
fnins-15-718188 September 14, 2021 Time: 11:17 # 1

REVIEW
published: 14 September 2021

doi: 10.3389/fnins.2021.718188

Edited by:
Jinghui Luo,

Paul Scherrer Institute (PSI),
Switzerland

Reviewed by:
Jan Bieschke,

University College London,
United Kingdom

Martin Lothar Duennwald,
Western University, Canada

*Correspondence:
Fernando L. Palhano

palhano@bioqmed.ufrj.br

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Neurodegeneration,
a section of the journal

Frontiers in Neuroscience

Received: 31 May 2021
Accepted: 27 July 2021

Published: 14 September 2021

Citation:
Fernandes L, Cardim-Pires TR,

Foguel D and Palhano FL (2021)
Green Tea Polyphenol

Epigallocatechin-Gallate in Amyloid
Aggregation and Neurodegenerative

Diseases.
Front. Neurosci. 15:718188.

doi: 10.3389/fnins.2021.718188

Green Tea Polyphenol
Epigallocatechin-Gallate in Amyloid
Aggregation and Neurodegenerative
Diseases
Luiza Fernandes†, Thyago R. Cardim-Pires†, Debora Foguel and Fernando L. Palhano*

Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro,
Rio de Janeiro, Brazil

The accumulation of protein aggregates in human tissues is a hallmark of more than 40
diseases called amyloidoses. In seven of these disorders, the aggregation is associated
with neurodegenerative processes in the central nervous system such as Alzheimer’s
disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). The aggregation
occurs when certain soluble proteins lose their physiological function and become toxic
amyloid species. The amyloid assembly consists of protein filament interactions, which
can form fibrillar structures rich in β-sheets. Despite the frequent incidence of these
diseases among the elderly, the available treatments are limited and at best palliative,
and new therapeutic approaches are needed. Among the many natural compounds
that have been evaluated for their ability to prevent or delay the amyloidogenic process
is epigallocatechin-3-gallate (EGCG), an abundant and potent polyphenolic molecule
present in green tea that has extensive biological activity. There is evidence for EGCG’s
ability to inhibit the aggregation of α-synuclein, amyloid-β, and huntingtin proteins,
respectively associated with PD, AD, and HD. It prevents fibrillogenesis (in vitro and
in vivo), reduces amyloid cytotoxicity, and remodels fibrils to form non-toxic amorphous
species that lack seed propagation. Although it is an antioxidant, EGCG in an oxidized
state can promote fibrils’ remodeling through formation of Schiff bases and crosslinking
the fibrils. Moreover, microparticles to drug delivery were synthesized from oxidized
EGCG and loaded with a second anti-amyloidogenic molecule, obtaining a synergistic
therapeutic effect. Here, we describe several pre-clinical and clinical studies involving
EGCG and neurodegenerative diseases and their related mechanisms.

Keywords: amyloidosis, epigallocatechin-gallate, anti-amyloidogenic, Alzheimer’s disease, Parkinson’s disease,
Huntington’s disease

PROTEIN AGGREGATION AND AMYLOID DISEASES (AmD)

Amyloid fibrils are proteinaceous, insoluble structures that can be formed and accumulated inside
or outside cells in response to mutations, stress conditions (pH, temperature, ionic strength, etc.),
increase in protein concentration, and cellular protein quality-control failure, among others (Husby
and Sletten, 1986; Brange et al., 1992; Chi et al., 2003; Alford et al., 2008). The vast majority of
amyloid fibrils is composed of cross-beta structure and is found in different organs and tissues,
causing a heterogeneous group of intractable diseases collectively called amyloid diseases (AmD)
or amyloidoses (Husby and Sletten, 1986). The common structural features of all amyloid fibrils

Frontiers in Neuroscience | www.frontiersin.org 1 September 2021 | Volume 15 | Article 718188

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.718188
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.718188
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.718188&domain=pdf&date_stamp=2021-09-14
https://www.frontiersin.org/articles/10.3389/fnins.2021.718188/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-718188 September 14, 2021 Time: 11:17 # 2

