactobacilli – food, environment, the gut – is questionable, and culture-independent analyses of 
prevalence in different human populations is lacking. Here we analyzed the abundance of lacto-
bacilli in 6,154 subjects from a database of highly curated fecal shotgun metagenomics data 
spanning 25 nationalities, with ages ranging from infancy to 102 years. Twenty-five species were 
detected, which we assigned into low, medium, and high prevalence groups. The microbiome of 
apparently healthy individuals could be categorized into 6 clusters or Lactobacillotypes (LbTypes), 
with three of the Lbtypes being dominated by L. delbrueckii, L. ruminis, L. casei, and the other three 
comprising a combination of different species. These Lactobacillus clusters exhibit distinct global 
abundance patterns. The cluster prevalences also display distinct age-specific trends influenced by 
geography, with overall lactobacillus prevalence increasing significantly with age in North America 
and Europe but declining with age in non-Westernized societies. Regression analysis stratified by 
regional location identified distinct associations of the Lactobacillotypes with age, BMI, and gender. 
Cirrhosis, fatty-liver, , IBD and T2D were characterized by net gain of lactobacilli, whereas hyperten-
sion patients harbored depleted lactobacillus levels. Collectively these data indicate that the 
species abundance of gut lactobacilli is moderated by geography, diet, and interaction with the 
whole microbiome, and has strong interactions with diseases associated with a western lifestyle.
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Introduction

Humans, mammals, insects and plants harbor dis-
tinct communities of microorganisms with whom 
they have co-evolved.1–3 Despite the challenges of 
defining the “normal” or health-associated state of 
the microbiome, 4 there is emerging consensus that 
alterations in the composition and function of the 
animal gut microbiome are associated with patho-
physiological syndromes or disease, both intestinal 
and extraintestinal.5 The precise molecular mechan-
isms whereby gut microbes could be involved in 
disease are still largely unexplained, but they include 
effects on metabolism, 6 immunity/inflammation, 7 

tumorigenesis, 8 and signaling.9 Analysis of the 
microbiome state may also be informative for asses-
sing risk of, diagnosing or managing disease. 10–13

The genus Lactobacillus encompasses an unu-
sually diverse number of species that share the 

property of being found in nutrient-rich 
environments.14 Lactobacilli have been exploited 
extensively for food preservation, 15 for biotechno-
logical applications, 16 and as health-promoting 
“probiotics”.17 The phenotypic diversity of the 
genus Lactobacillus is reflected in extraordinarily 
high genomic diversity, approaching that of other 
bacterial families. 18,19 The isolation sources for 
most lactobacilli may be broadly categorized as 
humans, animals, plants, food and environment, 
and major “lifestyle” assignment groupings coin-
cide remarkably with phylogenomic clades, 20 indi-
cating concerted evolution for niche adaptation.

Specialization of some lactobacillus species 
toward the human gut could indicate 
a commensal role, so it has historically been of 
interest to identify such species. Culture from 
human postmortem intestinal biopsies identified 
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L. gasseri, L. reuteri, L. salivarius, L. casei, 
L. plantarum and L. buchneri as the most common 
lactobacillus species, 21 and lactobacilli were con-
sidered until relatively recently to be dominant taxa 
in the normal microbiota that reached greatest 
numbers in the small bowel. 20 However, data 
from an early tranche of molecular studies reviewed 
by Walter, 22 revealed low abundance levels (i.e., 
less than 1.0% total abundance) of sequences 
related to lactobacilli in/on fecal material or intest-
inal biopsies. The species most commonly found in 
the human gut, in addition to those listed above 
from the review by Reuter, 21 include L. acidophilus, 
L. crispatus, L. johnsonii, L. ruminis, L. casei/para-
casei, L. rhamnosus, L. plantarum, L. fermentum, 
L. brevis, L. delbrueckii, L. sakei, L. vaginalis, and 
L. curvatus. 22 Identifying which lactobacilli are 
autochthonous to the human gut (formed where 
found) has also been of interest for the develop-
ment of probiotics, based on an early misconcep-
tion that species commonly used as probiotics must 
necessarily be able to transit the intestinal tract and 
then colonize the gut. 23 In reality, commensalism 
or autochthony is not an a priori requirement for 
an ingested microbe to have a beneficial effect on 
the host, and because so many lactobacillus species 
are naturally found in raw or fermented foods, 
isolating a given species from human stool does 
not reliably guarantee that species is autochtho-
nous. Finally, many of the older culture-based lit-
erature relied on ambiguous phenotypic traits or 
since-altered species assignments, 24 making it hard 
to combine published datasets reliably to generate 
larger subject numbers for determining prevalence.

When administered as probiotics to humans, 
selected species and strains of lactobacilli have con-
ferred benefits including alleviation of infant colic, 
25 amelioration of lactose intolerance26 and reduced 
symptoms of atopic dermatitis. 27 Many lactobacilli 
are present in fermented foods that themselves have 
reported health benefits. 28,29 However, although 
human gut lactobacilli are generally considered 
beneficial, there are some reports of elevated lacto-
bacillus abundance in the microbiome of people 
with some diseases e.g. Type 2 Diabetes, 30 obesity, 
31 liver cirrhosis32 and even systemic 
autoimmunity. 33 However, these findings are con-
troversial and may indicate association with disease 
symptoms rather than causation, because other 

studies have even suggested beneficial effects in 
these diseases. 34–38 Lactobacilli occasionally cause 
bacteremia or sepsis, almost always in immuno-
compromised patients, 39 and sometimes with 
strains administered as probiotics rather that 
strains already present in the subject. 40,41

The overall composition and function of the gut 
microbiome is influenced by external factors includ-
ing geographical region, 42 ethnicity, 43 and diet. 44,45 

How these factors intersect to modulate the lactoba-
cillus species that are prevalent or abundant on 
a global basis is currently unknown. The availability 
of a large number of metagenomic datasets from 
globally distributed cohorts, apparently healthy con-
trols and case studies, has allowed us to dissect the 
interaction of location, age, health, and disease with 
the abundance of commensal lactobacilli. We 
observe that the Lactobacillus composition in gut 
microbiomes displays distinct associations with geo-
graphical location, age, BMI, and gender of the indi-
viduals. Lactobacillus-microbiome configurations in 
western countries may represent recent reconfigura-
tion of a primordial intestinal ecotype, among which 
a specific configuration of lactobacilli is positively 
associated with not only age and BMI, but also 
with multiple diseases and disease marker taxa.

