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Predictive Modeling Report

Optimizing Tele-ICU Operational Efficiency 
Through Workflow Process Modeling and 
Restructuring

Christian D. Becker, MD, PhD1,2; Muer Yang, PhD3; Mario Fusaro, MD1,2; Michael Fry, PhD4;  
Corey S. Scurlock, MD, MBA1,5

Objectives/Design: Little is known on how to best prioritize various 
tele-ICU specific tasks and workflows to maximize operational effi-
ciency. We set out to: 1) develop an operational model that accurately 
reflects tele-ICU workflows at baseline, 2) identify workflow changes 
that optimize operational efficiency through discrete-event simulation 
and multi-class priority queuing modeling, and 3) implement the pre-
dicted favorable workflow changes and validate the simulation model 
through prospective correlation of actual-to-predicted change in per-
formance measures linked to patient outcomes.
Setting: Tele-ICU of a large healthcare system in New York State cov-
ering nine ICUs across the spectrum of adult critical care.
Patients: Seven-thousand three-hundred eighty-seven adult 
critically ill patients admitted to a system ICU (1,155 patients 

pre-intervention in 2016Q1 and 6,232 patients post-intervention 
2016Q3 to 2017Q2)
Interventions: Change in tele-ICU workflow process structure and 
hierarchical process priority based on discrete-event simulation.
Measurements and Main Results: Our discrete-event simulation 
model accurately reflected the actual baseline average time to 
first video assessment by both the tele-ICU intensivist (simu-
lated 132.8 ± 6.7 min vs 132 ± 12.2 min actual) and the tele-ICU 
nurse (simulated 128.4 ± 7.6 min vs 123 ± 9.8 min actual). For a 
simultaneous priority and process change, the model simulated a 
reduction in average TVFA to 51.3 ± 1.6 min (tele-ICU intensivist) 
and 50.7 ± 2.1 min (tele-ICU nurse), less than the added simu-
lated reductions for each change alone, suggesting correlation of 
the changes to some degree. Subsequently implementing both 
changes simultaneously resulted in actual reductions in average 
time to first video assessment to values within the 95% CIs of the 
simulations (50 ± 5.5 min for tele-intensivists and 49 ± 3.9 min 
for tele-nurses).
Conclusions: Discrete-event simulation can accurately predict 
the effects of contemplated multidisciplinary tele-ICU workflow 
changes. The value of workflow process and task priority model-
ing is likely to increase with increasing operational complexities and 
interdependencies.
Key Words: modeling; operations research; outcomes; queueing 
theory; tele-intensive care unit; workflow efficiency

Tele-ICU services are increasingly used in the United States, 
with estimates ranging from 11% to 20% of ICU beds being 
monitored by tele-ICUs (1–3). The drivers for tele-ICUs in 

the United States are workforce shortages, technological improve-
ments, and demographic changes related to age (4–6). Tele-ICUs 
work through interfacing clinical data and shared access to elec-
tronic medical records (EMRs) fed to a central location, which 
has capabilities to interact with the bedside location(s) through 
advanced audiovisual technology (7, 8). Its adoption has resulted 
in increased access for patients to specialty services, bridging the 
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widening supply-demand critical-care provider gap and realizing 
synergies for services offered through hub-and-spoke models of 
care delivery. More recently, the continuous model of tele-ICU 
has further evolved into managing ICU bed access, capacity, and 
throughput across the spectrum as well as providing care stan-
dardization for large healthcare systems with positive financial 
results (9, 10).

Tele-ICU implementation has been associated with reductions 
in mortality, length of stay (LOS), and costs in some studies but 
not others (11–14), indicating that additional factors, about which 
we have gained a better understanding in recent years, affect its 
value potential:

1) level of authority of the tele-ICU to co-manage (15–17)
2) robust protocols for ensuring best practice adherence (10, 18, 19)
3) timely use of performance data (18)
4) tele-ICU physician review of all new admissions within 1 hr of 

arrival and quick alert response times (18)
5) leadership (18, 19)
6) perceived value (19)
7) addition of a logistics center geared at optimizing ICU bed 

access, care standardization, capacity, and throughput (10)
8) a standardized mortality ratio greater than 1 pre-implementa-

tion baseline performance (13).

