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Abstract: Pu-erh tea processed from the sun-dried green tea leaves can be divided into ancient tea
(AT) and terrace tea (TT) according to the source of raw material. However, their similar appearance
makes AT present low market identification, resulting in a disruption in the tea market rules of fair
trade. Therefore, this study analyzed the classification by principal component analysis/hierarchical
clustering analysis and conducted the discriminant model through stepwise Fisher discriminant
analysis and decision tree analysis based on the contents of water extract, phenolic components,
alkaloid, and amino acids, aiming to investigate whether phytochemicals coupled with chemometric
analyses distinguish AT and TT. Results showed that there were good separations between AT and
TT, which was caused by 16 components with significant (p < 0.05) differences. The discriminant
model of AT and TT was established based on six discriminant variables including water extract,
(+)-catechin, (−)-epicatechin, (−)-epigallocatechin, theacrine, and theanine. Among them, water
extract comprised multiple soluble solids, representing the thickness of tea infusion. The model had
good generalization capability with 100% of performance indexes according to scores of the training
set and model set. In conclusion, phytochemicals coupled with chemometrics analyses are a good
approach for the identification of different raw materials.

Keywords: Pu-erh tea; raw material; phytochemical; chemometrics analyses; discriminant model;
generalization capability

1. Introduction

Pu-erh tea is defined as a geographical indication product by the General Administra-
tion of Quality Supervision, Inspection, and Quarantine of the People’s Republic of China
(GB/T 22111-2008), and is one of the most popular tea beverages in Asian countries; in
particular, southwestern China and South Asian countries attribute this to its unique flavors
and beneficial effects on human health [1]. It is processed from the sun-dried green tea
leaves and can be classified into ancient tea (Gu-shu cha, AT) and terrace tea (Tai-di cha, TT)
based upon the source of raw material [2,3]. AT is collected from ancient tea gardens that
have good economic and ecological efficiencies such as climate regulation, water and soil
conservation whereas TT is gathered from terrace tea plantations that rely on the good
management of tea fields including fertilization, pruning, and pesticide spraying. The
differences in growth environments and management methods of both result in different
flavors: compared with TT, AT has a richer taste with durability and a more distinctive
aroma, which is widely considered to have more preservation value [4]. However, their
similar appearance has led to low market identification of AT, which seriously damages the
interests of consumers and the reputation of tea producers. Meanwhile, lack of yield and
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the unclear relevant laws or market regulation of AT have also created an opportunity for
tea adulteration [5].

Based on the phenomenon, numerous researchers have investigated the differences of
AT and TT from phytochemicals, soil nutrients, and flavor, but most studies have simply
compared them based on a single component because there is still a lack of methods to
systematically identify the differences between AT and TT in the case of multiple samples
and multiple indicators [6–9]. Lin et al. [10] established discriminant models of AT and
TT through rare earth elements, but these components were inapplicable and difficult to
understand for tea drinkers, especially consumers without professional knowledge in the
tea market. Therefore, it is necessary to develop a valid method through more intuitive in-
dicators to scientifically distinguish AT from TT. Chemometric analyses are a data analysis
tool to extract effective information from multivariate chemical data. This is often combined
with other methods such as high-performance liquid chromatography (HPLC) and mass
spectrometry to analyze food adulteration in the market and explore whether there are
similar characteristics of unknown samples [11,12]. Principal component analysis (PCA),
hierarchical clustering analysis (HCA), and the establishment of discriminant model are
the main chemometric techniques [13]. According to the results on discriminating Brazilian
propolis using chemometrics by AF Mottese [14], it was found that DA/DTA was comple-
mentary to PCA/HCA and the important information of the discriminant model could be
obtained based on them. At present, they have been widely applied in the identification
of food adulteration in products such as butter, camellia oil, honey, and tea [15–21]. For
example, Zhou et al. [18] correctly identified Pu-erh ripened teas of different production
origins based on PCA and HCA; Aboulwafa et al. [22] studied the quality of green tea
samples from the South and the East Asian regions, and the results showed that there were
good separations of samples between them by establishing the model. Phytochemicals
including phenolics, free amino acids, caffeine, and other components could intuitively
reflect tea quality through flavor [23] whereas their combination could prove to be a useful
tool to distinguish Pu-erh tea made from different raw materials.