Results

Lactobacillus prevalence in the human gut and 
Lactobacillus-specific microbiome configurations

Lactobacilli present in human stool may be either 
autochthonous species being shed, or allochtho-
nous strains transiently acquired from food or the 
physical environment. We reasoned that transient 
carriage would be less of a factor in a very large 
dataset derived by culture-independent methods. 
The curatedMetagenomicData repository provides 
such a resource, comprising more than 5,700 fecal 
shotgun metagenome datasets from 34 studies. Of 
these, 21 are disease-microbiome studies, with 17 
containing paired control and diseased samples46 

(detailed in Supplementary Table S1). The remain-
ing 13 study cohorts included only apparently 
healthy individuals, either from specific national-
ities/ethnicities or age-groups. These datasets have 
all been collated and analyzed in a uniform manner 
which virtually eliminates bioinformatic-analysis- 
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related variations across studies. We supplemented 
this dataset with 408 fecal microbiome profiles 
from our own ELDERMET project and a recently 
published case-control dataset comprising of IBD 
patients. 47,48

We first explored the prevalence of various 
Lactobacillus species across the 6,155 collated fecal 
microbiome datasets. Overall, 2141 of the 6155 
samples harbored at least one Lactobacillus species, 
detected with a relative abundance of 0.01% (See 
Methods for the selection of this threshold of detec-
tion). We next used a linear regression-based strat-
egy that quantified the association of various host- 
associated demographic factors with the 
Lactobacillus detection rate (that is the number of 
Lactobacillus species detected per sample) after tak-
ing into account the study-specific (technical) var-
iations (by especially taking the study name as 
a confounder) (Supplementary Table S2a). The 
detection rates were significantly associated with 
geography (country), age-group and the study- 
conditions of the individuals. Study condition 
refers to the clinical status of the individual from 
whom the corresponding gut microbiome sample 
was collected (as part of the original study and then 
collated in the curatedMetagenomicData reposi-
tory). Study condition indicates whether an indivi-
dual is an apparently healthy control, or is suffering 
from a specific disease or has undergone a specific 
treatment like antibiotics or fecal microbiome 
transplantation (FMT). Thus, the above result indi-
cates that even after adjusting for study-specific 
factors, the overall prevalence rates of Lactobacilli 
showed significant variation, not only with respect 
to the country or the age-group of the individuals, 
but also with clinical status. Furthermore, using 
PERMANOVA analysis, we observed that these 
associations remain significant even at the level of 
the abundance of the individual species, after 
accounting for the study-specific technical factors 
like DNA extraction method, sequencing depth, 
and sequencing methodology (Supplementary 
Table S2b). Next, we focussed only on the subset 
of 4,303 non-diseased controls to investigate 
whether apparently heathy individuals were char-
acterized by distinct configurations of gut 
Lactobacilli and whether (and how) these config-
urations varied with respect to the geography, age- 
group and other demographic factors.

Overall, 1,459 of the 4,303 (34%) of ‘non- 
diseased’ controls harbored at least one 
Lactobacillus species, (Supplementary Table S3). 
The detection pattern encompassed 47 
Lactobacillus species, with 22 of these (hereafter 
referred to as ‘rare’ lactobacilli) detected in less 
than 5 of the 1,459 samples. We detected 25 lacto-
bacillus species above this threshold in 1,459 sam-
ples belonging to 31 cohorts from 22 countries 
(Figure 1(a)), with aggregate presence values ran-
ging from 505 samples (L. ruminis), through 124 
samples (L. mucosae), to 30 samples (L. iners) and 
below. For descriptive purposes, we divided the 
detected species into high (detected in greater 
than 100 samples), medium (detected in 50 to 100 
samples) and low (less than 50 samples) prevalence 
groups (Figure 1(a)). The high-prevalence group 
included two species commonly consumed as pro-
biotics, L. casei and L. rhamnosus, but the most 
prevalent species was L. ruminis which is also 
found in animals, and has the property of some 
strains being motile. 49 The species commonly 
used in combination with Streptococcus thermophi-
lus for yogurt fermentation, L. delbrueckii, was the 
fourth most prevalent species (Figure 1(a)). The 
medium prevalence lactobacilli comprised three 
species found in fermented foods, L. acidophilus 
(also used as a probiotic), L. sakei, and 
L. plantarum. The low prevalence lactobacillus 
group included three species commonly found in 
the vagina (L. iners, L. vaginalis, and L. jensenii), the 
others being primarily food or animal associated 
species (Figure 1(a)). We also observed that 1013 of 
the 1459 samples were characterized by the pre-
sence of a single Lactobacillus spp. (69%), with 
only 6% having three or more species (Figure 1(b)).

To further clarify the lactobacillus configurations 
in the gut microbiomes of apparently healthy indi-
viduals, we asked if the individuals could be clus-
tered in terms of their relatedness based on 
lactobacillus species abundance. This approach is 
conceptually similar to enterotypes50 but based on 
lactobacillus abundance profiles. This primarily 
consisted of two steps, the first being the identifica-
tion of an optimal number of clusters and 
the second being identification of the key species 
associated with each cluster. For identification of 
the optimal number (k) of clusters, we adopted an 
iterative approach, wherein we performed 100 
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iterations. In each iteration, we randomly selected 
50% of the samples and computed the silhouette 
scores for different cluster numbers (ranging from 
2 to 20). The distribution of the silhouette scores 
across the 150 iterations for each cluster number is 
shown in Supplementary Figure S1a. The highest 
median silhouette scores were obtained when the 
clusters were k = 5 or 6. However, for k = 6, the 
variations across iterations was noticeably lower, 
indicating that the microbiomes could be clustered 
optimally into six clusters that are stable to varia-
tions across iterations. This identified the optimal 
number of clusters as six (Supplementary Figure 
S1b). We labeled these microbiome clusters as 
“Lactobacilllotypes” (or “LbTypes”) (Figure 1(c)). 
We further tested the robustness of these 
Lactobacillotype groupings using PERMANOVA 
analysis and Random Forest models. Regional fac-
tors capture variations in ethnicity, diet, lifestyle, 

and other socio-economic status, and have been 
shown in previous studies to have to have the 
strongest effect on the microbiome variations. 43,48 

First, we observed that the variations in the com-
positional abundance of Lactobacilli across the dif-
ferent Lactobacillotypes remained significant after 
accounting for country of origin (R-squared = 0.06 
and P < .001), continental region (R-squared = 0.10 
and P < .001). The associations remained signifi-
cant even after accounting study name as 
a confounder (PERMANOVA R-squared = 0.07 
and P < .001), thus indicating that study-specific 
technical variations do not influence these 
associations).

We next validated the LbTypes using 100 itera-
tions of Random Forest models, wherein for each 
iteration, we randomly selected 50% of the 1,462 
samples to act as the training subsets to predict the 
Lactobacillotypes based on the lactobacillus profiles 

Figure 1. The gut microbiome of apparently healthy individuals is characterized by distinct lactobacillus populations. a. Bar plots 
showing the number of times each Lactobacillus species was detected (with abundance > 0.01%) in samples from ‘non-diseased’ 
control individuals. The species belonging to the ‘High-Prevalence’, ‘Medium-Prevalence’ and ‘Low-Prevalence’ groups of lactobacilli 
are demarcated. b. Bar showing the number of control individuals having different number of Lactobacillus species in their gut 
microbiomes. c. Principal Component Analysis (PCoA) plots (with the top 2 PCoA axes) showing the samples belonging to the different 
Lactobacillotypes (LbType). R-Squared and P-values of the PERMANOVA analysis testing the significance of these splits after 
considering both the country and the region as confounders is indicated. d. Heatmap on the left panel shows the percentage 
occurrence of each High and Medium prevalent Lactobacillus species in the six LbType. The percentage occurrence is the calculated 
from the number of times a given species was detected in a sample belonging to the given LbType divided by the total number of 
samples belonging to the LbType. Species that are significantly enriched in certain LbType were identified using Fishers’ Exact Test 
(estimate > 1 and p-value < 0.05) are indicated with *. e. Based on the significant enrichment patterns, the six LbTypes were named as 
described based on the dominant species in each cluster.
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and subsequently tested this, trained on the 
remaining 50% of the samples. The models 
achieved an overall prediction accuracy of 98.4% 
across all LbTypes (Supplementary Figure S2a). 
The group-specific accuracies indicated similar 
levels of cluster granularities for almost all the 
LbTypes (accuracies of greater than 97%), except 
for LbType 6 (having the lowest group-specific 
accuracy at 93.5%).

