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ABSTRACT Pathogenic mycobacteria encounter multiple environments during mac-
rophage infection. Temporally, the bacteria are engulfed into the phagosome, lyse
the phagosomal membrane, and interact with the cytosol before spreading to an-
other cell. Virulence factors secreted by the mycobacterial ESX-1 (ESAT-6-system-1)
secretion system mediate the essential transition from the phagosome to the cyto-
sol. It was recently discovered that the ESX-1 system also regulates mycobacterial
gene expression in Mycobacterium marinum (R. E. Bosserman, T. T. Nguyen, K. G.
Sanchez, A. E. Chirakos, et al., Proc Natl Acad Sci U S A 114:E10772–E10781, 2017,
https://doi.org/10.1073/pnas.1710167114), a nontuberculous mycobacterial pathogen,
and in the human-pathogenic species M. tuberculosis (A. M. Abdallah, E. M. Weerden-
burg, Q. Guan, R. Ummels, et al., PLoS One 14:e0211003, 2019, https://doi.org/10.1371/
journal.pone.0211003). It is not known how the ESX-1 system regulates gene expres-
sion. Here, we identify the first transcription factor required for the ESX-1-dependent
transcriptional response in pathogenic mycobacteria. We demonstrate that the gene
divergently transcribed from the whiB6 gene and adjacent to the ESX-1 locus in
mycobacterial pathogens encodes a conserved transcription factor (MMAR_5438,
Rv3863, now espM). We prove that EspM from both M. marinum and M. tuberculosis
directly and specifically binds the whiB6-espM intergenic region. We show that EspM is
required for ESX-1-dependent repression of whiB6 expression and for the regulation of
ESX-1-associated gene expression. Finally, we demonstrate that EspM functions to
fine-tune ESX-1 activity in M. marinum. Taking the data together, this report extends the
esx-1 locus, defines a conserved regulator of the ESX-1 virulence pathway, and begins
to elucidate how the ESX-1 system regulates gene expression.

IMPORTANCE Mycobacterial pathogens use the ESX-1 system to transport protein
substrates that mediate essential interactions with the host during infection. We pre-
viously demonstrated that in addition to transporting proteins, the ESX-1 secretion
system regulates gene expression. Here, we identify a conserved transcription factor
that regulates gene expression in response to the ESX-1 system. We demonstrate
that this transcription factor is functionally conserved in M. marinum, a pathogen of
ectothermic animals; M. tuberculosis, the human-pathogenic species that causes tu-
berculosis; and M. smegmatis, a nonpathogenic mycobacterial species. These findings
provide the first mechanistic insight into how the ESX-1 system elicits a transcrip-
tional response, a function of this protein transport system that was previously un-
known.
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Following infection, pathogenic mycobacteria, including Mycobacterium tuberculosis,
are engulfed by macrophages and reside in the phagosome (1–3). Survival in the

phagosome requires regulated changes in bacterial gene expression (1, 4). Pathogenic
mycobacteria use the ESX-1 secretion system (SS) to lyse the phagosome and mediate
bacterial access the cytoplasm (5–13). The ESX-1 system is functionally conserved
between M. tuberculosis, the cause of human tuberculosis, and Mycobacterium mari-
num, a pathogen of poikilothermic fish and an established model for the ESX-1 system
(14–18). Phagosomal lysis releases secreted bacterial factors and triggers the host
response to infection (7, 8, 19–27). In the absence of an ESX-1 system, both mycobac-
terial pathogens remain in the phagosome and are attenuated (7–9, 22).

Several ESX-1 conserved components (Ecc’s) form a complex in the cytoplasmic
membrane (CM). The ESX-1 membrane complex recognizes ESX-1 substrates and
provides the energy and the pore for the export of ESX-1 substrates across the CM (28,
29). The protein substrates are then translocated across the periplasm and mycolate
outer membrane via an unknown process (30). ESX-1 substrates can be localized to the
cell surface and/or secreted from the bacterial cell into the extracellular environment
(31–34). We recently demonstrated that, in addition to transporting proteins, the
presence or absence of the ESX-1 membrane complex in the CM elicits a widespread
transcriptional response, a previously unrecognized function of the ESX-1 system (35).
ESX-1-dependent gene expression has since been confirmed in M. marinum and
reported in M. tuberculosis (36, 37).

The ESX-1-dependent transcriptional response includes a negative-feedback mech-
anism linking the levels of ESX-1 substrates to the presence or absence of the ESX-1
membrane complex (35). WhiB6 is a stress-responsive transcription factor (38, 39) that
directly activates ESX-1 substrate gene expression in M. marinum and in M. tuberculosis
(38, 39). The ESX-1 system regulates whiB6 gene expression both in M. marinum and in
M. tuberculosis (35–37). In the presence of the ESX-1 membrane complex, the whiB6
gene is expressed, and there is WhiB6-dependent expression of the genes encoding
ESX-1 substrates. In the absence of the ESX-1 membrane complex, whiB6 gene expres-
sion, as well as the expression of ESX-1 substrate genes, is significantly reduced (35, 36).
How the ESX-1 membrane complex regulates whiB6 gene expression is unknown.

On the basis of our published data and of those published previously by indepen-
dent groups, ESX-1-dependent changes in gene expression cannot be explained by the
loss of the WhiB6 transcription factor alone (35–37). Therefore, we hypothesized that
additional transcription factors regulate genes in response to the presence of the ESX-1
membrane complex.