Tele-ICUs generally perform a multitude of tasks of different 
priorities and with different team members involved at different 
steps. Balancing tasks in varying workload situations is crucial to 
ensure reliable yet flexible tele-ICU performance. For example, 
as ICU admissions cluster during peak hours (20, 21), workflow 
efficiency must be optimized to ensure the evidence-based goal 
of evaluating new patients within 1 hour of admission to the ICU 
(18). Overall, how to optimize multidisciplinary tele-ICU intrinsic 
operational workflows, protocols, and priorities that in aggregate 
lead to tele-ICU benefit requires further study (22). We therefore 
set out to

1) Develop an operational model that accurately reflects the exist-
ing workflows and priorities and their effect on core tele-ICU 
tasks at baseline

2) Use discrete-event simulation and multi-class priority queu-
ing modeling on this operational model to identify workflow 
changes that optimize operational efficiency

3) Implement the predicted favorable workflow changes and vali-
date the simulation model through prospective correlation of 
actual-to-predicted change in performance measures linked to 
patient outcomes.

Operational changes can target a variety of factors. For this study, 
we chose change in process structure or changes in hierarchical 
priorities in processes.

In this study, we create a discrete-event simulation model 
reflective of day-to-day operations in the tele-ICU in that it accu-
rately predicts both baseline targeted performance measures as 
well as the overall effect of operational optimization on these tar-
geted performance measures.

MATERIALS AND METHODS

Study Setting
We studied 7,387 patient admissions to a continuous model 
tele-ICU of a large medical system in Valhalla, NY, during a 
18-month period (January 2016 to June 2017). The first quar-
ter of 2016 (2016Q1) constituted the baseline pre-intervention 
phase and included 1,155 patients. Simulations were devel-
oped and conducted in the second quarter of 2016 (2016Q2). 
Workflows were changed on July 1, 2016. The post-interven-
tion phase included the third quarter of 2016 (2016Q3) to the 
second quarter of 2017 (2017Q2) with a total of 6,232 patient 
admissions. Our tele-ICU covers nine ICUs across the Hudson 
Valley of New York State, serving a quaternary care center, two 
community hospitals and one critical access hospital. It admits 
approximately 5,500 patients each year and continuously moni-
tors an average of 100 patients daily. The tele-ICU team is com-
prised of one tele-intensivist, one data coordinator, and three 
registered nurses working 12-hour shifts with shift change 
occurring at 7 am and 7 pm, for the whole team, on a daily basis.

We collected each patient’s anonymized admission and dis-
charge dates and times, and times and lengths of the first video 
assessment performed by tele-intensivist and by tele-nurse for 
each new patient, the lengths of any follow-up video(s) per-
formed by tele-intensivist and by tele-nurse for each new patient, 
each new patient’s time from admission to first video assessment 
by tele-intensivist and tele-nurse (time to first video assessment 
[TFVA]). The daily, weekly, and yearly admission and discharge 
patterns as well as LOS patterns are available in the eSupple-
ment (Supplemental Digital Content 1, http://links.lww.com/
CCX/A118).

We focused on the following evidence-based performance 
metric categories:

1) Wait time until the tasks are performed
2) Utilization measures related to the clinician productivity in the 

tele-ICU
3) Quality of care measures such as time spent interacting with 

patients through video.

The Westchester Medical Center/New York Medical College 
Committee for the Protection of Human Subjects waived the need 
for Institutional Review Board approval as the study does not meet 
institutional criteria for Human Subjects Research.

Simulation Model and Validation
Discrete-event simulation has been widely applied to improve 
healthcare delivery systems (23, 24). Simulation modeling is used 
to mimic and replicate the operations of a real system, which can 
capture key characteristics and functions of the system. We devel-
oped a discrete-event simulation model to investigate the opera-
tions of the tele-ICU center using Rockwell Arena 15.0 software 
(Rockwell Automation, Coraopolis, PA). This model allows us 
to gain insights of operational changes on real tele-ICU systems. 
Once derived, the model must be validated to ensure that it is a 
suitable replication of real-life scenarios. This is performed by 
comparing the model outputs to empirically collected tele-ICU 
data to test for validation.

http://links.lww.com/CCX/A118
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Figure 1 provides a flowchart of baseline tele-ICU center pro-
cesses. These processes are divided into four basic categories:

1) Crisis intervention
2) Proactive monitoring
3) Best practice adherence
4) New patient evaluation

“Crisis intervention,” as a task, is given the highest priority in our 
model. In real-life scenarios, in the tele-ICU, both the tele-ICU nurse 
and intensivist will stop all other tasks to help an ICU patient in crisis.