Random Forest models provide the importance 
scores quantifying the predictive power of each 
feature (in this the case the lactobacillus abun-
dance) in the LbType classification scheme. These 
species-specific feature importance scores indicated 
four species, L. ruminis, L. gasseri, L. casei, 
L. delbrueckii, as the top predictors of the 
Lactobacillotype classifications (Supplementary 
Figure S2b). These can be regarded as the signature 
taxa for each LbType. Three Lactobacillotypes 
(LbType 2, LbType 4 and LbType 5) were asso-
ciated with each of the top predictor Lactobacillus 
species identified using the Random Forest models 
(with each signature species being present in at l00 
of all samples in the corresponding LbTypes. To 
probe this further, we then identified the 
Lactobacilli significantly enriched in each of the 
Lactobacillotypes using Fishers’ exact test (Figure 
1(d)). This combination of Random Forest models 
and Fishers’ exact tests enabled a clear identifica-
tion of LbType-specific signatures. While LbType 1 
was observed to be mixed, enriched with L. gasseri 
(present in 96% of the samples) (along with 
L. salivarius and L. fermentum present in 43% and 
31% of the samples belonging to this LbType, 
respectively), LbTypes 2, 4 and 5 were each linked 
to L. casei, L. delbrueckii, and L. ruminis, respec-
tively (each characteristic species being present in 
100% of the samples belong to the corresponding 
LbType) (Figure 1(d)). Consequently, the LbTypes 
1, 2, 4 and 5 were respectively named as Gasseri/ 
Salivarius/Fermentum (or GSF), Casei, 
Delbrueckii, and Ruminis (Figure 1(e)). There 
were two other LbTypes (LbType 3 and 
LbType 6). LbType6 was enriched with L. ruminis 
(present in all the samples belonging to this 
LbType, similar to LbType 5) but additionally asso-
ciated with L. delbrueckii (present in 41% of the 
samples) (Figure 1(d)). Because of this reason, it 
was named as Ruminis/Delbrueckii (or RD) (Figure 

1(e)) In contrast to other LbTypes, we could not 
detect any signature species for LbType 3. This 
LbType was characterized by multiple species 
(none of which were detected in more than 25% 
of the samples. These included L. rhamnosus (pre-
sent in 23% of the samples), followed by 
L. salivarius, L. acidophilus, L. mucosae, L. sakei 
(all present between 10 and 15% of the samples 
belonging to this LbType) as well as L. fermentum 
(which was present in 9% of this LbTypes’ samples). 
Consequently, LbType 3 was named as ‘Mixed’ 
(Figure 1(e)). (Hereafter these notations are used 
to refer to the LbTypes). The two L. ruminis- 
associated LbTypes were least related to the other 
LbTypes (Figure 1(c)).

We next investigated the association of these 
LbTypes with the global enterotypes (which we 
defined in a similar manner as the LbTypes but 
considering the global composition profiles of all 
the core taxa) across the 1,462 gut microbiome 
samples. All non-diseased individuals could be 
divided into three optimal clusters referred to as 
Enterotypes (or EnTypes 1–3) (Supplementary 
Figure S3a-c) associated with Prevotella, 
Bacteroides, and Bifidobacterium abundance, 
respectively (Supplementary Figure S3d; 
Supplementary Table S4). Using a combination of 
Fishers’ exact test and logistic regression models 
(See Methods and Supplementary Table S5), we 
observed associations of certain Enterotypes with 
different regions and age-groups. These reflected 
previously reported associations of particular 
microbial taxa with different regions and age- 
groups. The associations reflected the previous 
known associations of specific gut microbial mem-
bers with age and geography. 51,52 These included 
significant enrichment of the Bifidobacterium- 
associated Enterotype 1 in infants; the enrichment 
of the Prevotella-associated Enterotype 3 in the 
Other (Non-industrialized) geography as well as 
the opposite trend observed for the Bacteroides- 
linked Enterotype 2. (Supplementary Figure S3d).

Analyzing the Lb-Type associations with the 
Enterotypes revealed a positive association between 
the ruminis-associated LbTypes 5 and 6 with the 
Prevotella-associated Enterotype 3 (Benjamini 
Hochberg FDR of Fishers’ Exact Test < 0.05; 
Supplementary Figure S3e). A similar link was 
also found between the LbTypes 1 (GSF), 2 
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(Casei) and 3 (Mixed), and the Bifidobacterium- 
associated Enterotype 1 (Benjamini Hochberg 
FDR of Fishers’ Exact Test < 0.05). The 
Bacteroides-associated Enterotype 2 was present 
across all LbTypes. However, significant positive 
associations were observed with LbTypes 3 
(Mixed), 4 (Delbrueckii) and 5 (Ruminis) 
(Supplementary Figure S3e).

Discrete patterns of Lactobacillus prevalence by 
region and country

As described above, geographic variation incorpo-
rates the key variations in ethnicity, diet, and life- 
styles, which have previously been identified as 
strong covariates of microbiome composition. 
43,44,48,52 However, previous studies of lactobacillus 
abundance in the human gut did not overtly con-
sider the effects of geographical region and country. 

The prevalence rates of Lactobacilli across the dif-
ferent regions displayed significant variations even 
after adjusting for study-specific effects 
(Supplementary Figure S4), with the nationalities 
belonging to the other non-industrialized regions 
having significantly higher prevalence rates as com-
pared to North America (significantly lower rates of 
Lactobacilli prevalence).

We determined the proportion of individuals 
whose microbiomes could be assigned to each 
LbType as a function of geographical region 
(Figure 2(a)) and the proportional representation 
with each region of the LbTypes (Figure 2(b)). The 
European subjects were characterized by 
a significant enrichment of LbTypes Delbrueckii, 
Casei, Mixed, and Gasseri/Salivarius/Fermentum 
(GSF) (Fishers’ Exact Test Benjamini-Hochberg 
FDR 2.14e-2, 3.4e-22, 5.63e-2 and 1.04e-2, respec-
tively), and a significant lower prevalence of the two 