RESULTS
The EspM protein binds upstream of the whiB6 gene. To identify transcription

factors that regulate genes in response to the ESX-1 membrane complex, we focused
on the regulation of the whiB6 gene. The 1 kb of DNA upstream of the whiB6 gene is
sufficient for regulation of whiB6 gene expression by the ESX-1 membrane complex
(35). We used a DNA pulldown to enrich proteins from M. marinum lysate that
specifically bind the 1 kb of DNA upstream of the whiB6 gene (“whiB6 promoter
bait,” Fig. 1A; bp 6577326 to 6578305 in the M. marinum genome). Using liquid
chromatograph-tandem mass spectrometry (LC-MS/MS)-based quantitative proteomics
on the proteins eluted from the DNA, we identified several proteins that were specif-
ically and reproducibly enriched for binding the whiB6 promoter bait relative to binding
nonspecific DNA (rpoA bait; see Table S1 in the supplemental material). MMAR_5438
was enriched for binding the whiB6 promoter bait �64.0-fold � 0.4-fold relative to the
rpoA bait (Fig. 1B). We propose renaming the MMAR_5438 gene “espM,” consistent with
current ESX-1 nomenclature (40). We generated an M. marinum strain with an un-
marked deletion of the espM gene (ΔespM; Fig. S1) and a complementation strain with
an integrated constitutive espM expression plasmid (ΔespM/pmspespM). The EspM pro-
tein was not identified in the DNA pulldown performed with lysate from the ΔespM
strain and was further enriched for whiB6 promoter bait binding compared to the rpoA
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bait in lysates from the complemented strain (Fig. 1B). We also identified several M.
marinum proteins with known DNA binding activity that were not significantly or
reproducibly enriched for binding the whiB6 promoter bait relative to the rpoA bait
(Table S1). For example, the M. marinum DNA-binding protein Hu homolog HupB
(MMAR_1728) bound the two baits comparably following incubation with any M.
marinum lysate (Fig. 1B).

To confirm the interaction of the EspM protein with the whiB6 promoter region, we
expressed and purified an N-terminally 6�His-tagged EspMMM fusion protein from
Escherichia coli (the MM subscript refers to the protein from M. marinum [40]) (see
Fig. S2 in the supplemental material) and performed electrophoretic mobility shift
assays (EMSAs). We observed a specific shift in mobility of the whiB6 promoter probe

FIG 1 Identification of MMAR_5438 (EspM) as a DNA-binding protein in M. marinum. (A) The whiB6 gene is separated from
the esx-1 locus by the MMAR_5438 gene. The biotinylated 1-kb probe (circles) for the DNA pulldown is indicated. The 500-bp
probe for the EMSA analysis is indicated in panel C. (B) MS analysis of the DNA pulldown showing the enrichment of the EspM
and HupB proteins. The scale represents normalized MS peak area intensity levels. a.u, arbitrary units. (C and D) EMSAs
performed with increasing concentrations of the 6�His-EspM protein from M. marinum (EspMMM) (C) or the 6�His-EspM
protein from M. tuberculosis (EspMMT) (D). The control probe used as indicated in both panels was 500 bp of the rpoA open
reading frame (ORF) (bp 1309999 to 1310499) from M. marinum. (E) Schematic of the 6�His-EspMMM proteins affinity purified
from E. coli used in the EMSAs. (F) EMSA performed with the whiB6-espM probe with increasing amounts of EspMMM, EspMNT,
and EspMCT from M. marinum.
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(550 bp) (Fig. 1A, “EMSA probe”) and a concomitant loss of free whiB6 promoter probe
with increasing concentrations of the 6�His-EspMMM protein (Fig. 1C). We did not
observe a mobility shift of the rpoA probe, confirming the specific binding of the
EspMMM protein to the whiB6 promoter probe.

The espM gene is conserved in M. tuberculosis. The EspM proteins in M. marinum and
M. tuberculosis Erdman (ERDMAN_4236, EspMMT) are 76.25% identical at the amino acid
level (41, 42). To test if EspM binds the genomic region upstream of the whiB6MT gene,
we expressed and purified 6�His-tagged EspMMT in E. coli (the MT subscript refers to
the EspM protein from M. tuberculosis) (Fig. S2). We amplified the 500 bp upstream
of the whiB6 gene from M. tuberculosis Erdman and tested if EspMMT specifically bound
the whiB6MT promoter region using EMSAs. Increasing concentrations of 6�His-EspMMT

protein led to a specific mobility shift of the whiB6MT promoter probe and to a
corresponding loss of free probe (Fig. 1D). Although bound rpoA probe was not
observed at the highest concentrations of 6�His-EspMMT protein, the free probe was
reduced, indicating weak binding at the highest protein concentrations. Together,
these data indicate that EspM, from both M. marinum and M. tuberculosis, directly and
specifically bound the whiB6-espM intergenic region.

espM is divergently transcribed from the whiB6 gene and is immediately adjacent to
the esx-1 locus (Fig. 1A). EspM is a predicted conserved regulatory protein (42), but the
corresponding function has not been investigated. The EspMMM protein is predicted to
have an N-terminal forkhead-associated (FHA) domain (amino acids [aa] 32 to 89) and
a C-terminal helix-turn-helix domain (Fig. 1E). We hypothesized that the C-terminal half
of the protein mediated DNA binding. We expressed and purified 6�His-tagged
EspMNT (aa 1 to 133) and EspMCT (aa 127 to 363) M. marinum proteins from E. coli
(Fig. S2). We tested the ability of each protein to bind the whiB6 promoter probe using
EMSA. The 6�His-EspMNT protein did not shift the mobility of the whiB6 promoter
probe (Fig. 1F). Incubation with increasing concentrations of the 6�His-EspMCT protein
caused a shift in mobility of the whiB6 promoter probe and a loss of free probe. We
conclude that the C-terminal half of the EspM protein is required for DNA binding.