Fernandes et al. EGCG in Amyloid Aggregation

have allowed the use of specific probes such as Congo red
(reviewed by Yakupova et al., 2019) and thioflavin-T (Biancalana
and Koide, 2010) to evaluate their formation in the test tube
or in the diagnosis of AmD. Universal antibodies against
fibrils have also been developed (Kayed et al., 2007). This
homogeneity in fibril structure has been exploited in the
search for anti-amyloidogenic compounds with some success,
at least in the test tube (Trivella et al., 2012; Sant’anna et al.,
2013). Epigallocatechin-gallate (EGCG) is one of these successful
examples, as described in this review.

Amyloid diseases can be either systemic or localized. In the
former, amyloid deposits are mainly found dispersed among
peripheral tissues/organs, while in the latter the aggregates
are restricted to a specific tissue/organ; if they occur in the
central nervous system (CNS) a neurodegenerative disorder
can develop (Muchowski, 2002; Wechalekar et al., 2016), as
in the case of Huntington’s disease (HD), Parkinson’s disease
(PD), and Alzheimer’s disease (AD) (DiFiglia et al., 1997;
Rocha et al., 2018; Busche and Hyman, 2020). Although they
all share the amyloid fibrils as a hallmark, the proteins that
compose the fibrils and the regions of the brain where the
deposits are found, at least at the onset of each disease, are
different, which gives rise to different clinical manifestations
and demands the use of different palliative treatments, since up
to now, there are no drugs against these diseases (Rubinsztein,
2006; Bloom, 2014). Tafamidis is an exception since it has
been used with great success in several countries in recent
years to treat patients with familial amyloid polyneuropathy, a
transthyretin (TTR)-related amyloidosis (Coelho et al., 2012),
and more recently, familial cardiomyopathy (Maurer et al.,
2018). TTR is a tetrameric protein with two thyroxin binding
pockets in the dimer-dimer interface. This structural feature
allowed the development of compounds (such as Tafamidis and
tolcapone) that fit with high affinity into these pockets, locking
TTR in its tetrameric, non-amyloidogenic state. Tafamidis is
now commercially available. This fortunate circumstance has
not occurred with other amyloidogenic proteins, some of which
even belong to the family of intrinsically disordered proteins,
which makes it very difficult to find compounds that trap these
proteins in a non-aggregating conformation. Thus, strategies or
compounds that target very early aggregate species, blocking the
progress of aggregation, are lacking.

Nowadays, there is a consensus that most of the
toxicity/damage observed in AmD is due mainly to the
oligomeric, soluble species that are formed in the process of fibril
formation (Verma et al., 2015). In addition, amyloid fibrils can
serve as a reservoir of toxic, soluble oligomers contributing to
disease progression (Azevedo et al., 2012). Despite their different
protein origins, oligomers share morphologies and biological
activities (Kayed and Lasagna-Reeves, 2013). Their toxicity is
associated with their binding to different cellular receptors, their
pore-forming capacity, and their ability to modulate different cell
pathways, among other properties (Chong et al., 2006; Choi et al.,
2013; Miller et al., 2014). In the case of neurodegenerative AmD,
dysregulation of synapses (pre- or post-synaptic neurons) (Scheff
et al., 2007; Koffie et al., 2009; da Silva et al., 2020; Marcantoni
et al., 2020), induction of reactive oxygen species (ROS) and

oxidative stress (Figueiredo et al., 2013; Deas et al., 2016),
calcium imbalance and mitochondrial dysfunction (Luth et al.,
2014; Ludtmann et al., 2018), apoptosis induction (Chong et al.,
2006), cell membrane adhesion and toxicity (Choi et al., 2013;
Burré et al., 2014) and other cellular effects have been observed.

Amyloid diseases are multifactorial diseases since in addition
to the damage caused by protein deposition per se and oligomer-
related injuries, inflammation also plays an important role in
disease progression and prognosis (Azevedo et al., 2019; La Vitola
et al., 2021). Promising compounds must cross the blood–brain
barrier (BBB) when neurodegenerative disorders are considered.
All this complexity has to be considered in the search for new
therapeutic approaches, which are urgent in an aging population.