Figure 2. Lactobacillus species abundance in the gut displays significant region-specific trends. a. Stacked bar plots showing the 
region-wise percentage composition of each LbType b. Stacked bar plots showing the LbType percentage composition of each region. 
c. Top panel: Bar plots show the country-specific prevalence rates of Lactobacilli (percentage of samples from each country with at least 
one Lactobacillus species detected at abundance > 0.01%). Asterisks * in green indicate countries with significantly high prevalence 
rate, * in red indicate countries with significantly low prevalence rates (as compared to all others) (all with Benjamini-Hochberg FDR < 
0.1). This was identified using Fishers’ exact tests (See Methods). Bottom panel shows the heatmap showing the number of times each 
LbType was detected across each country. * indicates significant enrichment of a LbType in a given country using Fishers’ exact test 
approach with Benjamini-Hochberg FDR < 0.1 (See Methods). For a given country, the colors of the cells are assigned based on the 
ranked detection of a LbType in that country (green for the highest detected LbType and red for the lowest detected LbType). * 
indicates significant enrichment of a LbType in a given country using Fishers’ exact test approach with Benjamini-Hochberg FDR < 0.1. 
For a given country, the colors of the cells were assigned based on the ranked detection of a LbType in that country (green for the 
highest detected LbType and red for the lowest detected LbType).
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ruminis-associated LbTypes (Fishers’ Exact Test 
Benjamini-Hochberg FDR for Ruminis: 9.87e-6 
and RD: 5.6e-2). In contrast, the L. ruminis- 
associated LbTypes were enriched in Asian subjects 
(Fishers’ Exact Test Benjamini-Hochberg FDR for 
Ruminis < 7.53e-7 and RD: 3.12e-3) and subjects 
belonging to the non-industrialized nationalities of 
Fiji, Peru, Tanzania and Madagascar (Fishers’ Exact 
Test Benjamini-Hochberg FDR for Ruminis: 
P < 5.11e-75 and RD: 0.32).

European and North American subjects had 
more even distribution of a greater number of 
LbTypes and both harbored the Delbrueckii and 
Casei LbTypes which was noticeably absent in 
Asians and in the subjects from non- 
industrialized regions (Figure 2(a)). Over 
thirty percent of North American subjects were 
of the mixed LbType (Figure 2(b)). The North 
American subjects also displayed the highest 
prevalence of the Gasseri/Fermentum/Salivarius 
(GSF) LbType. Compared to other regions and 
subjects, the European subjects displayed the 
highest prevalence of the Delbrueckii and Casei 
LbType which may relate to yogurt and probio-
tic consumption, although paired dietary intake 
data for the study subjects was not available.

The highest prevalence rates by country (Figure 
2(c)) were found in Austria, France, and in three 
non-Industrialized countries, Mongolia, Fiji and 
Peru. In France, the mixed and Casei LbTypes 
were the most prevalent. In Austria, the most pre-
valent LbType was Delbrueckii. In other European 
countries, there were clear and sometimes surpris-
ing differences; Danish subjects were dominated by 
the Ruminis LbType whereas in Finland and 
Estonia, Casei was more dominant. Spain showed 
a similar profile of Lactobacillotype abundance as 
France, but Great Britain differed due to higher 
relative abundance of the Gasseri/Salivarius/ 
Fermentum Lactobacillotype. In the non- 
industrialized regions of Mongolia, Fiji, Tanzania, 
Madagascar, and Peru, the Ruminis LbType was 
significantly dominant. The clear influence of geo-
graphy on the Lactobacillus composition of the gut 
microbiome was observed with respect to both the 
LbType to country associations (Chi-Square Test 
P < 2.2e-16) as well as the variation of the species 
profiles across different countries (after adjusting 
for Study-specific effects) (PERMANOVA analysis 

of Species Composition Variance based on Kendall 
distances: P < .001).

These country-to-LbType relationships were also 
reflected in the country-to-species prevalence pat-
terns (Supplementary Figure S5), whereby the 
Lactobacillus spcies composition of the subjects 
belonging to the North American and European 
countries were diverse (and characterized by dis-
tinctly lower prevalence of L. ruminis). In contrast, 
the subjects living in the non-industrialized coun-
tries were notably similar, being characterized by 
the dominance of L. ruminis.

Region-specific association of Lactobacilli with age, 
Body Mass Index (BMI) and gender

Given that geography was significantly associated 
with both the prevalence of Lactobacillus species 
and LbTypes, we performed a region-stratified ana-
lysis of the association of host anthropometric fac-
tors including age, BMI and gender on the 
Lactobacillus relative abundance in the gut 
microbiome.

Notwithstanding the fact that similarly-sized 
age groups were not equally distributed across 
all countries surveyed, in North America, the 
Lactobacillus prevalence rate in the Elderly 
being significantly higher than the Child/Teen/ 
Young/Middle-aged groups (Figure 3(a); Fishers’ 
exact P < 2.2e-10). Similarly, for the European 
individuals, the Elderly were observed to have 
significantly higher Lactobacillus prevalence as 
compared to the Child/Teen, Young and 
Middle-aged groups (Fishers’ exact P-value < 
0.002; Figure 3(a)). Only within Europe, the 
prevalence rates in the Infants were higher as 
compared to the Child/Teen/Young/Middle- 
aged groups (Fishers’ exact P-value < 0.013). 
While infant samples were not available from 
the North American and Asian regions, in the 
other non-industrialized regions, no significance 
difference in Lactobacillus prevalence rates was 
observed between the infants and those belong-
ing to the Child/Teen/Young/Middle-aged 
groups. In the non-industrialized regions, how-
ever, we observed significantly lower 
Lactobacillus prevalence rates in the elderly (as 
compared to the Child/Teen/Young/Middle-aged 
groups). This was in contrast to that observed 
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for the European and North American subjects. 
To further confirm that these observations were 
not consequences of country-specific biases in 
the proportional representation of age groups, 
we devised region-specific logistic regression 
models to compute the association of 
Lactobacillus prevalence rates with age after 
adjusting for country-specific variations (within 
each region) as confounders. The direction and 
the strength of the above associations were 
retained (however the negative association with 
age was not significant for the non-industrialized 
regions with P < .1) (Supplementary Table S7), 
confirming that Lactobacillus prevalence rates 
associate differentially with age depending upon 
the geographical location of the subject. 
Comparisons within the child/teen, young and 

middle were neither significant nor yielded any 
coherent patterns across regions.

We also detected distinct region-specific enrich-
ments for certain LbTypes in specific age-groups. In 
North America, this was reflected in higher preva-
lence of the Mixed, Gasseri/Fermentum/Salivarius 
and the Casei LbTypes in the elderly, while 
European elderly subjects gained these three 
LbTypes plus the Ruminis LbType (Figure 3(a), 
lower). For the Asian cohort, age information was 
only available for the Chinese individuals. In this 
cohort, the gain of lactobacilli with age was less 
clear-cut and was not statistically significant, per-
haps because the cohorts available featured very 
low numbers of elderly subjects. However, we 
detected significant differences in the LbType com-
position across age-groups, with the Young and the 