EspM is a conserved regulator of whiB6 and esx-1 gene expression. We con-

firmed that the espM transcript was absent in the ΔespM M. marinum strain using
quantitative reverse transcription-PCR (qRT-PCR) (Fig. 2A). The espM expression level
was significantly higher in the ΔespM/pmspespM complemented strain than in the
wild-type (WT) strain (P � 0.0001). These data indicate that the complementation strain
is an espM overexpression strain. We did not observe a significant reduction of espM
gene expression in the ΔeccCb1 strain relative to the WT strain. These data confirm that
espM expression is not regulated by the ESX-1 system in M. marinum, consistent with
our previously published transcriptomic analysis (35).

Because EspM bound the region upstream of the whiB6 gene, we tested if EspM
regulates whiB6 gene expression. We measured whiB6 gene expression in M. marinum
using qRT-PCR. Consistent with our prior findings (35), whiB6 gene expression was
significantly reduced in the ΔeccCb1 strain compared to the WT strain (Fig. 2B, inset,
P � 0.0001). Deletion of the espM gene resulted in a significant increase in whiB6
expression relative to the WT strain (P � 0.0001). Overexpression of the espM gene
resulted in espM expression that was not significantly different from that seen with the
WT strain. We conclude that EspM is a repressor of whiB6 gene expression.

We measured the levels of WhiB6 protein in the presence and absence of the espM
gene (Fig. 2C). The parental M. marinum strain for these strains includes a whiB6 gene
with a C-terminal FLAG epitope tag (WhiB6Fl [35]). Consistent with our previously
published data (35), the WhiB6Fl protein was absent from the lysate generated from the
ΔeccCb1 strain (Fig. 2C, lane 2). Consistent with the expression data (Fig. 2B), deletion
of the espM gene resulted in increased WhiB6Fl protein levels relative to those seen
with the WT strain (Fig. 2C, compare lane 3 to lane 1). The WhiB6Fl protein levels in the
ΔespM/pmspespMMM complemented strain (espM overexpression) were lower than those
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FIG 2 EspM is a conserved regulator of whiB6 and esx-1 gene expression. (A) qRT-PCR measuring the levels of espM
expression relative to sigA expression. A one-way ordinary analysis of variance (ANOVA) (P � 0.0001), followed by
a Dunnett’s multiple-comparison test relative to the WT strain, was performed. ****, P � 0.0001. (B) qRT-PCR
measuring the levels of whiB6 expression relative to sigA expression. A one-way ordinary ANOVA (P � 0.0001),
followed by a Sidak’s multiple-comparison test relative to the WT strain, was performed. ****, P � 0.0001. The inset
shows just the comparison between the WT and ΔeccCb1 strains. A Student’s unpaired, two-tailed t test was used
to define the significance of the results of the comparisons between the two strains. For panels A and B, the data
represent averages of results from at least three biological replicates, each performed in technical triplicate. (C)
Western blot analysis of 10 �g of protein per lane. Anti-Mpt32 was used as the loading control. All M. marinum
strains indicated in this panel contained a C-terminal FLAG epitope tag on the whiB6 gene. Samples were resolved
on an 18% Tris-glycine gel. The Western blot shown is representative of at least three independent biological
replicates. All strains indicated in panel D contained a C-terminal epitope tag on the whiB6 gene. (D) Conservation
of the EspM proteins (percent identity at the amino acid level) from M. tuberculosis, M. marinum, and M. smegmatis.
(E) Scatterplot of genes differentially expressed in the ΔespM strain versus the ΔespM/pmspespM complemented
strain. Genes indicated in red had a q value of �0.05. Regions enriched with the esx-1 locus or mce6 locus are
highlighted. Full gene lists are available in Table S3. (F) Heat map of esx-1 locus genes that are significantly
differentially regulated in the ΔespM strain versus the ΔespM/pmspespM complemented strain compared to genes
expressed in the ΔespM, ΔwhiB6, or eccCb1 mutant strains relative to the WT strain.
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in the WT strain (Fig. 2C, lane 4 versus lane 1). Together, these data strongly support the
conclusion that EspM represses whiB6 gene expression in M. marinum.

The espM gene is syntenic in M. marinum, M. tuberculosis, and M. smegmatis (Fig. S3).
M. smegmatis is a nonpathogenic, soil-dwelling mycobacterial species that uses the
ESX-1 system to mediate conjugation (43, 44). The EspM orthologs in all three species
are conserved at the protein level (Fig. 2D; see also Fig. S3). The M. smegmatis ortholog
(MSMEG_0052; EspMMS) lacks the N-terminal FHA domain. Aligning the C-terminal
halves of the EspMMM and EspMMT proteins with EspMMS revealed that the M. marinum
and M. tuberculosis C-terminal halves are 81.20% identical at the amino acid level.
EspMMS is 63.10% and 62.20% identical to the C-terminal half of EspMMM and EspMMT,
respectively.

Because EspM proteins are conserved across three mycobacterial species, we hy-
pothesized that the repression of whiB6 expression by EspM would be functionally
conserved. We generated integrating plasmids constitutively expressing the espM
genes from M. tuberculosis Erdman (espMMT) and M. smegmatis mc2155 (espMMS) and
introduced each plasmid into the ΔespM M. marinum strain. As shown in Fig. 2C,
overexpression of the EspMMT protein or EspMMS protein reduced WhiB6Fl protein
levels in the ΔespM M. marinum strain (Fig. 2C; compare lanes 5 and 6 with lane 3),
similarly to the complemented strain overexpressing the espMMM gene (Fig. 2C, lane 4).
These data demonstrate that repression of whiB6 expression is functionally conserved
between the EspM orthologs in M. marinum, M. tuberculosis, and M. smegmatis.