NATURAL PRODUCTS AS
THERAPEUTIC MOLECULES:
FLAVONOIDS OF GREEN TEA

The use of natural therapeutic approaches was described
more than 3,000 years ago, mostly by Chinese and Indian
medicine (Nestler, 2002; Saini, 2016). The secondary metabolites
from plants represent an endless frontier to be explored in
the search for compounds with pharmaceutical and medical
purpose. We know only a tiny fraction of our biodiversity
worldwide, which makes our responsibility to preserve the
environment very important.

Secondary metabolism provides several groups of molecules
with different chemical properties and biochemical activities such
as alkaloids, tannins, quinones, saponins, methylxanthines, and
flavonoids (Kumar and Pandey, 2013). Flavonoids consist of
molecules of a phenolic nature that share the flavone group as the
primary skeleton. Its complexity allows different substitutions in
the structure, leading to formation of a diversity of compounds
such as rutin, quercetin, hesperidin, and epigallocatechin-3-
gallate (Manach et al., 2004; Wen et al., 2017). The diversity of
these molecules is vital to the plants, since they act as antioxidant
and vegetal hormones to protect them from ultraviolet rays, bugs
and opportunistic microorganisms (Wen et al., 2017).

Flavonoids display multiple biological properties such as
antioxidation, through direct interaction with ROS; anticancer,
by modulating several cellular pathways involved in tumor
growth and apoptosis, anti-inflammation, and other effects (de
Almeida et al., 2020; de Amorim et al., 2020; Lakshmi et al., 2020;
Xuan et al., 2020).

Tea, the second most consumed beverage in the world, is rich
in flavonoids. The predominant flavonoids of tea are catechins:
(–)-epicatechin, (–)-epicatechin gallate, (–)-epigallocatechin,
and (–)-epigallocatechin gallate. Tea also contains other
phenolic acids (e.g., gallic acid), minerals (e.g., potassium and
calcium), and amino acids (e.g., theanine) that contribute to its
nutraceutical properties (Balentine et al., 1997).

Different types of tea (e.g., black and green) are prepared
from the leaves of Camellia sinensis, whose production and
consumption are widespread in China (Yan et al., 2020). The
dry weight of a fresh leaf contains 2.5 to 4% caffeine and 30%
flavonoids (Balentine et al., 1997).
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The flavonoid EGCG is a polyphenolic compound having
seven hydroxyl radicals distributed among three aromatic rings
(Figure 1). This feature confers water solubility, allowing
this molecule to be extracted merely by boiling in water
(Wang et al., 2008).

Epigallocatechin-gallate oxidation can form a quinone state
that can self-polymerize and crosslink with amines and sulfhydryl
groups of proteins (Palhano et al., 2013). The quinone state
is also related to amyloid fibril remodeling and conserves its
anti-amyloidogenic activity (Palhano et al., 2013; An et al., 2017).

HISTORY OF THE INHIBITORY EFFECTS
OF EPIGALLOCATECHIN-GALLATE IN
PROTEIN AGGREGATION AND ITS USE
IN NEURODEGENERATIVE AMYLOID
DISEASES

Epigallocatechin-Gallate in Prion
Diseases
The prion diseases are characterized by the conversion of
the cellular isoform of the prion protein (PrPC) to scrapie
(PrPSc), a pathogenic conformation (reviewed by Prusiner et al.,
1998; Colby and Prusiner, 2011). In this process, some of the
α-helices present in PrPC are refolded into β-sheets, which
changes the protein physicochemical characteristics and leads
to the formation of proteinaceous infectious particles, PrPSc