Hence, with regard to the scientific classification of Pu-erh tea from different raw
materials and guide tea producers and consumers to effectively identify tea products,
30 ATs and 50 TTs from Yunnan Province were collected in this work, and 26 phytochemi-
cals including three mixtures, six catechin components, two purine alkaloids, and 15 free
amino acids were determined by spectrophotometry method and high-performance liquid
chromatography (HPLC), respectively. Further chemometric analyses were used to reveal
classification accuracy and construct a model.

2. Materials and Methods
2.1. Chemicals

Used chemicals were of analytical grade unless otherwise stated. Folin–Ciocalteu
reagent, sodium carbonate (NaCO3), methanol, ninhydrin, stannous chloride (SnCl2), dis-
odium phosphate (Na2HPO4), potassium dihydrogen phosphate (KH2PO4), 5-sulfosalicylic
acid, and glacial acetic acid were purchased from Taixin Chemical Company (Chongqing,
China), among which methanol and glacial acetic acid were HPLC-grade. Gallic acid and
glutamate were obtained from the Kelong Chemical Factory (Chengdu, China). Aspartic
acid (Asp), serine (Ser), glutamic acid (Glu), glycine (Gly), alanine (Ala), cysteine (Cys), va-
line (Val), isoleucine (Ile), leucine (Leu), tyrosine (Tyr), phenylalanine (Phe), lysine (Lys), his-
tidine (His), arginine (Arg), and theanine were guaranteed reagents purchased from Seebio
Technology Co. Ltd. (Shanghai, China). Caffeine, (−)-epigallocatechin gallate (EGCG), (−)-
gallocatechin gallate (GCG), (−)-epicatechin gallate (ECG), (−)-epigallocatechin (EGC), (−)-
epicatechin (EC), and (+)-catechin (C) were guaranteed reagents purchased from Chengdu
Biopurify Phytochemicals Ltd. (Chengdu, China). Theacrine was obtained from Better-in
Com (Shanghai, China).
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2.2. Tea Samples

As shown in Table 1, a total of 80 samples including 30 ATs and 50 TTs were collected
from five ancient tea gardens (including Banpen, Laobanzhang, Hekai, Xinbanzhang,
Laoman’e) and nine terrace tea plantations (including Nannuo, Bulang, Mensong, Lincang,
Lancang, Xiding, Gelanghe, Menla, Dali) in Yunnan Province. The raw Pu-erh samples
were processed through five steps including picking, withering, green removing, rolling
and twisting, and sun-drying, and marked with the corresponding numbers according to
the sample names before grinding. All samples were stored at −4 ◦C until further analysis.

Table 1. The sources, counts, and codes of different raw materials in Yunnan Province.

Raw Materials Sources Counts Codes 1

AT Banpen, Laobanzhang, Hekai, Xinbanzhang, Laoman’e 30 A1~A30

TT Nannuo, Bulang, Mensong, Lincang, Lancang, Xiding,
Gelanghe, Menla, Dali 50 T1~T50

1 The codes of AT and TT were respectively named as the uppercase of the first letter of them, followed by
a number.

2.3. Determination of Phytochemicals
2.3.1. Water Extract (WE)

WE in the AT and TT was detected by the constant temperature drying method [24]
with some modifications. Briefly, 1 g of the ground sample (m0) was soaked in 150 mL
boiled distilled water for 45 min. After washing and filtration using 75 mL boiled distilled
water, tea grounds were put in an oven (120 ± 2 ◦C) to bake for 4 h before weighing (m1).
The WE content was expressed as (m0 − m1) × 1000/m0 mg/g.

2.3.2. Total Phenolics (TPC)

The determination of TPC content was performed using Folin–Ciocalteu reagent [25].
Briefly, 0.2 g of the ground sample and 5 mL of 70% methanol (70 ◦C preheat) were placed in
a 70 ◦C water bath pot for 10 min and centrifuged at 3500 rpm for 10 min after being cooled.
The above operation was repeated, and all supernatants were merged to a constant volume
of 10 mL. Then, 1 mL of the sample or water, appropriately diluted, was taken, followed
by 5 mL of 10% Folin–Ciocalteu reagent. After 5–8 min at room temperature, 4 mL of 7.5%
sodium carbonate solution was added and the mixture was placed at 25 ± 2 ◦C in the dark
for 1 h. The absorbance was measured at 765 nm using a Synergy H1MG microplate reader
(Synergy H1MG; BioTek Instruments Inc., Winooski, VT, USA). Gallic acid (0–0.0055 mg/g)
was used as the reference standard, and the results were expressed as gallic acid equivalents
per gram sample (mg/g).