We performed RNA-seq transcriptional profiling to determine if EspM regulates
other genes in addition to whiB6 in M. marinum. Comparison of the WT strain to the
�espM strain (both bearing the whiB6Fl allele) identified 134 genes that were upregu-
lated and 300 genes that were downregulated (�2-fold; false-discovery rate [q value]
of �0.05) (Fig. S4A; see also Table S3A). Genes controlled by EspM are also expected to
be differentially regulated in the ΔespM strain compared to the complemented strain
that overexpresses the repressor. We observed 44 genes that were upregulated and
55 genes that were downregulated in the ΔespM strain compared to the comple-
mented strain (�2-fold; q value of �0.05) (Fig. 2E; see also Table S3B). Consistent
with repression of whiB6 expression by EspM, we observed that whiB6 expression was
induced 1.6-fold and 7.0-fold in the ΔespM strain compared to the WT strain and the
complemented overexpression strain, respectively. Of the 44 genes that were induced
in the ΔespM strain compared to the complemented strain, 21 genes from the esx-1
locus were identified (MMAR_5436 to MMAR_5457), including 8 genes that were also
induced in the ΔespM strain compared to WT strain (Fig. 2F; see also Fig. S4B). Most of
the other genes in the esx-1 locus were significantly induced in the ΔespM strain relative
to the WT strain, but with induction levels below 2-fold.

We also observed induction of unlinked esx-associated loci in the ΔespM strain
compared to the complemented strain, including MMAR_0187-188 (esxB_1esxA_1),
MMAR_3654 (esxP2), and the ESX-1 substrate locus MMAR_2894 (45) (Table S3B). Several
of these genes were previously shown to be regulated by WhiB6 or ESX-1 (Fig. 2F; see
also Fig. S4B).

Of the 55 genes downregulated in the ΔespM strain relative to the complemented
strain, 39 were also downregulated in the ΔespM strain relative to WT strain (Table S3).
These included 24 strongly downregulated genes between MMAR_0159 and MMAR_
0182 (Fig. 2E; see also Table S3B), which includes the mce6 locus (Fig. S4C), and genes
for amino acid metabolism and lipid anabolism. Prior studies with the ΔwhiB6 and
eccCb1 mutant strains showed induction of the genes in the mce6 locus (Fig. S4C),
supporting the idea of ESX-1-dependent regulation. Curiously, we also detected down-
regulation of an ESX-1-associated operon, MMAR_4166 to MMAR_4168 (espA, espC, and
espD). Together, these data strongly support the conclusion that EspM is a regulator of
genes broadly associated with the ESX-1 system in M. marinum.

EspM represses whiB6 expression in the absence of the ESX-1 membrane
complex. whiB6 gene expression levels are reduced in the absence of the ESX-1
membrane complex (35). We hypothesized that EspM represses whiB6 and esx-1 gene
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expression in the absence of the ESX-1 membrane complex (Fig. 3A). Four ESX-
conserved components (Ecc’s) reside in the CM (Fig. 3A; EccB1, EccCa1, EccD1 and EccE1

[28, 29]), and two Ecc’s (EccCa1 and EccA) are cytoplasmic (10, 46–49).
We reasoned that if EspM repressed whiB6 gene expression in the absence of the

ESX-1 membrane complex, then deletion of the espM gene in strains lacking the ESX-1
membrane complex would restore whiB6 gene expression. We generated M. marinum
strains bearing deletions of each ecc gene (eccA to eccE1) alone or in combination with
deletion of the espM gene. Deletion of any ecc gene resulted in a loss of WhiB6Fl
protein relative to the WT strain (Fig. 3B, lanes 2 to 7 versus lane 1). The deletion of the
espM gene in combination with the ecc genes (ΔespM ΔeccA, ΔespM ΔeccB1, ΔespM
ΔeccCa1, ΔespM ΔeccCb1, ΔespM ΔeccD1, and ΔespM ΔeccE1 mutant strains) resulted in
levels of WhiB6Fl similar to those in the ΔespM strain (Fig. 3B, lanes 9 to 14 versus lane
8) and higher than those in the WT strain (Fig. 3B, lane 1). We further demonstrated that
complementation with the eccA gene or the espM gene in the ΔespM ΔeccA strain
resulted in levels of WhiB6Fl similar to those seen with the ΔespM deletion strain or the
ΔeccA deletion strain, respectively (Fig. S5).

We reasoned that overexpression of the espM gene might be sufficient to repress
whiB6 expression to levels similar to those seen with the ΔeccCb1 strain. We generated
a strain bearing a whiB6 transcriptional reporter in M. marinum. We replaced the whiB6
gene with the lacZ gene, creating a strain lacking the whiB6 gene and with a reporter
fusion to the whiB6 promoter (ΔwhiB6::lacZ�; Fig. 3C). We generated an isogenic
ΔeccCb1 strain (no ESX-1 membrane complex [30]), as well as an isogenic WT strain
overexpressing the espMMM gene. The level of �-galactosidase activity was significantly
reduced in the ΔeccCb1 strain compared to the WT strain (Fig. 3D; P � 0.0001),
confirming that the whiB6::lacZ� reporter fusion was regulated by the ESX-1 membrane
complex (35). Overexpression of the espM gene in the WT strain significantly reduced
the levels of �-galactosidase activity compared to the WT strain levels (P � 0.0001). The

FIG 3 EspM is required for the repression of whiB6 expression in the absence of the ESX-1 membrane
complex. (A) Schematic of the ESX-1 membrane complex and the proposed role of EspM in ESX-1-
dependent gene expression. CM, cytoplasmic membrane. The depiction of the membrane complex was
adapted from reference 28. (B) Western blot analysis of 10 �g per lane on an 18% gel. Mpt-32 was used
as a loading control. The image is representative of three independent biological replicates. All strains
indicated in panels B and C contained a C-terminal epitope tag on the whiB6 gene. (C) Schematic of the
ΔwhiB6::lacZ� reporter strain. (D) �-Galactosidase assay in WT M. marinum strains. The data in the figure
represent averages of results from four independent biological replicates, each performed in technical
triplicate. Significance was determined using a one-way ordinary ANOVA (P � 0.0001) followed by a
Tukey’s multiple-comparison test. ****, P � 0.0001. The WT/pmspespM and ΔeccCb1 levels were not
significantly different from each other (P � 0.9694). Error bars represent standard errors.
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levels of �-galactosidase activity in the ΔeccCb1 and espM overexpression strains were
not significantly different from each other (P � 0.9915), demonstrating that overexpres-
sion of espM is sufficient to repress whiB6 gene expression in M. marinum. Collectively,
our data demonstrate that EspM is required for repression of whiB6 gene expression in
the absence of the ESX-1 membrane complex. Moreover, because the reporter strain
lacks the whiB6 gene, these data indicate that EspM represses whiB6 expression in a
WhiB6-independent manner.