Figure 3. Host anthropometrics have specific associations with Lactobacillus species abundance, with age showing distinct region- 
dependent interaction. a. Bar plots on the top show the age-group specific prevalence rates of Lactobacilli across the four different 
regions. For a given region, the lactobacillus prevalence rates in a specified age-group were computed as the proportion of individuals 
(expressed as a percentage) in that age-group who have at least one lactobacillus species detected with abundance > 0.01. Fishers’ 
Exact Test p-values of the comparison of prevalence rates between Child/Young/Middle and the Elderly are shown for three regions of 
Europe, North America and the Other non-industrialized countries. Infants were not included in these groups because of the absence of 
infant samples from both North American and Asian regions, as well as the lack of consistent trends observed for the infant subjects 
across the other two regions. Heatmaps on the bottom panel show the number of times each LbType was detected in control 
individuals belonging to each age-group in each region. * indicates significant enrichment of a LbType in a given region. The age- 
groups of the individuals were defined as Infants: ≤ 2 years, Child/Teen: (2–20] years, Young: (20–40] years, Middle: (40–60] years and 
Elderly (> 60 years, with the maximum age being 102 years). b. Association extent computed using logistic regression (calculated by 
calculated by multiplying the -logarithm of p-values (of base 10) with the directionality of the association) considering the region as 
a confounder. Positive associations (with P < .05) are indicated in green. Negative associations (with P < .05) are indicated in orange. 
See Methods for details on the regression analysis.
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Middle age-groups being characterized by 
a significant enrichment of the mixed LbTypes, 
while the elderly were characterized by 
a significant gain of the Ruminis LbType. In the 
non-industrialized countries, an apparent decline 
in the Ruminis LbType prevalence was based on 
data for only 15 elderly subjects. Future analysis of 
more elderly subjects from these countries is 
required to investigate if our well-supported con-
clusion that Lactobacillus prevalence alters with age 
in North America and Europe also applies to those 
regions.

In addition to age, we also probed the association 
of Lactobacillus prevalence rates with BMI and 
gender separately within each geographical region. 
BMI data was available for 2092 subjects belonging 
to 16 studies (Supplementary Table S1). Increased 
lactobacillus abundance in obesity has been 
reported by one study, 53 but meta-analysis of the 
response of the gut microbiota to successful weight 
management interventions indicated that reduced 
lactobacillus abundance associated with weight 
loss. 54 We examined the prevalence of LbTypes 
as a function of Body Mass Index (BMI) in the 
gut metagenome data. For this we applied similar 
logistic regression models that checked the associa-
tion of Lactobacilli prevalence first with BMI (and 
then with gender), while accounting for the coun-
try-specific variations as confounder 
(Supplementary Table S7). Region-stratified asso-
ciation analysis identified a marginally positive 
association between lactobacillus prevalence and 
BMI but only in European individuals (Logistic 
regression R = 0.024; P < .054) (Supplementary 
Table S7). This was not observed for any other 
geographical regions. However, there were varia-
tions in BMI ranges for the different studies with 
especially high BMI ranges for certain European 
cohorts like FengQ_2015 (median BMI = 27.6) 
and LeChatelierE_2013 (median BMI = 30.7) as 
compared to other regions. Such variations across 
region differences in BMI distributions may affect 
the ability to identify microbiome associations.

Further logistic regression analysis taking the 
region as cofounder identified L. gasseri-salivarius- 
fermentum LbType as positively associated with 
both age and BMI (Figure 3(b)). The mixed 
LbType showed the opposite trend. L. delbrueckii 
LbType was associated with lower BMI and the 

female gender. Interestingly, the L. ruminis 
LbType was positively associated with BMI. 
However, these results should be treated with cau-
tion as they could not be validated after taking into 
account the country-specific biases within each 
region. We could not perform this adjustment 
because of the gender/BMI biases within countries 
and the complete absence of certain LbType in 
different countries.

Association between Lactobacillus abundance and 
disease

We next investigated the association of various 
Lactobacilli with different diseases. To avoid varia-
tions originating from differences in inclusion/ 
exclusion criteria and experimental conditions, for 
each disease, we focussed only on cohorts specific 
to that disease. We identified 15 case-control stu-
dies corresponding to nine diseases that included at 
least 20 disease subjects and matched control sam-
ples (as part of the same study) (See Methods). We 
used logistic regression models to associate disease 
occurrence with the overall Lactobacillus preva-
lence rate as well as with the abundance of each 
Lactobacillus species after accounting for host 
anthropometric factors like age, BMI and gender.

We identified 19 significant Lactobacillus- 
Disease associations (with Benjamini-Hochberg 
FDR < 0.1) (Figure 4(a)). These encompassed 11 
Lactobacillus species covering six out of the nine 
diseases. Out of these six, IBD, Cirrhosis, and type- 
II diabetes (T2D) were observed to have 
a significant increase in the overall detection of 
Lactobacilli, with IBD and Cirrhosis associated 
with increased prevalence rates of six 
Lactobacillus species, namely, L. gasseri, 
L. salivarius, L. mucosae, L. delbrueckii, 
L. vaginalis, and L. oris. T2D, on the other hand, 
was associated with increased prevalence of 
L. amylovorus. Polyps (adenoma) and colorectal 
cancer (CRC) were associated with a decrease in 
the Lactobacillus prevalence rates. Notably, 
Ruminis was associated with a decreased preva-
lence in multiple diseases, including cirrhosis, 
CRC, and Otitis. These associations could either 
indicate a direct link, or an indirect effect whereby 
altered lactobacillus abundance is associated with 
changes in the overall microbiome composition, be 
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they causative or consequential of the indicated 
pathophysiology.

We next investigated, in the non-diseased con-
trol individuals, if certain Lactobacillotypes were 
more associated with disease-like microbiome con-
figurations as compared to others. For this purpose, 
we checked if any of the gut microbial taxa pre-
viously shown to be associated with multiple dis-
eases also displayed significant variations across the 
different Lactobacillotypes. In a recent meta- 
analysis covering five major diseases (namely, col-
orectal cancer, inflammatory bowel disease, type II 
diabetes, polyps and cirrhosis), we identified 
a specific group of taxa that were associated (either 
enriched or depleted) across multiple diseases (as 
shown in Figure 4(b)). 48 In addition, we also 
observed that a subset of these taxa that were 
enriched in multiple diseases were also associated 
with frailty in the ELDERMET cohort. In this cur-
rent analysis, we, therefore, checked for either 

enrichment or depletion of each of these multiple- 
disease-associated taxa in each of the six LbTypes. 
We found that subjects harboring the L. gasseri- 
fermentum-salivarius Lactobacillotype were 
enriched for several taxa including C. citroniae, 
C. symbiosum, C. bolteae, C. asparagiforme, 
C. symbiosum, Clostridiales bacterium 1_47FAA, 
that were not only enriched in multiple diseases 
but also associated with increased frailty in the 
elderly individuals (Figure 4(b)). 48 In contrast, 
this LbType was negatively associated with multiple 
health-associated taxa including C. catus, E. rectale, 
B. crossotus, D. longicatena. These data corroborate 
the association of L. gasseri, and L. salivarius with 
the altered microbiome found in multiple disease 
states (in other words as indicated by their 
increased detection in multiple diseases as seen in 
Figure 4(a)). In contrast, the L. ruminis 
Lactobacillotype showed the exact opposite trend, 
with enrichment of multiple health-associated taxa 

Figure 4. Lactobacillus species display distinct associations with multiple diseases and disease markers. a. Heatmap showing the 
significant association of the individual species as well as the overall Lactobacillus prevalence with the different diseases. The 
associations were obtained using Logistic regression models (within disease-specific country cohorts taking age, BMI and gender as 
confounders) (See Methods). Only those associations with either unadjusted P < .05 (shown as marginal associations) Benjamini- 
Hochberg FDR < 0.1 (as significant associations) are reported, along with the directionalities (as estimated from the regression models; 
that is positive or enriched if estimate > 0 and negative or depleted if estimate < 0). For each disease, we have shown the number of 
case-control studies included for each disease, the number of diseased subjects, and the number of control subjects. b. Heatmaps 
showing the association of the different generic disease markers with the different LbTypes identified using Mann-Whitney Tests (See 
Methods). Generic disease markers enriched or depleted in multiple diseases are indicated in green or red in the side color bars. Please 
refer to the original reference in Ghosh et al48 for details on the identification of these generic disease markers.
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and depletion of the pathobionts that were enriched 
in subjects of the Gasseri/Fermentum/Salivarius 
LbType. The Delbrueckii and Casei LbTypes also 
showed multiple positive and negative associations 
with health-associated taxa, respectively.