2.3.3. Total Free Amino Acids (TFAAs)

The TFAAs contents of samples were identified using the ninhydrin colorimetric
assay [26]. Briefly, 1 g of the ground sample and 150 mL water were placed in a boiling
water bath for 45 min, and filtrated through decom-pressure filtration was added to water,
yielding a 150 mL volume. Then, a 1 mL of sample was taken, followed by 0.5 mL phosphate
buffer (pH 8) and 0.5 mL 2% ninhydrin. After shaking, the solution was placed in a boiling
water bath for 15 min. Then samples were cooled to 25 ± 2 ◦C and water was added to a
25-mL volume before measurement at 570 nm using a Synergy H1MG microplate reader
(Synergy H1MG; BioTek Instruments Inc., Winooski, VT, USA). Glu (0–0.6 mg/g) was used
as the reference standard, and the results were expressed as Glu equivalents per gram
sample (mg/g).

2.3.4. Catechins Components and Caffeine

Catechin components (EGCG, GCG, ECG, EC, EGC, C) and caffeine were identified
using the high-performance liquid chromatography (HPLC) method [27]. Briefly, 0.2 g of the
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ground sample and 5 mL of 70% methanol (70 ◦C preheat) were placed in a 70 ◦C water bath
pot for 10 min, and centrifuged at 3500 rpm for 10 min after being cooled. The above operation
was repeated, and all supernatants were merged to a constant volume of 10 mL. The above
solution was filtered through a 0.45-µm organic membrane (Jinteng Experimental Equipment
Co. Ltd., Tianjin, China) until further HPLC analysis. The chromatographic conditions were
as follows: Agilent ZORBAX SB-C18 (5 µm, 4.6 mm × 250 mm); detection wavelength at
278 nm; mobile phase A, 0.2% glacial acetic acid in water; mobile phase B, methanol; flow
rate, 0.9 mL/min; column temperature, 35 ◦C; and injection volume, 10 µL; gradient elution,
18–25% B, 0–25 min; 25–35% B, 25–30 min; 35–18% B, 30–32 min; and 18% B, 32–37 min.
Catechin components and caffeine levels were expressed as mg/g.

2.3.5. Theacrine

The theacrine in the AT and TT was identified according to Li et al. [28] with some mod-
ifications. Briefly, the ground sample was extracted with 75% alcohol in a ratio of 1:20 (w/v)
for 10 min and centrifuged at 12,000 rpm for 10 min. Then, the obtained supernatant
was filtered through a 0.45-µm organic membrane (Jinteng Experimental Equipment Co.
Ltd., Tianjin, China) until further HPLC analysis. The chromatographic conditions were
as follows: Agilent ZORBAX SB-C18 (5 µm, 4.6 mm × 250 mm); detection wavelength at
280 nm; mobile phase A, acetonitrile/acetic acid/water (3:0.5:96.5, v/v/v); mobile phase
B, acetonitrile/acetic acid/water (30:0.5:69.5, v/v/v); flow rate, 1.0 mL/min; column tem-
perature, 32 ◦C; and injection volume, 10 µL; gradient elution, 20–80% B, 0–35 min; 20% B,
35.01 min; 20% B, 35.01–40 min. The theacrine level was expressed as mg/g.

2.3.6. Free Amino Acids

The free amino acids were detected according to Lu et al. [29] using an Amino Acid
Analyzer (L-8900, Hitachi, Tokyo, Japan). Briefly, a 4 mL sample and 4 mL 10% sulfosalicylic
acid were added to a 10-mL tube. After one night, the sample was filtered through a
0.45-µm organic membrane (Jinteng Experimental Equipment Co. Ltd., Tianjin, China)
before analysis. The Amino Acid Analyzer system used a mobile phase involving lithium
citrate and UV–Vis detection at 440 nm and 570 nm. The flow rates were 0.35 mL/min for
the mobile phase and 0.3 mL/min for the derivatization reagent. The column temperature
was set to 50 ◦C, and the post-column reaction equipment was maintained at 135 ◦C. The
temperature of the autosampler was kept at 4 ◦C, and the injection volume was 20 µL for
the standard and samples. The free amino acids levels were expressed as mg/g.