The EspM and WhiB6 regulators coordinately control gene expression. The
espM and whiB6 genes are divergently organized in mycobacterial genomes (Fig. 4A).
Because the whiB6 and espM genes share an intergenic region which likely controls the
expression of both genes (Fig. 4A, pink), we sought to further define the relationship
between the EspM and WhiB6 regulators.

We generated espM-lacZ� and whiB6-lacZ� integrating transcriptional reporters
(Fig. 4). The espM-lacZ� reporter resulted in significantly increased �-galactosidase
activity in the ΔespM strain compared to the WT strain (P � 0.0001; Fig. 4A). Loss of the
whiB6 gene did not significantly impact �-galactosidase activity relative to the WT strain
(P � 0.1195). Deletion of both the espM and whiB6 genes (ΔespM ΔwhiB6 mutant strain)
resulted in �-galactosidase activity comparable to that seen with the WT M. marinum
strain (P � 0.9305). We conclude from these data that espM expression is negatively
autoregulated. Moreover, in the absence of EspM, WhiB6 is required for the observed
increased espM gene expression. We confirmed that WhiB6 binds the whiB6-espM
intergenic region by expressing and purifying a C-terminally 6�His-tagged WhiB6MM

fusion protein from Escherichia coli (Fig. S2) and performing EMSAs (Fig. S6). We
observed a specific shift in mobility of the whiB6 promoter probe (Fig. 1A, “EMSA
probe”) and a concomitant loss of free whiB6 promoter probe with increasing concen-
trations of the WhiB6MM-6�His protein (Fig. S6). We did not observe a mobility shift of
the rpoA probe, confirming the specific binding of the WhiB6MM protein to the whiB6
promoter probe.

The presence of the whiB6-lacZ� reporter resulted in significantly increased
�-galactosidase activity in the ΔespM strain compared to the WT strain (P � 0.0001;

FIG 4 EspM and WhiB6 mutually regulate the expression of the espM and whiB6 genes. (A) The
whiB6/espM locus and the espM-lacZ� transcriptional fusion integrated at the attB site in M. marinum. The
flag at the C terminus of the whiB6 gene indicates the presence of the whiB6Fl allele. Data represent
�-galactosidase activity of the espM-lacZ� transcriptional fusion. Error bars represent propagated errors.
A one-way ordinary ANOVA (P � 0.0001) followed by a Sidak’s multiple-comparison test was performed.
Significance is shown relative to the WT strain. ****, P � 0.0001. (B) The whiB6/espM locus and the
whiB6-lacZ� transcriptional fusion integrated at the attB site in M. marinum. Data represent
�-galactosidase activity of the whiB6-lacZ� transcriptional fusion. Error bars represent propagated errors.
A one-way ordinary ANOVA (P � 0.0001) followed by a Tukey’s multiple-comparison test was performed.
Significance data shown are relative to the WT strain. ****, P � 0.0001; **, P � 0.0078. For both panels, the
data represent averages of results from at least three biological replicates, each performed in technical
triplicate. All strains indicated in Fig. 4, with the exception of the ΔwhiB6 and ΔwhiB6 ΔespM strains,
contained a C-terminal epitope tag on the whiB6 gene.
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Fig. 4B). Loss of the whiB6 gene caused a significant reduction in �-galactosidase activity
relative to the WT strain (P � 0.0078). Deletion of the espM and whiB6 genes together
(ΔespM ΔwhiB6 mutant strain) resulted in significantly increased �-galactosidase activity
relative to the WT and ΔespM M. marinum strains (P � 0.0001 for both comparisons). This
further supports the idea that EspM represses whiB6 gene expression and confirms positive
autoregulation of WhiB6, consistent with prior findings (38). Moreover, the significant
increase in whiB6 expression in the absence of both EspM and WhiB6 suggests there is at
least one more transcriptional activator of whiB6 expression in M. marinum.

EspM fine-tunes ESX-1 function in M. marinum. Because EspM regulates whiB6

and esx-1 gene expression, we tested if EspM was required for ESX-1 activity. The
WT strain produced the EsxA and EsxB substrates and secreted them into the
culture supernatant during growth in vitro (Fig. 5A, lanes 1 and 2). Deletion of the
eccCb1 gene, which is required for ESX-1 secretion (10, 12, 14), reduced production
of EsxA and EsxB, and neither protein was secreted (Fig. 5A, lanes 3 and 4). The
ΔespM strain exhibited at least WT levels of production and secretion of EsxA and
EsxB (Fig. 5A, lanes 5 and 6). The espM complemented strains showed reduced
levels of production of EsxA and EsxB (Fig. 5A, lanes 7 and 8, and Fig. S4D) but
exhibited at least wild-type levels of secretion of EsxA and EsxB. To further confirm
that the levels of ESX-1 proteins were altered, consistent with the observed
EspM-dependent expression changes, we performed global proteomics on whole-
cell lysates of the M. marinum strains represented in panel A (for the WT, ΔeccCb1,
ΔespM, and complemented strains) (Table S1E and F; see also Fig. S4E). We
identified 1,881 proteins at a 1% false-discovery rate. Protein quantification was
performed by using label-free quantification (LFQ). We found that, similarly to the
EsxA and EsxB proteins, the levels of several ESX-1 substrates (EspF, EspK, and EspB)
and components (EccA) and other associated proteins (EspG, EspH, and EspL) were
significantly reduced in the complemented strain, consistent with the expression
data (Fig. 2). These data demonstrate that EspM is required for fine-tuning the levels
of ESX-1-associated proteins, including the EsxA and EsxB substrates, in the myco-
bacterial cells but not for the secretory function of the ESX-1 system.