Discussion

Prior to the recent upsurge in culture-independent 
analyses of the gut microbiome, Lactobacilli were 
considered textbook examples of dominant or sub- 
dominant taxa. The vast number of 16S rRNA gene 
profiling studies and shotgun studies of the past 
decade showed this not to be true, but there had 
been no systematic studies of what Lactobacilli 
were present in what populations, and what, if 
any, host metadata co-varied with the 
Lactobacillus composition of the gut microbiome. 
Such insights could be helpful in the design and 
development of Lactobacillus-based (Lb-based) 
probiotic formulations. In spite of the availability 
of a multitude of over-the-counter Lb-based pro-
biotic formulations, investigations into their clini-
cal efficacy have yielded conflicting results, that are 
further confounded by the geographical region of 
the study-cohort, as well as by other host-associated 
factors like age (reviewed in55). Studies in animals 
and humans have indicated that the ability of an 
administered probiotic to engraft is dependent on 
predictive baseline host and microbiome features. 
56 It is debatable whether or not probiotic engraft-
ment is desirable or necessary, but the specific 
patterns of lactobacillus species-gut microbiome 
interactions we report here are consistent with the 
notion that an administered probiotic will show 
different rates of successful network interaction 
with different microbiome types. The efficacy of 
any species to ameliorate disease symptoms may 
thus be modulated by the diet, environment and 
the indigenous microbiome of the host. Thus, 
insights into the differential prevalence of 
Lactobacilli across the geographical and age- 
landscape may aid in the formulation of persona-
lized or population-specific probiotic formulations.

In this context, a key challenge is the accurate 
species-level identification of the Lactobacilli in the 
gut microbiomes. Given their close phylogenetic 
relatedness, species assignment of lactobacilli is 
challenging based on 16S rRNA amplicon data 

(specifically those using short-read sequencing 
technologies) and so we relied on shotgun metage-
nomic sequencing data for the current study. The 
thresholds for the detection of each species has 
been validated for the Metaphlan software, 57 but 
our thresholds erred on the side of caution, so we 
acknowledge the possibility of under-detection of 
some species. Despite this technical caveat, the rank 
order of species prevalence aggregated across the 
subjects analyzed is broadly in line with older cul-
ture-based analyses (and reviewed in Introduction). 
We detected L. buchneri in only 9 samples above 
0.01% abundance (Supplementary Table S1) 
although it was commonly cultured by Reuter, 21 

which probably reflects the fact that it is isolated 
from pressed yeast, milk, cheese, and fermenting 
plant material and this could vary dramatically by 
time period and geography. L. reuteri was also 
detected at relatively low prevalence compared to 
historical culture-based data, being found in the 
current study in only 18 subjects above 0.01% rela-
tive abundance. Both L. reuteri and L. buchneri 
were sparsely detected in the Non-industrialized 
populations (0 for L. reuteri and 2 for 
L. buchneri) (Supplementary Figure S5). This is in 
line with studies by Walter that suggest human 
L. reuteri strains are a bottle-necked clonal line 
due to a relatively recent dramatic reduction in 
carriage of this species, 22 perhaps driven by indus-
trialized Western diet.

The Enterotypes identified in the current study 
largely capture some of the known patterns of gut 
microbiome variation with age and region. The 
interesting insights obtained in the current study 
pertain to the specific LbType-Enterotype associa-
tions. L. ruminis is one of the few species suggested 
by Reuter to be autochthonous in humans which is 
consistent with our finding that it is by far the most 
highly prevalent species. 21 As well as being present 
in all major geographical regions that we could 
survey, this species was particularly prevalent and 
abundant in non-industrialized countries, where it 
correlated with the relative over-abundance 
Prevotella-associated enterotype 3. The genus 
Prevotella displays important strain-level diversity 
in phenotype not investigated here, 58 but the over-
all abundance is driven by fiber and complex car-
bohydrate intake, whereas L. ruminis strains found 
in humans, as well as being non-motile compared 
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to animal isolates, have modest carbohydrate 
degradation capacity, 59 as do many lactobacillus 
species found in the human gut. 60 However, 
L. ruminis has been shown to effectively metabolize 
tetrasaccharides released from more complex sub-
strates by gut microbiota taxa including 
Coprococcus catus. 61 This was further confirmed 
in the current study wherein we observed 
a significant enrichment of C. catus along with 
other fiber-degrading bacteria like E. rectale, 
B. crossotus in indivduals belonging to the 
L. ruminis LbType. Thus, the prevalence and abun-
dance of L. ruminis in non-industrialized subjects 
could reflect its ability to cross-feed on substrates 
released from a high-fiber diet consumed by sub-
jects in non-industrialized countries, who we 
recently showed have a very distinctive global 
microbiome compared to subjects in industrialized 
or Western countries. 62

The human gut microbiome changes with age, 
although age is a weaker co-variant with micro-
biome than region or country. 48 The age- 
dependent prevalence of lactobacillus is clearest in 
North America (increasing prevalence by age), 
which has the lowest fiber intake, whereas in the 
non-industrialized countries for which data was 
available the lactobacillus prevalence showed no 
noticeable difference across age into adulthood, 
but with a reduction in the elderly. This observation 
is largely based on the prevalence of the Ruminis 
and Ruminis/Delbrueckii (RD) LbTypes, and could 
also reflect diet, with declining fiber intake in the 
elderly. Similar trends of increasing prevalence with 
age are also reflected in Europe (from childhood till 
old age). However, a high prevalence in infancy 
could reflect probiotic consumption, especially of 
L. casei and L. rhamnosus. Previous studies investi-
gating dietary differences have identified highest 
intake of dairy-based products in Europeans. 63

Our analyses of lactobacillus abundance interac-
tion with disease does not allow distinction 
between cause and consequence. The enrichment 
of several lactobacillus species with cirrhosis, IBD, 
fatty liver disease and impaired glucose tolerance, 
viewed in isolation, present equivocal evidence for 
a role in disease. Based on our recent analysis of 
microbiome alterations in 2,500 case-control sub-
jects, we studied lactobacillus associations with 
other genera and species that we showed displayed 

age-specific abundance changes in multiple 
diseases. 48 This revealed that the lactobacillus spe-
cies that are higher or lower in abundance in the 
diseases tested show strong associations with the 
broader microbiome changes that are characteristic 
of these diseases, especially with the abundance of 
the microbiome signature taxa for these diseases. 
Thus, it is likely that the lactobacillus-disease asso-
ciations are reflective of the overall gut ecological 
changes in these diseases. However, at least one 
medical case report exists where in injection of 
multiple Lb species including L. salivarius and 
L. fermentum was linked with primary biliary cir-
rhosis (in line with the results obtained in the 
current study albeit at the gut microbiome level). 
64 Furthermore, these hitherto unreported associa-
tions between LbTypes and the known disease mar-
kers indicate the need to consider the baseline state 
of an individual’s microbiome in addition to other 
anthropometric factors prior to specific Lb-based 
probiotic administrations.