“Proactive monitoring” was given the second highest prior-
ity. This is typically an intermittent task usually performed in-
between other tasks. In our simulation model, it did not preempt 
other tasks.

“Best practice adherence” is a task derived from using tele-
ICU software (eCare Manager 4.1.1; Royal Philips, Amsterdam, 
The Netherlands) to audit predefined best practices in the ICU. 
These included venous thromboembolism prophylaxis in patients 
meeting requirement, stress-ulcer prophylaxis in patients meet-
ing requirement, low tidal volume ventilation (< 7.5 cc/kg of ideal 
body weight) and targeting glycemic control in any patient with 
two blood glucoses greater than 180 mg/dL in a 24-hour period. In 
terms of task hierarchy, these were considered nonurgent but must 
be completed within certain predefined time periods.

“New admission evaluation,” while being one of the most com-
plex tasks being performed was given the contextually lowest 
baseline priority of the aforementioned tasks.

As shown in Figure 1A, the typical tele-ICU process involves a 
tele-ICU nurse performing the first video assessment of a newly 
admitted ICU patient and then drafting an ICU admission note for 
the tele-intensivist to review prior to their first video assessment. 
This is done in an effort to maximize the scalability of the inten-
sivist efficiency. The tele-intensivist will then perform a first video 
session with the patient, edit and complete the note before sending 
it to the EMR. Higher acuity patients will often be seen by the tele-
intensivist and/or tele-nurse again via follow-up video assessments.

The daily arrival process of admissions, that is, tasks related to 
new patient evaluation and risk prediction, in the simulation model 
is assumed to follow a nonstationary Poisson process based on the 
empirical data collected and is shown in Figure e1 (Supplemental 
Digital Content 2, http://links.lww.com/CCX/A119).

We collected baseline data during 2016Q1. This time period 
followed the baseline workflows shown in Figure 1.

To validate our simulation model, we set a run length of 90 
days (approximately one quarter of a calendar year) with a warm-
up period of 30 days for each replication in the simulation model. 
Discrete-event simulation models start with completely empty sys-
tems (no patients currently being treated by tele-ICU or waiting to 
be processed). A warm-up period as used here allows the simula-
tion model to reach a steady-state equivalent to the current status 
of the tele-ICU center. This prevents under-estimating the system’s 
long-term performance measures, such as average waiting times. 
A 30-day warm-up period insures that our system reaches steady 
state to more accurately reflect the reality of the tele-ICU center.

Figure 1. A, Admission process. B, Processes of intervention, monitoring, and best practice.

http://links.lww.com/CCX/A119
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The simulation model performed 100 replications, where each 
replication represents a 90-day period of operations for the tele-
ICU. A replication represents one complete run of our simulation 
model. The number of independent and identically distributed 
replications used in the model determines the width of CIs of the 
estimated variables (25). We use 100 replications because this pro-
vides a half-width on the CI for the baseline case that is less than 
6% of the mean value (Table 2).

Changing Priority of Tasks
As mentioned previously, the original priority ordering of tasks 
performed by the tele-ICU team are “(crisis intervention) > (pro-
active monitoring) > (best practice adherence) > (new patient 
evaluation).” Because crisis intervention and proactive monitor-
ing are time sensitive, we did not change their priorities. However, 
best practice adherence is less time sensitive and can be completed 
at any time within the typical shift and therefore could change pri-
orities with new admission evaluations, which are also less time 
sensitive. Thus, we made a priority change of new admission 
evaluation over best practice adherence, while leaving the prior-
ity of crisis intervention and proactive monitoring unchanged. In 
other words, the new priority ordering of tasks after the change 
was “(crisis intervention) > (proactive monitoring) > (new patient 
evaluation) > (best practice adherence).” Our expectation was that 
this change would result in shorter wait times for new patients to 
be evaluated by the tele-ICU team but could result in delays to the 
adherence of best practices; since we did not change the priorities 
of crisis intervention and proactive monitoring, there should not 
be changes in wait times for these two tasks.