The ESX-1 system promotes phagosomal lysis during macrophage infection (6, 9,
27). M. marinum lyses red blood cells (RBCs) in an ESX-1-dependent manner (14, 17, 50).
Hemolysis analysis is a common way to measure the membranolytic activity of the
ESX-1 system (14, 17, 50). The WT strain caused significantly increased hemolytic activity
compared to the phosphate-buffered saline (PBS) control (no bacteria) (P � 0.0001;
Fig. 5B). The ΔeccCb1 strain exhibited hemolytic activity that was not significantly
different from that seen with the PBS control (P � 0.9996). The ΔespM strain exhibited
hemolytic activity not significantly different from that seen with the WT strain
(P � 0.9602). The complemented strain, which overexpresses espM relative to the WT
strain (Fig. 2B), showed significantly reduced hemolytic activity relative to the WT and
ΔespM strains (P � 0.0001).

ESX-1-deficient M. marinum strains fail to lyse the phagosome and fail to lyse
macrophages (7, 51). We infected RAW 264.7 cells with M. marinum at a multiplicity of
infection (MOI) of 7 and measured macrophage lysis by visualizing and quantifying the
uptake of ethidium homodimer by permeabilized macrophages (52). Consistent with
previous findings (51, 53), the WT strain caused macrophage lysis (Fig. 5C). Infection
with the ΔeccCb1 strain resulted in a significant reduction in macrophage lysis com-
pared to infection with the WT strain (P � 0.0001). In contrast, infection with the ΔespM
strain resulted in significantly increased macrophage lysis compared to infection with
the WT strain (P � 0.0001). Infection with the espM overexpression strain restored
macrophage lysis to WT levels (P � 0.2138). These data show that in the absence of the
espM gene, the ESX-1 system promoted higher levels of macrophage lysis. Moreover,
combined with the hemolysis data, these findings indicate that the levels of EspM
fine-tune the activity of the ESX-1 system in M. marinum.
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DISCUSSION

Collectively, our findings identify EspM as a conserved transcription factor required
for the ESX-1-dependent transcriptional response in pathogenic mycobacteria. Al-
though the espM gene is adjacent to the esx-1 locus, EspM has not been previously
characterized. The espM gene may not have been linked to the ESX-1 system previously
because deletion of the espM gene in M. marinum had only a subtle impact on ESX-1
activity, likely because several transcription factors regulate whiB6 gene expression (39,
54–56). Moreover, the M. tuberculosis EspM ortholog Rv3863 was previously reported to

FIG 5 EspM fine-tunes ESX-1 function. (A) Western blot analysis of EsxA and EsxB secretion in vitro. 10 �g
of protein was loaded per lane and resolved on a 4% to 20% gel. RpoB was used as the lysis control;
Mpt-32 is a Sec-dependent secreted protein that served as a loading control. The image shown is
representative of three biological replicates. (B) Hemolysis assay of M. marinum strains. The image shown
represents at least three biological replicates, each performed in technical triplicate. Error bars represent
the propagated errors. A one-way ordinary ANOVA (P � 0.0001) followed by a Tukey’s multiple-
comparison test was performed. ****, P � 0.0001 (relative to the WT strain). OD405, optical density at 405
nm. (C) Cytolysis assay of RAW 264.7 cells following 24 h of infection with M. marinum at an MOI of 7.
Black bars indicate median and quartiles. UI, uninfected. Statistical analysis was performed using a
one-way ordinary ANOVA (P � 0.0001) followed by a Tukey’s multiple-comparison test. ****, P � 0.0001
(compared to the WT strain). Each dot represents the number of EthD-1-stained cells in a single field. A
total of 10 fields were counted using ImageJ for each well. Processing of 3 wells was performed for each
biological replicate. A total of 90 fields were counted for each strain.
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be essential for growth in vitro in some genome-wide studies (57, 58) and nonessential
in others (59), which may complicate study in M. tuberculosis.

The identification of EspM further expands our understanding of the feedback
control mechanism that links the levels of ESX-1 substrates, and other genes, to the
assembly of the secretory apparatus (35). We found that deletion of the espM gene
resulted in levels of whiB6 expression that were higher than those seen with the WT
strain (Fig. 2B and C). We propose that whiB6 expression is repressed by EspM in the WT
strain and that whiB6 gene expression is further repressed by EspM in the absence of
the ESX-1 system (Fig. 6). Therefore, regulation by EspM is relevant in WT bacteria and
not simply when the ESX-1 system is absent, which may or may not be physiologically
relevant.

We do not yet understand how the ESX-1 membrane complex controls the magni-
tude of whiB6 repression by EspM. We do not think that the ESX-1 system transcrip-
tionally regulates the espM gene. We observed no ESX-1-dependent change in espM
transcript levels either here (Fig. 2A) or in our prior work (35). These findings contrast
those of Abdallah et al. (36), which indicated that the Rv3863 transcript (espMMT) is
regulated by the ESX-1 system in M. tuberculosis, similarly to the whiB6 gene. This may
be an example of differential regulation between M. marinum and M. tuberculosis. The
presence or absence of an assembled ESX-1 membrane complex likely posttranscrip-
tionally controls the levels of EspM in M. marinum. We recapitulated the levels of whiB6
gene expression in the ΔeccCb1 strain by overexpressing espM in the WT strain (Fig. 3D).
However, our published proteomic data indicate that EspMMM protein levels are
reduced 2-fold in the absence of EccCb1, when repression of whiB6 expression is
strongest (35). Regulation of the EspM transcription factor may be similar to the control
of gene expression by type III secretion systems (T3SS) in Gram-negative bacteria
(60–63). The injectisome T3SS uses cytoplasmic substrates and/or chaperones to post-
transcriptionally modulate the levels or activity of transcription factors that regulate
secretion-associated genes (62, 64–69). ESX-1 substrates or chaperones may posttran-
scriptionally regulate the activity of EspM in response to the presence or absence of the
ESX-1 membrane complex.