Different kinds of host-associated and technical 
factors are likely to affect the results of such meta- 
analyses that combine multiple datasets. We 
attempted to systematically account for a majority 
of these factors. First, we show that all the major 
host-associated factors (geography, age-group and 
disease) investigated in this study show significant 
associations with Lactobacillus detection rates even 
after adjusting for study-specific technical factors 
(the data for which was available for the 
curatedMetagenomicData repository). In the dis-
ease-association analyses, we further restricted our 
analyses to the study cohorts specific to each dis-
ease. This precludes biases in the results originating 
from varying inclusion/exclusion criteria as well as 
variations in experimental methodology. However, 
there were other factors which could not be 
accounted or investigated because of the nom- 
availability of these metadata in the 
curatedMetagenomicData repository. These 
include experimental/technical factors (like storage 
or transport of samples) as well as host-associated 
life-style/demographic data like polypharmacy 
information (which has a key influence on the 
composition of gut microbiome), ethnicity infor-
mation pertaining to specific individuals belonging 
to a nationality as well as other information regard-
ing dietary habits. Addition of these information in 
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future versions of shotgun fecal microbiome data 
repositories could help shed light on the role of 
these factors on future microbiome-host associa-
tion studies. Nevertheless, the information 
obtained herein provides direction for future stu-
dies that could focus on these factors in greater 
detail.

The practice of employing lactobacillus cultures 
for various beneficial functions and processes has 
been complicated by challenges in species identity, 
nomenclature and relatedness that will soon be 
simplified by the long-overdue taxonomic and phy-
logenetic overhaul of the 253 species. 24,65 Aided by 
the genome sequences of type species, and the 
ambition to sequence to sequence a million 
human gut microbiomes (“Million Microbiome of 
Humans Project” (https://en.mgitech.cn/news/114/ 
)), we will soon have even greater geographic and 
age coverage to adjust for confounders in determin-
ing lactobacillus-microbiome-host interactions. 
However, the present study already shows that 
human gut lactobacilli reflect and respond to the 
geographic and lifestyle differences in the human 
host, and identify the key species involved.

Materials and methods

Collation of fecal microbiome datasets

The curatedMetagenomicData is available as a R 
package, downloadable from Bioconductor. The 
curatedMetagenomicData package (as on 
September 2019) was downloaded, filtered and pro-
cessed as discussed in a previous study. 48 This 
created a repository of 5746 gut (fecal) microbiome 
profiles. To this, we added a further 189 and 219 
from the ELDERMET cohort and a previous IBD 
case-control dataset. 47,48 The samples from the 
later two datasets were processed using the same 
approach as used for the samples in the 
curatedMetagenomicData repository, using 
Metaphlan2 and humann2. 66,67 The details of the 
datasets included in this study along with their 
geographical locations, the distribution availability 
of the age and BMI of the subjects, as well as the 
total number and the number of ‘control’ (appar-
ently healthy) and ‘non-control’ (diseased and 
other conditions) have been listed in 
Supplementary Table S1. The details of the subject- 

specific metadata (including BMI, age, etc) for each 
study were already collected in the 
curatedMetagenomic repository from the indivi-
dual studies (and used directly in this analysis). 
The collated fecal microbiome profiles corre-
sponded to samples from 36 studies, spanning 25 
nationalities across Europe, North America, Asia 
and Africa/South America/Oceania (grouped 
together as Others), distributed across five major 
age groups ranging from infancy to 102 years of 
age. The non-industrialized versus industrialized 
terminology was adopted from a recent study pub-
lished recently by our group that used the same 
curatedMetagenomicData repository, 62 where in 
designations of industrialized and non- 
industrialized status were based on the classifica-
tions of the different nationalities by the United 
Nations Industrial Development Organization 
(UNIDO).

Determination of Lactobacillus composition of the 
fecal microbiome

The first challenge here was to determine an appro-
priate abundance threshold to report a given 
Lactobacillus species as detected in a given meta-
genome. Using simulated metagenomes, previous 
studies on the validation of Metaphlan had 
observed that for abundance values greater than 
0.01%, there was a linear relationship between the 
Metaphlan-calculated and the actual abundance 
values. 57 Therefore, we used this abundance 
threshold to identify a given Lactobacillus as being 
a present in each metagenome. Using this thresh-
old, we identified the number of times a given 
Lactobacillus was detected across the different gut 
microbiome samples as well as the number of 
Lactobacilli detected in each sample. We specifi-
cally focussed on the non-diseased control indivi-
duals (tagged as ‘control’ in the study-condition 
metadata in the curatedMetagenomicData) for 
this purpose.

For obtaining a Lactobacillus specific species 
profile, we retained only those species belonging 
to the Lactobacillus genus and removed abundance 
values of less than 0.01%. For the overall micro-
biome profile, we restricted the species abundance 
profile to only those species that were present with 
abundance > 0.01% in 5% percent of the samples.
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Identification of Lactobacillotypes and Enterotypes 
and validation of Lactobacillotypes using Random 
Forest

Unlike previous approaches on Enterotyping that 
have either used Jensen-Shannon Divergence (JSD) 
or Drichlet Mixture Models (DMMs) on the global 
microbiome profiles, 50,68 in this study, we adopted 
a two-step strategy. First, we used a dimensionality 
reduction technique Principal Coordinate Analysis 
(PCoA) on the gut microbiome profile. The objective 
behind implementing a dimensionality reduction 
was reduction of the ‘noise’ associated with indivi-
dual samples. Often, a group of samples, that may 
have an otherwise similar composition with respect 
to the large majority of the constituent taxa, may 
large variations amongst each other because of aber-
rantly high or low abundance of a few minority taxa 
that may have no contribution to the overall group-
ing schema. Utilizing a dimensionality-reduction 
technique and then representing each sample in 
terms of its top three axes (ordination axes explain-
ing the largest variation) is expected to reduce this 
noise. Thus, in this study, we first performed a PCoA 
on the samples based on the intra-sample Spearman 
distances and subsequently represented the samples. 
We used the dudi.pco function (available in the ade4 
package) and the cor function, both available in the 
R programming interface.