2.4. Chemometric Analyses

All data were subjected separately to PCA and HCA to detect whether phytochemicals
could be used to classify AT and TT. HCA and PCA were respectively performed using IBM
SPSS Statistics software (Version 22, SPSS Inc., Chicago, IL, USA). An analysis of variance
(ANOVA) was also used by IBM SPSS Statistics software (Version 22, SPSS Inc., Chicago,
IL, USA) to determine significant differences (p < 0.05). Regarding the establishment of
discriminant models, stepwise Fisher discriminant analysis (SFDA) was performed based
on the model set. The model set consisted of 20 ATs and 40 TTs chosen randomly from
80 samples, and the other samples (10 ATs and 10 TTs) were the training set to check the
accuracy of the model by the leave-one-out method (LOO). Based on discriminant variables
from SFDA, DTA was further used to detect the classification of AT and TT, thereby
establishing the model. The optimal model of AT and TT was selected by performance
indexes and distance measurement. Both SFDA and DTA were applied by IBM SPSS
Statistics software (Version 22, SPSS Inc., Chicago, IL, USA), and the evaluation performance
indexes including accuracy, precision, recall, and F-score were calculated through the
confusion matrix, as shown in Table 2. The formulas were as follows [30]:

Accuracy = (TP + TN)/(TP + FN + FP + FN) (1)

Precision = TP/(TP + FP) (2)
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Recall = TP/(TP + FN) (3)

F-score = 2TP/(2TP + FP + FN) (4)

Table 2. Confusion matrix table.

True Classification 1

Type 1 Type 2

Predictive
classification

Type 1 TP TN
Type 2 FP FN

1 TP: true positives, represented the correct numbers of type 1 from the model prediction; TN: true negatives,
represented the number of mistakes in type 1 from the model prediction; FP: false positives, represented the
correct numbers of type 2 from the model prediction; FN: false negatives, represented the number of mistakes in
type 2 from the model prediction.

3. Results and Discussion
3.1. Feasibility of Phytochemicals to Classification of AT and TT

Based on WE, TPC, TFAAs, six catechin components, two purine alkaloids, and
fifteen free amino acids, PCA was used to explore whether the AT and TT could be distin-
guished through phytochemicals in this study. As shown in Table 3, the seven principal
components (PCs) had an eigenvalue greater than 1 and explained 80.352% of the cumula-
tive percentage of variance, among which PC1, PC2, and PC3 extracted according to the
Kaiser criterion represented 24.542%, 19.348%, and 11.261%, respectively, of the variability
of raw materials. Obviously, the first three PCs were the main components [31]. Figure 1a
shows the score plots of PC1 versus PC3 and it could be observed that all samples were
distributed in three areas, among which 11 TTs (T6, T7, T14, T15, T16, T17, T22, T23, T32,
T46, and T48) were distributed in an area exhibiting positive scores of PC1, and other
samples with cross distribution in the remaining two areas showed negative scores of PC1.
Further combined with 3D score plots of PC1 versus PC2 versus PC3 (Figure 1b), it was
found that 30 ATs were distributed around with TTs as the center, among which the 12 ATs
(A29, A30, A13, A24, A27, A22, A28, A26, A21, A23, A20, and A25) in the left-upper corner
showed negative scores of PC2 and positive scores of PC3; five ATs (A17, A18, A15, A16,
and A19) in the right-upper corner showed positive scores of PC2 and PC3; and 13 ATs
(A14, A11, A9, A3, A10, A12, A1, A6, A4, A7, A2, A8, and A5) in the right-lower corner
showed positive scores of PC2 and negative scores of PC3.

Table 3. Eigenvalue and variance contribution rates of PCA in AT and TT.