(Pan et al., 1993; Prusiner et al., 1998). High-throughput
screenings were performed to find effective therapeutic agents
that could cross the BBB as well as inhibit the formation
of PrPSc; reduce the PrPC precursor of infectious PrPSc; and
disaggregate pre-existing PrPSc (reviewed by Giles et al., 2017).
In the screening of 2,000 drugs and natural products, some
polyphenols such as tannin, 2′2′′′-bisepigallocatechin digallate,
and katacine were identified as anti-PrPSc agents (Kocisko
et al., 2003). These compounds prevented PrPSc formation
and accumulation in infected cells and inhibited the induced
conversion of radiolabeled hamster PrPC to PrPSc, resistant to
protease degradation (Kocisko et al., 2003). Other polyphenols,
including epicatechin and epigallocatechin, were ineffective
against PrPSc formation, indicating that structural variations can
lead to opposite results (Kocisko et al., 2003). After cellular

screening in vitro (Kocisko et al., 2003), some inhibitors such
as polyphenolic extracts of tea, grape seed and pine bark, tannic
acid, amodiaquine, thioridazine, thiothixene, trifluoperazine, and
tetrandrine were tested in scrapie-infected mice, and the positive
results observed previously did not occur in vivo (Kocisko et al.,
2004). Multiple variables can be involved in this lack of an effect
in vivo, such as dosage, vehicle, timing for beginning or ending
treatment, the compound’s inability to cross the BBB and its
metabolization (Kocisko et al., 2004).

A subsequent study specifically evaluated the effect of green
tea extract on PrPSc formation (Rambold et al., 2008). It
was demonstrated that EGCG and gallocatechin-gallate (GCG),
abundant polyphenols in green tea, induced rapid transition of
mature PrPC into detergent-insoluble conformations, favoring
the cellular protein internalization and its lysosomal degradation
(Rambold et al., 2008). Consequently, PrPSc formation was
reduced because the PrPC precursor was depleted by the EGCG
or GCG treatment (Rambold et al., 2008). Furthermore, the
greater efficacy of EGCG compared to epicatechin-gallate (ECG)
was attributed to the presence of three hydroxyl groups in
the trihydroxyphenyl side chain and their meta-position in
EGCG (Rambold et al., 2008). The gallate group at the side
chain was described as essential for the observed anti-PrPSc

effect (Rambold et al., 2008). Next, the effect of EGCG was
also evaluated in the yeast prion protein Sup35 (Roberts et al.,
2009). In these experiments, EGCG inhibited fibrillogenesis of
Sup35’s prion domain in vitro at 25 or 37◦C as measured
by Congo red, ThT fluorescence, and sedimentation assays
(Roberts et al., 2009), while epicatechin and gallic acid had no
inhibitory effects (Roberts et al., 2009). Pre-formed fibers of
Sup35 prion were incubated with EGCG and the drug promoted
fibril remodeling after 24 h (Roberts et al., 2009). The treatment
reduced the fibrillar content and promoted an enrichment of
soluble oligomeric species (Roberts et al., 2009). These oligomers
were not recognized by specific conformational antibodies for
amyloid species and presented lower seeding capacity (Roberts
et al., 2009). The yeast phenotype termed [PSI+] indicates a
strain containing Sup35 in prion state aggregates and resistant
to the action of proteases (Paushkin et al., 1997). The effect of
EGCG on this phenotype was investigated, and the treatment
reduced weak [PSI+] colonies (susceptible prion strain) more
effectively than strong [PSI+] (resistant prion strain) (Roberts
et al., 2009). Finally, EGCG and 4,5-bis- (4-methoxyanilino)

FIGURE 1 | Molecular structure of epigallocatechin-gallate.
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phthalimide (DAPH-12) were co-applied to increase activity
against prionogenesis, since DAPH-12 was able to cure strong
colonies [PSI+] (Roberts et al., 2009). Therefore, the synergy with
EGCG increased the elimination of several Sup35 prion strains
and enhanced the polyphenol therapeutic potential (Roberts
et al., 2009; Duennwald and Shorter, 2010).