Changing Sequencing of the Tele-ICU Admission 
Process
As described previously, a typical tele-ICU admission process 
involves a tele-nurse performing the first video session with each 
new patient and then after reviewing the tele-nursing note the 
tele-intensivist performs a video session with that same patient 
and completes the tele-nursing note sending it to the EMR. In this 
scenario, if a new admission has not been seen by a tele-nurse, 
the tele-intensivist will not start a video session with this patient. 
From a queueing theory and operational point of view, the cur-
rent admission process represents a two-stage tandem queue  
(26, 27). In this type of queue, the server at the second stage (i.e., 
a tele-intensivist) might be “starved” if the first-stage server (i.e., 
tele-ICU nurses) work slower than the second stage during certain 

periods of time. Such systems lead to operational inefficiency due 
to this starving effect (28). We proposed to increase the flexibility 
of the process by allowing the tele-intensivist or tele-nurse to begin 
the first-video session with a patient, based on who is available first. 
In other words, a tele-intensivist can perform the video interaction 
with a new admission if they are free, even if this patient has not had 
a video session yet with a tele-nurse. From an operations framework, 
such a change is indicative of creating “flexible servers” since each 
server (clinician) can perform their task based on availability instead 
of hierarchy. This scenario has been shown to add operational effi-
ciency in a variety of clinical and nonclinical settings (29, 30).

Based on recent literature, we adopted the performance goal 
that all new admissions should be evaluated by video session 
within 1 hour of being admitted (18).

In order to examine the effects from both priority changes as 
well as sequencing changes on tele-ICU performance, we designed 
the following simulations with four possible variable changes 
(Table 1): 1) the average number of admissions per day; 2) the 
average length of the first video assessment by the tele-intensivist; 
3) the percentage of follow-up videos by the tele-intensivist; and 
4) the operational changes.

After reviewing the data collected from January 1, 2016, to 
March 31, 2016, the observed number of performed first videos 
assessments ranged from 23 to 27 per day in the study period. 
Based on these data, we chose these two extremes of the range 
values for the two levels of this particular variable for our model. 
These data set also indicated that the average duration of the 
first video assessment by the tele-intensivist was approximately 
120 seconds. Given that comprehensive first video assess-
ments are desirable, we chose 120 and 180 seconds as inputs 
for our model. Approximately 35% of new patients were seen 
again in follow-up video assessments by the tele-intensivist in 
the first quarter of 2016. A team goal was to increase engage-
ment through a higher percentage of follow-up video assess-
ments. Thus, the levels of this variable were input as 30% and 
with a higher goal of 50%. In order to fully examine the impacts 
of the proposed operational changes (both “priority” changes 
and “sequencing” changes), we set four levels for this factor: no 
change, priority change only, process change only, and both pri-
ority and process change.

We performed a full-factorial experiment (27), that is, 32 
design points in total. Each design point, that is, each combina-
tion of levels of the four factors, is evaluated using 200 replications 
of our discrete-event simulation model.

TABLE 1. Experiment Factors and Levels

Factor

Level

1 2 3 4

1) Number of admissions per day 23 27 — —

2) Length of first video (s) 120 180 — —

3) Percent of follow-up videos by intensivist 30% 50% — —

4) Operational change No change Process change Priority change Priority + process change

Dashes indicate not applicable.
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Intervention
Based on simulations performed in 2016Q2, the actual tele-ICU 
workflow process structure and hierarchical process priority as 
outlined in the previous section was changed on July 1, 2016. 
Post-intervention performance data on 6,232 patient admissions 
as outlined above was collected for 2016Q3 to 2017Q2.

RESULTS
Table 2 displays the simulated and observed actual baseline aver-
age TFVA with 95% CIs. The observed baseline average TFVA are 
well within the CIs of the simulated average TFVA. We find that 
our simulation model is an excellent approximation of the base-
line process, and thus is validated by the actual observed data.

Simulating the various changes in inputs as listed in Table 1, 
the output metrics delivered a variety of results. Figure 2, A and 
B, illustrate the simulated effect that these model inputs have on 
average time to new patient evaluation by the tele-intensivist and 
tele-ICU nurse, respectively. As evidenced, the length of first-
video assessments and the percentage of follow-up video assess-
ments performed by tele-intensivists have relatively small impacts 
on TFVA as compared with the impact that the changing number 
of admissions and operational changes yielded. Specifically, if the 
length of a first-video assessment increases from 120 seconds to 
180 seconds, the average TFVA increases by only 13% and 7.2%, 
respectively. Similarly, if the percentage of follow-up video assess-
ments performed by the tele-intensivist increases from 30% to 
50%, this increases the TFVA by the tele-intensivist by 3.7% and 
leaves the average TFVA by a tele-nurse approximately unchanged.

In contrast, the average number of admissions per day expect-
edly has a much greater effect on the average TFVA by either the 
tele-intensivist or tele-nurse. On increasing from 23 to 27 new 
admissions per day the TFVA increases by 64% for the tele-inten-
sivist and by 89% for the tele-nurse.