PCs Eigenvalue Percentage of
Variance (%)

Cumulative
Percentage of
Variance (%)

PC1 6.381 24.542 24.542
PC2 5.030 19.348 43.889
PC3 2.928 11.261 55.151
PC4 2.534 9.745 64.896
PC5 1.745 6.711 71.607
PC6 1.205 4.635 76.242
PC7 1.069 4.110 80.352
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into cluster-D in the HCA. The reason might be that the new variables generated in the 
dimensionality reduction process of PCA produced different results. The clusters-B, C, E, 

Figure 1. The score plots from the PCA of the phytochemicals in the ancient tea (AT, purple) and
terrace tea (TT, cyan). (a) PC1 vs. PC3; (b) PC1 vs. PC2 vs. PC3. (a) had three clusters (blue, orange,
and gray circle), among which the gray circle only contained TT. The blue, red, and orange circles
only contained AT and the green circle only contained TT in (b).

Meanwhile, HCA also showed that when the square Euclidean distance was set at 14,
all samples could be divided into eight clusters (clusters-A, B, C, D, E, F, G, and H) (Figure 2).
30 ATs were distributed in clusters-A, D, and H, corresponding to the sample distribution
in the blue, orange, and red circles in Figure 1b, respectively. However, A19 was distributed
in the red circle (cluster-H) in Figure 1b in the PCA while it was classified into cluster-D
in the HCA. The reason might be that the new variables generated in the dimensionality
reduction process of PCA produced different results. The clusters-B, C, E, F, and G included
seven, twenty-one, two, nine, and eleven TTs, respectively, among which clusters-F and
G corresponded to the sample distribution in the gray and green circles in Figure 1a,b,
respectively; while other samples in Figure 1b corresponded to clusters-B, C, and E. In short,
PCA and HCA can be used to explain whether teas could be distinguished according to
season, year, production place, processing technologies, and category variations [32–35]. In
this study, the results revealed that phytochemicals were the dominating influence factors
in the classification of AT and TT, which could be used as identification indicators of both.



Foods 2022, 11, 680 7 of 14

Foods 2022, 11, x FOR PEER REVIEW 7 of 14 
 

 

F, and G included seven, 21, two, nine, and 11 TTs, respectively, among which clusters-F 
and G corresponded to the sample distribution in the gray and green circles in Figure 1a,b, 
respectively; while other samples in Figure 1b corresponded to clusters-B, C, and E. In 
short, PCA and HCA can be used to explain whether teas could be distinguished 
according to season, year, production place, processing technologies, and category 
variations [32–35]. In this study, the results revealed that phytochemicals were the 
dominating influence factors in the classification of AT and TT, which could be used as 
identification indicators of both. 

 
Figure 2. Cluster results on phytochemicals of ancient tea (AT, purple) and terrace tea (TT, cyan). 
The red line illustrates that samples were divided into eight clusters when the Euclidean distance 
squared was 14 including clusters-A, B, C, D, E, F, G, and H. Thirty ATs were distributed in clusters-
A, D, and H and 50 TTs were distributed in clusters-B, C, E, F, G, and H. 

3.2. Comparison of Phytochemicals Differences Related with a Classification of AT and TT 
The phytochemical contents related to the classification of AT and TT are presented 

in Table S1 (Supplementary Materials), and the differences were analyzed based on the 

Figure 2. Cluster results on phytochemicals of ancient tea (AT, purple) and terrace tea (TT, cyan). The
red line illustrates that samples were divided into eight clusters when the Euclidean distance squared
was 14 including clusters-A, B, C, D, E, F, G, and H. Thirty ATs were distributed in clusters-A, D, and
H and 50 TTs were distributed in clusters-B, C, E, F, G, and H.