Posttranscriptional regulation of EspM could occur through the predicted
N-terminal forkhead-associated (FHA) domain. FHA domain-containing proteins post-
transcriptionally regulate Gram-negative type III and type VI protein secretion systems
(70–72). Staphylococcus aureus has an Ess-type VII secretion system similar to the ESX-1

FIG 6 EspM regulates gene expression in response to the ESX-1 system. A model proposing a role for
EspM in regulating whiB6 gene expression is shown. In the absence of the ESX-1 membrane complex, we
propose that EspM represses whiB6 gene expression (highly repressed state). Reduced WhiB6 levels cause
reduced activation of ESX-1 substrate gene expression, preventing substrate accumulation. In the
presence of ESX-1, EspM still promotes repression of whiB6 gene expression, fine-tuning expression of
the esx-1 substrate genes (repressed state). In the absence of espM, the levels of whiB6 and esx-1
substrate gene expression are derepressed.
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system (73, 74). The EccC-related protein EssCSA (75, 76) includes a twin-FHA domain
that is essential for secretion (77). FHA domains also mediate oligomerization (78–80).
We observed a second shift in mobility of the whiB6-espM probe by EMSA with
increasing concentrations of EspMMM protein (Fig. 1C and F). We did not observe this
supershifted product when using the C-terminal half of EspMMM alone (Fig. 1F),
suggesting that the N-terminal half of the protein is important for this observation. The
FHA domain may directly or indirectly control oligomerization of EspM in response to
the ESX-1 membrane complex.

Although WhiB6 directly binds the whiB6-espM promoter region, we did not identify
WhiB6 in the DNA pulldown (Fig. 1; see also Table S1 in the supplemental material). We
have not routinely identified WhiB6 from M. marinum lysates using mass spectrometry.
We also did not identify the PhoP response regulator, which regulates whiB6 expression
in M. tuberculosis. Under the conditions of our experiments, EspM may bind the
intergenic region preferentially to other regulators, including WhiB6 and PhoP. This
idea is supported by the finding that WhiB6 activates espM gene expression only in the
absence of EspM (Fig. 4A). Also, it is possible that no single technique can identify all
proteins that bind and regulate a specific region. For example, chromatin immunopre-
cipitation sequencing (ChIP-seq) experiments in strains overexpressing WhiB6 in M.
tuberculosis did not identify direct binding of WhiB6 to the whiB6-espM intergenic
region. And yet, overexpression of WhiB6 resulted in a significant upregulation of whiB6
gene expression in the same study (55, 56). Likewise, although PhoP bound the WhiB6
promoter directly in M. tuberculosis, overexpression of PhoP failed to significantly
impact whiB6 gene expression (55, 56). Therefore, the absence of enrichment of
regulators in our study does not preclude the possibility of a role for them in the
regulation of whiB6 and espM expression. Finally, regulation of the whiB6 and espM
genes may not be conserved between M. marinum and M. tuberculosis. In the case of
whiB6 expression, it has already been established that there is variability in how PhoP
regulates whiB6 in M. tuberculosis strains (39). It has not yet been established if whiB6
regulates esx-1 in M. marinum as part of the PhoPR regulon.

The back-to-back divergent arrangement of two regulators is a common theme in
microorganisms (81), the best described of which are the cI and Cro regulators of
bacteriophage � (82). Divergence in organization allows tight coordination of the
expression of both transcription factors and of their regulons from a single genetic
locus. The intergenic region between the espM and whiB6 genes likely contains binding
sites for both WhiB6 and EspM. Indeed, we demonstrated using EMSAs that both EspM
and WhiB6 bind this region in vitro (Fig. 1; see also Fig. S6 in the supplemental material)
and that both contribute to regulating the whiB6 and espM genes [Fig. 4]) (38, 39).
Therefore, the genes regulated by WhiB6, the ESX-1 system, and EspM may be coor-
dinated to fine-tune the ESX-1 secretion and for additional biological purposes. More-
over, whereas approximately half of the genes induced or repressed in the ΔespM strain
versus the complemented strain are associated with the ESX-1 system, other EspM-
regulated genes may have a currently unrecognized role in ESX-1-associated functions.

Our data clearly demonstrate that EspM impacts the expression of esx-1-associated
genes and is associated with corresponding changes in ESX-1 protein levels, supporting
the idea that EspM functions to fine-tune ESX-1 function. Consistent with these
findings, we observed reduced hemolytic activity upon overexpression of espM and
increased cytolytic activity in the absence of EspM. Although hemolysis and macro-
phage cytolysis are both measures of ESX-1 function, our prior work indicated that the
results of the two assays do not always align, especially when using strains with
intermediate ESX-1 production or secretion levels (45). It is possible that there are
additional roles for EspM in ex vivo infection that differ from those seen in our studies
in vitro. Alternatively, EspM could impact the expression of additional genes required
for phagosomal lysis or macrophage cytolysis. For example, phthiocerol dimycoceros-
ate (PDIM) has been implicated in both phagosomal lysis and macrophage cytolysis (83,
84). However, we did not see changes in the expression of genes required for PDIM
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synthesis and transport in our RNA sequencing analysis (Table S3) or in the production
of PDIM (Fig. S4F).