When making operational changes related to priority, the aver-
age TFVA is reduced by 71% (tele-nurse) and 56% (tele-intensiv-
ist). On making changes to process, the average TFVA is reduced 
by 26% (tele-nurse) and 22% (tele-intensivist).

There is concern that increasing engagement through more fre-
quent and/or longer video assessments by the tele-intensivist could 
potentially come at the expense of completing other time-sensitive 

tasks and lead to longer TFVA. Therefore, we ran simulations on 
our model of the effect that longer video times would have on 
completion of other tasks. With both the priority and the process 
change implemented in the tele-ICU center,  Figure 3A displays 
average TFVA by tele-intensivist and tele-nurse when average 
video length increases. Similarly, we also ran simulations on our 
model of the effect that increasing the percentages of follow-up 
video assessments by tele-intensivists and tele-nurses would have 
on completion of other tasks and have found similar results to the 
simulations performed in Figure 3A (Fig. e7, Supplemental Digital 
Content 8, http://links.lww.com/CCX/A125; legend, Supplemental 
Digital Content 1, http://links.lww.com/CCX/A118).

In this simulation model and analysis, we assumed that the 
arrival of crisis interventions is independent of the wait times to 
complete other tasks. In other words, the arrival of crisis inter-
ventions is considered exogenous to our system being modeled. 
However, there likely exists interdependence between crisis inter-
ventions and the other tele-ICU tasks. For example, previous studies 
have shown that the arrival rate of crisis interventions (cardiopul-
monary arrests) is correlated with proactive monitoring (31). Any 
increase in crisis interventions could potentially require more utili-
zation of the tele-ICU team and detract from the performance of the 
other time-based tasks. Additional crisis intervention tasks could 
delay proactive monitoring further, effectively creating a negative 
feedback loop causing even more crisis intervention tasks.

We adapted an operations model called multi-class prior-
ity queuing system with state-dependent arrivals to evaluate 
the effects of varying delays to proactive monitoring activities 
by tele-intensivists and nurses on the respective wait times for 
other tasks (for further methodological details see eSupplement, 
Supplemental Digital Content 1, http://links.lww.com/CCX/
A118) (32, 33). Figure 3B illustrates that other proactive moni-
toring tasks are affected less than first video assessments, but that 
best practice wait times are disproportionately negatively affected 
especially for tele-intensivists when the proactive monitoring 
delay threshold is reduced.

After full implementation of both priority and process changes 
as simulated by our model, we observed a reduction in the aver-
age TFVA to 50 minutes for tele-intensivists and 49 minutes for 
nurses, respectively (Table 2). These observed average TFVA are 

TABLE 2. Actual Versus Simulated Time to First Video Assessment Before and After Priority 
and Process Workflow Changes

Pre-Intervention (Baseline) Post-Intervention

Time period 2016Q1 2016Q3–2017Q2

Patients 1,155 6,232

Tele-ICU provider group “Simulated”  
mean TFVA (min)

“Actual”  
mean TFVA (min)

“Simulated”  
mean TFVA (min)

“Actual”  
mean TFVA (min)

Tele-ICU intensivist 132.8 ± 6.7 132.1 ± 
12.2

51.3 ± 1.6 50.6 ± 5.5

Tele-ICU registered nurse 128.4 ± 7.6 123.7 ± 9.8 50.7 ± 2.1 49.3 ± 3.9

TFVA = time to first video assessment.
Simulation times are shown as mean ± 95% CI. Actual times are shown as mean ± sem.

http://links.lww.com/CCX/A125
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well within the CIs of the simulated average post priority and pro-
cess change TFVA (Table 2).

DISCUSSION
With the increasing adoption of tele-ICUs in the healthcare indus-
try, further research and novel operational tools are needed to 

optimize operational processes specifically tailored for tele-ICUs, 
particularly as it relates to maximizing the efficiency of a scarce 
workforce. Because tasks performed by clinicians in tele-ICUs 
vary in terms of urgency, performance can likely be improved by 
prioritizing tasks correctly. Process changes that promote flexibil-
ity of tele-clinicians improve operational performance by reducing 

Figure 2. A, Main effects of the four factors on average time to first video assessment (TFVA) by a tele-ICU intensivist (MD). B, Main effects of the four factors 
on average TFVA by a tele-ICU nurse.
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starvation of dependent operators, consistent with the findings 
from the literature in other industries (29, 30).