3.2. Comparison of Phytochemicals Differences Related with a Classification of AT and TT

The phytochemical contents related to the classification of AT and TT are presented
in Table S1 (Supplementary Materials), and the differences were analyzed based on the
average levels of both. As shown in Figure 3a, the average levels of WE and TFAAs in
AT were significantly (p > 0.05) higher than those in TT, whereas there was no significant
difference in the average level of TPC between AT and TT. In terms of catechin components
(Figure 3b), the average level of EC in AT was up to 34.3 mg/g, which was significantly
higher than that in TT, while the contents of EGC, C, and GCG in AT were significantly
lower than that in TT. Theacrine, as a kind of purine alkaloid, had a similar chemical
structure to caffeine. It is the key component of Yunnan Kucha (also called bitter Pu-erh tea
or Pu-erh Kucha tea), which not only has a beneficial effect on the human body but also
a more bitter taste than caffeine [36,37]. As presented in Figure 3b, the level of theacrine
in AT was significantly higher than that of TT, which indicated that the bitterness of AT
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was more remarkable than that of TT. Compared with the content of theacrine, the level of
caffeine of AT and TT reached 22.6 and 61.6 folds, respectively, among which the content of
caffeine in AT was significantly higher than that in TT. Additionally, free amino acids of AT
and TT were dominant with theanine and Glu, according to Figure 3c. Theanine in AT and
TT was up to 12.0 mg/g and 7.96 mg/g, respectively, and there was a significant difference
between both; Glu in AT and TT had no significant difference. Asp and Ser were detected
only in TT. Those findings were similar to those of Zhang [38] but opposite to the results on
the levels of WE and TFAAs in AT and TT as reported by Liang et al. [6]. The disagreement
might be due to the influence of processing technology.
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Overall, growth environments and management methods had definite impacts on phy-
tochemicals, resulting in significant differences in WE, TFAAs, four catechin components,
two purine alkaloids, and eight free amino acids between AT and TT. Previous studies
have also indicated that chemical fertilizers and environment could affect the contents of
polyphenols, WE, caffeine, and free amino acids [7,39–41]. This indicates that the above
differential components of AT and TT were representative, which could be considered as
major components of classifying AT and TT in this study.

3.3. Establishment and Optimization of Discriminant Model of AT and TT
3.3.1. Establishing a Discriminant Model through SFDA

SFDA is a popular recognition method by dimensionality reduction based on variance
analysis and is one of the most effective methods for feature extraction [42]. To scientifically
classify AT and TT, this study extracted key identification indicators by establishing a
discriminant model based on 16 phytochemicals. Twenty ATs and forty TTs selected from
all samples formed a model set and then the feature components of the model set were
extracted, thereby establishing a discriminant model. The results indicated that there were
eight phytochemicals that significantly (p < 0.05) affected the discriminant effect, and the
order of influence degree was as follows, according to F value: EC > C > theanine > WE >
EGC > theacrine > Ala > Arg (Table 4). However, due to the lack of detection of Ala and
Arg in some samples, which could affect the accuracy of identification between AT and TT,
six phytochemicals were finally used to establish a discriminant model in this study. The
model is shown in Equation (5): the unknown sample can be determined as AT if Y > 0;
otherwise, it was judged to be TT.

Y = −21.685 + 0.038 × WE − 0.094 × C + 0.12 × EC − 0.042 × EGC + 0.371 × theacrine + 0.217 × theanine (5)

Table 4. Results and significance of variables affecting AT and TT discriminations by SFDA extraction.

Numbers Variables Statistics df1 df2 Significance

1 EC 117.094 1 58 1.54 × 10−15

2 C 118.649 2 57 4.81 × 10−21

3 Theanine 106.949 3 56 3.67 × 10−23

4 WE 94.932 4 55 5.10 × 10−24

5 EGC 88.306 5 54 9.73 × 10−25

6 Theacrine 83.408 6 53 3.24 × 10−25

7 Ala 77.816 7 52 2.74 × 10−25

8 Arg 80.700 8 51 3.10 × 10−26

3.3.2. Optimizing Classification Model through DTA

To reflect the classification of samples more intuitively, DTA was used to detect the
classification of 80 samples based upon six variables of the discriminant model. As shown
in Figure 4, the tree involved a three-level structure with a total of eight decision nodes and
four classification rules created by only using three elements. Among these, the decision
rules were based on two concentration ranges of EC, four concentration ranges of C, and
two concentration ranges of WE, which correctly identified 30 ATs and 50 TTs. According
to the DTA results, the discriminant model of AT and TT was optimized. As presented in
Equation (6), the unknown sample could be determined as AT if Y > −1; on the contrary, it
was judged to be TT.