The next step was to identify an optimal number 
of clusters that achieved the best grouping of the 
samples. In this case, there are indices like silhou-
ette scores or the Calinski-Harabasz (CH) index 
that can measure the clustering efficiency of 
a grouping based on ‘k’ clusters. Computing these 
scores for different values of ‘k’ and identifying the 
‘k’ achieving the best efficiency was the approach 
that have been used in earlier studies on 
Enterotyping. 50 However, performing the step of 
identifying the optimal ‘k’ just once on the entire 
set of samples may not be appropriate, as it can also 
be biased by the presence of outliers in this specific 
set. A way of addressing would be to repeatedly 
subsample the set (taking a subset) and repeat the 
step of identifying the optimal ‘k’ for each iteration. 
The final ‘k’ would then be identified as the one that 
not only achieves a high clustering efficiency, but 
the clustering efficiency to repeated iterations. We 
adopted this approach, where in, we performed 150 

iterations, and in each iteration, we computed the 
silhouette scores for ‘k’ = 2 to ‘k’ = 20. Clustering 
was performed using k-means using the Euclidean 
distances of the top three PCoA axes. The value of 
‘k’ that passed the two criteria of high as well as 
stable clustering efficiency across the 150 iterations 
was identified as the optimal number of 
Lactobacillotypes or Enterotypes. These 
Lactobacillotypes and Enterotypes were further 
performed and validated visually using heatmaps 
(heatmap.2 function of the gplots package in R and 
the cutree function of the dendextend package) 
showing the clustering of the samples based on 
the Euclidean distances of the PCoA axes.

For the Lactobacillotypes, we performed an addi-
tional round of validation using Random Forest 
models wherein we again performed 100 iterations, 
where in each iteration, we trained models on 50% 
of the samples (for predicting the associated 
Lactobacillotype from the Lactobacilli composi-
tion) and tested the model on the rest 50%. The 
average classification accuracy per LbType as well 
as the full accuracy of classification was measured.

Associations between Enterotypes and the differ-
ent regions and age-groups were performed using 
a combination of Fishers’ exact test and logistic 
regression models. While Fishers’ exact tests tested 
for association using simple count data, logistic 
regressions could test for the strength of these asso-
ciations after taking into account the biases due to 
the various confounders (for example, biases in the 
representation of various age-groups across regions 
and biases in the representation of the different 
regions in sub-cohorts of individuals belonging to 
the different age-groups; described in detail in 
Supplementary Table S3).

Profiling regional variations of the Lactobacillus 
populations in gut microbiome

The association of specific Lactobacillotypes with 
distinct regions or countries were tested using 
Fishers’ exact test. For each of these tests, a 2 × 2 
contingency matrix was utilized which contained 
four values, namely the number of times 
a Lactobacillotype was detected in samples belong-
ing to a given region/country, the remaining num-
ber of samples in the region/country, the number of 

e1822729-14 T. S. GHOSH ET AL.



times a Lactobacillotype was detected in all the 
other regions/countries, the remaining number of 
samples (that is those in which the Lactobacillotype 
is not detected) in all the other regions/countries. 
Fishers’ exact test provides two measures, namely 
the estimate (the extent of enrichment in the 
region/country versus the others, greater than 1 
indicating enrichment and less than one indicating 
depletion) and the p-value (indicating the signifi-
cance of association). For any region or country, 
enriched Lactobacillotypes were identified as those 
having estimates of greater than 1 and Benjamini– 
Hochberg FDR < 0.1.

For comparing the prevalence rates across coun-
tries, we used similar Fishers’ exact test-based 
approach, wherein we counted the total number of 
samples where in any lactobacillus was detected rather 
than a specific Lactobacillotype. Specifically, a 2 × 2 
contingency matrix was utilized which contained four 
values, namely the number of times any Lactobacillus 
was detected in samples belonging to a given region/ 
country, the remaining number of samples in the 
region/country, the number of times any 
Lactobacillus was detected in all the other regions/ 
countries, the remaining number of samples (that is 
those in which Lactobacilli were not detected) in all 
the other regions/countries. For any region or coun-
try, enriched prevalence of lactobacilli was identified 
when estimates of greater than 1 were obtained along 
with Benjamini–Hochberg FDR < 0.1.

Association analysis of Lactobacillotypes with host 
anthropometrics and disease

Association of Lactobacillus prevalence and 
Lactobacillotypes with host anthropometrics 
(age-group/age/BMI/gender) and disease were 
investigated using Fishers’ exact tests (as 
described above) and validated using Logistic 
regression models (that took into account var-
ious host-associated factors like region, country, 
age, BMI, and gender). The age-groups of the 
individuals were defined as Infants: ≤ 2 years, 
Child/Teen: (2–20] years, Young: (20–40] years, 
Middle: (40–60] years and Elderly (> 60 years, 
with the maximum age being 102 years). The 
selection of these host-associated factors as 

possible de-confounders was done based on the 
results of our previous meta-analysis, 48 wherein 
these host-associated metadata were present in 
more than 30% of the subjects, and also had the 
highest effect on the microbiome composition.

The region-stratified logistic regression models 
(separate models for each region) associating 
Lactobacillus prevalence with host anthropometrics 
were obtained as follows:

glm(LactobacillusDetected (1: Detected and 0: 
Not Detected) ~ Country + Age/BMI/Gender, 
family = ”binomial”)

These models considered the country-wise var-
iations as a confounder.

The association of Lactobacillotypes to host 
anthropometrics were computed as:

glm(Lactobacillotype X (1: If sample belongs to 
LbType X and 0: If it does not belong to LbType X) 
~ Region + Age/BMI/Gender, family = ”binomial”)

These models considered the region-wise varia-
tions as a confounder.

We next probed the association of the overall 
prevalence or the different Lactobacilli with disease. 
First, we removed those disease datasets from this 
analysis that contained fewer than 20 diseased sub-
jects. This resulted in a list of 11 diseases, namely, 
adenoma (or polyps), atherosclerosis (AS), 
Clostridium difficile infection (CDI), cirrhosis, col-
orectal cancer (CRC), hypertension, inflammatory 
bowel disease (IBD), otitis, premature-born, type-I 
diabetes (T1D) and type-II diabetes (T2D). Out of 
these 11 diseases, for AS and premature born indi-
viduals, there were no matched controls sequenced 
as part of the same study (Supplementary Table S1), 
thereby restricting us to focus on the remaining 
nine diseases for this analysis. This included 15 
matched case-control study datasets. For each dis-
ease, we constituted disease-specific bins by collat-
ing ‘control’ and ‘case’ samples from the ‘case- 
control’ study datasets corresponding to that 
disease.

Subsequently, only within the disease-specific 
bins, we utilized logistic regression models (as 
follows):

glm(LactobacillusDetected~Age+BMI+gender 
+DiseaseStatus, method = ”binomial”) (for overall 
prevalence)
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glm(Lactobacillus Species ‘X’ Detected~Age+BMI 
+gender+DiseaseStatus, method = ”binomial”) (for 
overall prevalence) (for a specific Lactobacilli X)

The list of multiple disease markers were 
obtained from a previous study by our group. 48 

The association of generic disease markers with 
Lactobacillotypes was performed using Mann- 
Whitney Tests. For each Lactobacillotype, the 
abundances of the disease markers were compared 
between all samples belonging to a Lactobacillotype 
and those not belonging to the Lactobacillotype. 
Species that were significantly enriched or depleted 
with Benjamini-Hochberg FDR < 0.1 were 
identified.
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