Priority change reduces average TFVA more than process 
change. The improvement from making both the priority change 
and the process change simultaneously reduces the average TFVA 
with a tele-nurse by 75% and tele-intensivist by 62%, which is 
smaller than the additive improvement of making the prior-
ity change and process change separately. In other words, the 
improvements from the priority and process changes are not addi-
tive but correlated to some degree.

Our findings suggest that implementing both the priority 
change and the process change can bring the most improvement 
in reducing the average TFVA. Furthermore, these improvements 
allow for other changes that can increase engagement with the 
bedside clinical team and potentially offer higher quality of care, 
such as longer initial video assessment times and more frequent 
follow-up video assessments. We also show that this improvement 
only results in modest increases in delays to perform other tasks 
such as best practices and proactive monitoring.

After full implementation of the two modeled opera-
tional changes, the average TFVA for both tele-intensiv-
ists and tele-nurses decreased to less than 60 minutes, thus 

meeting evidence-based operational goals. These results are also 
extremely consistent with the predictions of our discrete-event 
simulation model. The observed average TFVA for tele-inten-
sivists of 50 minutes was well within the CIs of the simulated 
average post priority and process change TFVA of 55 minutes. 
This further validates our simulation model and suggests that 
our results may be robust to implementing these changes in tele-
ICUs more generally.

CONCLUSIONS
Modeling the likely effects of contemplated or planned workflow 
priority and process changes prior to their implementation can 
save time and safeguard against unforeseen effects uncovered by 
the model. Although we agree that the workflow changes modeled 
in this study are rather uncomplicated, workflow process and task 
priority modeling will become increasingly valuable as the num-
ber of involved variables and operational complexities increase.

ACKNOWLEDGMENTS
We thank Dr. Michael Ries for stimulating discussions on the sub-
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Figure 3. A, Average wait times when video length increases. The horizontal axis displays the amount of video length increase as a percentage of the baseline 
value of 120 s from 0% to 100% (i.e., from 120 s to 240 s). Each point represents the average value over 100 replications of our discrete-event simulation model. 
The reference lines of 122 and 130 min from our base dataset (2016Q1), display average time to first video assessment (TFVA) by a tele-nurse and by tele-
intensivist, respectively, before any operational changes were made. The reference line of 60 min represents the evidence-based operational goal for TFVA. The 
top-most lines display the average wait times to perform best practice (BP) adherence required by tele-intensivists (MDs) and tele-registered nurses (RNs) after the 
operational changes were implemented. The average wait times for RNs to complete tasks remain essentially unchanged as the video length increases across all 
tasks measured in this study. For the MD, the data are not as homogenous. Average TFVA displays minor increases from approximately 57 min to 62 min as video 
length doubles (0% to 100%), and average wait times to perform BPs tasks by the MD shows more substantial increases of 4 hr to 5 hr as video length increases 
from 120 to 240 s. If the average video length remains at 120 s (baseline data) both the average TFVA by the MD and the RN meets the operational goal of less 
than 60 min. These reductions in TFVA are obtained at the expense of an increase in wait times for BPs adherence. This increase in time to complete BPs tasks is 
still well below the 12-hr threshold. These results suggest that tele-ICU management can encourage longer video lengths without significant concerns regarding 
impact on average wait times for other tasks. B, Average wait time to perform tasks required by MDs and RNs depending on the tolerated delay for proactive 
monitoring (proactive monitoring delay threshold). Each point represents an average over 100 discrete-event replications. The reference line of 60 min indicates the 
operational goal for TFVA by MDs. The wait times to complete proactive monitoring tasks by MDs and RNs are minimally affected as we vary the delay thresholds. 
However, the average wait times to perform BPs tasks by MDs and RNs are affected significantly. In particular, the average waiting time to perform BPs tasks by 
MDs increases from 4 hr to over 10 hr as the delay threshold decreases. The average wait time for the MDs to perform the first-video assessment also increases 
as the delay threshold decreases. The waiting time is projected to no longer meet the operational goal of 60 min when the proactive monitoring delay threshold is 
less than 25 min. According to our simulation results, when the threshold is 25 min, the number of crisis interventions increases by approximately 8% due to the 
interdependence of crisis interventions and proactive monitoring tasks compared with our previous model assuming exogenous crisis intervention arrivals. These 
results suggest that the operational goal of 60 min for TFVA can no longer be met if the number of crisis interventions increase by more than 8%.
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