Unlike most examples of T3SS-dependent gene expression, the genes regulated by
EspM and the ESX-1 membrane complex are not restricted to the ESX-1-associated
genes (35, 36). The C. trachomatis T3SS, which impacts global gene expression, may
represent a temporal cue for regulating gene expression during infection (85). Likewise,
the assembly of the ESX-1 system may serve as a temporal cue to regulate mycobac-
terial gene expression. While pathogenic mycobacteria elicit a transcriptional response
essential for survival in the phagosome (1, 4), there has been no report of a transcrip-
tional response to interaction with the macrophage cytosol. The cytoplasm is consid-
ered restrictive for bacterial survival and growth unless the pathogen adapts (86).
Listeria monocytogenes, a pathogen that lyses the phagosomal membrane and accesses
the cytoplasm (87), adapts by altering metabolism and inducing stress response
pathways (86). We propose that the assembly of the ESX-1 membrane complex elicits
gene expression pathways to link ESX-1-mediated phagosomal lysis and cytoplasmic
adaptation. Indeed, several of the genes regulated by EspM and by the ESX-1 system
are predicted to be associated with metabolism (Table S3). This is most notable in
genes that are downregulated in the ΔespM strain or upregulated in the ΔwhiB6 and
eccCb1 mutant strains. For example, the genes in the mce6 locus and surrounding genes
were significantly downregulated in the ΔespM strain but were upregulated in the
ΔwhiB6 and eccCb1 mutant strains (Fig. S4C), although, due to variability in the data, the
results representing the gene induction in the ΔwhiB6 and eccCb1 mutant strains were
not statistically significant. These data are supportive of the conclusion that the mce6
genes are repressed in a whiB6-dependent manner, although further characterization
studies will be required to support this hypothesis. mce genes have been associated
with carbon nutrient uptake, including mce1, promoting uptake of fatty acids (88), and
mce4, promoting uptake of cholesterol (89). mce6 is absent in the M. tuberculosis
genome but is present in the genomes of many nontuberculous mycobacterial species
(90) and could play a role in controlling metabolite import to promote survival in the
phagosome or cytosol. The mce6 locus may be important for the cytosolic lifestyle of
M. marinum, which polymerizes host actin and exhibits cytosolic motility (5), which is
not conserved in M. tuberculosis.

Finally, because EspM regulates a subset of genes controlled by the ESX-1 system,
there are likely additional transcription factors that make up an ESX-1-dependent
transcriptional network. We focused on proteins that specifically bound the whiB6/espM
intergenic region. Studies aimed at identifying proteins that bind additional ESX-1-
responsive promoters would identify additional transcription factors in the ESX-1-
responsive network.

In conclusion, we have identified a conserved transcription factor, EspM, which is
encoded by a gene adjacent to the esx-1 locus that is required for the repression of
whiB6 gene expression in the absence of the ESX-1 system. Our study results begin to
define a transcriptional network that links the assembly of the ESX-1 system to
widespread changes in gene expression, including the regulation of the ESX-1 appa-
ratus and substrates.

MATERIALS AND METHODS
A fully detailed explanation of the methods used in this study can be found in Text S1 in the

supplemental material. All M. marinum strains were derived from M. marinum strain M (BAA-535). Where
indicated, the parental strain included a FLAG epitope tag at the C terminus of the whiB6 gene (35).
Maintenance of the M. marinum strains and E. coli strains is described in Text S1. Enriched proteins were
analyzed using quantitative nano-high-performance liquid chromatography–tandem mass spectrometry
(nano-UHPLC-MS/MS) proteomics. All mycobacterial strains were generated using the allelic exchange
protocol developed by Parish and Stoker (91) as described previously (35, 45, 52, 92). All strains,
constructs, and primers (IDT, Coralville, IA) used in this study are listed in Table S2 in the supplemental
material. All plasmids and genetic deletions were confirmed by targeted DNA sequencing performed at
the Notre Dame Genomics and Bioinformatics Facility. All proteins were expressed in E. coli with 6�His
affinity tags and purified using metal chelation affinity chromatography as described in Text S1. EMSAs
were performed as reported previously (93–95), with modifications listed in Text S1. �-Galactosidase
assays on M. marinum strains bearing the whiB6::lacZ�, attB::pwhiB6-lacZ�, or attB::pespM-lacZ�
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reporter were performed as described previously (52). Hemolysis assays were performed as de-
scribed previously (35). ESX-1 secretion assays were performed as described previously (35), except
that 10 �g of protein was analyzed for all protein fractions. Western blot analysis was performed as
described previously (35). Macrophage (RAW 264.7 cells) infections were performed as described
previously (45) at an estimated multiplicity of infection (MOI) of 7 (2.5 � 106 cells/ml). Cells were
imaged and ethidium-homodimer uptake by perforated cells was quantified using ImageJ (35, 52).
For transcriptional profiling, M. marinum strains were grown and RNA was extracted exactly as
described previously (35). RNA sequencing was conducted as described previously (96), and the
results were analyzed using SPARTA software (97). For analysis of differentially expressed genes
(�2-fold; q value of �0.05), lists were filtered for genes with average counts greater than 4 (log2

CPM), with full unfiltered data sets available in Table S3.
Data availability. The transcriptional profiling data are available at the NCBI GEO database (acces-

sion number GSE135072). All statistical analysis was performed as described in each figure legend, using
PRISM v8.1.

SUPPLEMENTAL MATERIAL
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TEXT S1, PDF file, 0.2 MB.
FIG S1, PDF file, 0.4 MB.
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FIG S3, PDF file, 2.6 MB.
FIG S4, PDF file, 0.8 MB.
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FIG S6, PDF file, 0.7 MB.
TABLE S1, XLSX file, 1.9 MB.
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