Y = −21.685 + 0.038 × WE − 0.094 × C + 0.12 × EC (6)
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3.3.3. Evaluating Classification Models

Upon the above two models, this study tried to evaluate the model externally and
internally through a training set (10 ATs and 10 TT, n = 20) and model set (20 ATs and
40 TTs, n = 60) to explore the generalization capability of two discriminant models and
choose the optimal model. As shown in Table 5, there were no misjudgments in the training
set and model set by model calculation and the leave-one-out method (LOO), regardless
of Equation (1) or Equation (2), that is to say, the accuracy, precision, recall, and F-score
reached 100%. This suggested that the two discriminant models had a good generalization
capability [43]. However, the above performance indexes were unable to help us choose
the most suitable discriminant model of AT and TT. The distance measurement could be
used to evaluate the separation effect of a model by a minimum distance of two categories:
The larger the distance, the easier the classification and a lower error rate [44]. According
to Figure 5a,b, the separation effect of AT and TT based on Equation (1) was better than
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that based on Equation (2) (1.60 > 1.11). This indicates that Equation (1), established by six
components, was optimal, which could be used as the discriminant model of AT and TT in
this study.

Table 5. Confusion matrix obtained for the discriminant model AT and TT and evaluation of the
model performance indexes.

Verification Modes
True Classification Performance Index (%)

ATs TTs Accuracy Precision Recall F-Score

Predictive
classification

Training set ATs 10 0
100 100 100 100TTs 0 10

Model set
(LOO)

ATs 20 0
100 100 100 100TTs 0 40

DTA
ATs 30 0

100 100 100 100TTs 0 50
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(a) The classification model established through stepwise Fisher discriminant analysis (SFDA). (b) The
classification model established through decision tree analysis (DTA). The circle represents AT and
the triangle represents TT. The purple represents the training set and the cyan represents the model
set. The gray line represents the dividing line of AT and TT. The interval between two red lines
represents the minimum separation distance of AT and TT ((a), 1.60; (b), 1.11).

Regarding the six discriminant variables, previous studies have shown that WE
is made up of soluble substances such as phenolics and alkaloids, reflecting the thick-
ness of tea infusion [45]. Theanine and nonester catechins (EC, C, and EGC) were re-
lated to umami/sweetness and bitterness/astringency, respectively, which were signifi-
cantly affected by some factors such as geographical environment, light, cultivar, and
fertilizer [46,47]. For instance, the climate had an impact on the chlorophyll contents,
thereby regulating the contents of nonester catechins; the contents of catechins were higher
in northern areas while the contents of free amino acids were higher in the southeast.
Theacrine significantly affected the bitter taste of tea infusion and had many excellent
pharmacological effects such as sedative and hypnotic [48–50]. At present, our laboratory
has already published relevant studies on the recognition threshold and leaching rule of
theacrine [51]. The results showed that the taste of AT was more bitter than that of TT due to
its high level of theacrine at the same recognition threshold. Meanwhile, the slow leaching
rate of theacrine contributed to the endurance property in brewing AT. Overall, the six
components could well reflect the differences between AT and TT, and an in-depth study
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on flavor contribution will be conducted based on these in the future, thereby providing a
reference for regulating the sale of AT.

4. Conclusions

All in all, according to the 26 phytochemicals determined by spectrophotometry
methods and HPLC, the PCA and HCA could divide 80 samples into AT and TT, and
ANOVA showed the growth environment and management method caused the significant
(p < 0.05) differences of the 16 phytochemicals as the principal factor including WE, TFAAs,
four catechin components, two purine alkaloids, and eight free amino acids. Based on the
ANOVA results, the discriminant model of AT and TT was eventually established based
on six components including WE, EC, C, EGC, theacrine, and theanine by comparing the
separation effect of SFDA and DTA. The accuracy, precision, recall, and F-score of the model
were up to 100%, which illustrates the good generalization capability of the discriminant
model. This study offers data support for Pu-erh tea from different raw materials from
the perspective of phytochemical components and an analytical thinking of classification,
which achieved a great effect. In future production practice, the classification method could
be applied to classify and distinguish unknown samples. In addition, the chemometric
analyses will also be a powerful tool in food fraud such as tea origin, storage time, and
organic tea.

Supplementary Materials: The following supporting information are available online: https://www.
mdpi.com/article/10.3390/foods11050680/s1. Table S1: The main phytochemicals of AT and TT
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