The studies presented above have demonstrated the efficacy of
EGCG in inhibiting prionogenesis (Kocisko et al., 2003; Rambold
et al., 2008; Roberts et al., 2009), although the mechanism has
not yet been clarified. Investigations using nuclear magnetic
resonance (NMR) spectroscopy revealed that EGCG bound
non-specifically with PrPC (Kamatari et al., 2013). This bond
promoted the structural stabilization of PrPC, interfering in
the intermolecular interaction between PrPC and PrPSc during
the pathogenic conversion process (Kamatari et al., 2013). The
neuroprotective action was also evaluated: neurotoxicity was
induced by the PrP fragment (106–126) in human neuroblastoma
cells and the consequences of EGCG pre-treatment were analyzed
(Lee et al., 2015). When EGCG was present, it inhibited
mitochondrial dysfunctions, preventing Bax translocation and
cytochrome c release, and induced autophagy activated by
sirt1 (silent mating type information regulation 2-homolog),
increasing cell survival (Lee et al., 2015). Thus, these results
suggest that EGCG may be useful for therapy in prion diseases.

Effects of Epigallocatechin-Gallate in
Huntingtin Aggregation
Huntington’s disease treatment is restricted to reducing
symptoms (Kumar and Kumar, 2009; Dickey and La Spada,
2018; Varga et al., 2020) and the focus of research has been
on disease-modifying treatments. For the first time, after the
screening of 5,000 natural molecules, EGCG demonstrated
potential modulatory effects against the early steps in huntingtin
(htt) aggregation (Ehrnhoefer et al., 2006). A fluorescence
microscopy assay revealed a reduction of protein aggregates
by approximately 40% in a yeast model overexpressing htt
(expanded with 72 glutamines and fused to green fluorescent
protein), and the cell- extract evaluation confirmed the lower
quantity of insoluble species (Ehrnhoefer et al., 2006). In yeast,
EGCG decreased the toxicity promoted by htt and in HD
transgenic flies the compound diminished the photoreceptor
degeneration and motor impairments (Ehrnhoefer et al.,
2006). Accordingly, the EGCG becomes attractive as an anti-
amyloidogenic therapeutic strategy (Ehrnhoefer et al., 2006).
Subsequently, EGCG was tested against fibrillar oligomers, which
are globular structures, soluble in detergent and detected by an
antibody that recognizes the fibrillar conformation of amyloid
pathogenic proteins (Kumar and Kumar, 2009). The EGCG
reduced these oligomers in pheochromocytoma cells (PC12)
expressing htt and also reduced the formation of inclusion bodies
(Kumar and Kumar, 2009). Given the complexity of amyloidoses
and the influence of changes in the aggregation environment, the
effectiveness of EGCG was also assessed in the presence of lipid
membranes and the study demonstrated that EGCG efficacy was
not impaired (Beasley et al., 2019). In addition to EGCG, the
effect on HD of an infusion of green tea like that consumed by

humans was analyzed using a Drosophila model. The green tea
improved the neurodegeneration presented in HD flies but did
not influence their viability or prolong the lifespan of wild-type
Drosophila (Varga et al., 2020). The authors’ discussion highlights
the modest positive effect of the tea infusion consumption on
symptoms of HD and states that the results obtained can be
limited by the genetic condition of Drosophila, the fly husbandry
and the composition and concentration of green tea used for the
test (Varga et al., 2020).

Effects of EGCG on Amyloidogenesis of
α-Synuclein Protein and Parkinson’s
Disease Prevention
Effects on α-Synuclein Aggregation
The aggregation of α-synuclein (α-syn) is a process that occurs in
PD (Cascella et al., 2021). Analysis of the therapeutic potential
of EGCG have shown that it inhibits α-syn amyloidogenesis
(Ehrnhoefer et al., 2008; Jha et al., 2017; Dominguez-Meijide
et al., 2020) and protects rat PC12 and neuroblastoma cells
against aggregate-induced cytotoxicity (Ehrnhoefer et al., 2008;
Jha et al., 2017). Even with the presence of metal ions to accelerate
the fibrillation process, EGCG has been shown to be an effective
anti-amyloid agent (Zhao et al., 2017; Teng et al., 2019). The
amyloid aggregation pathway was redirected to the formation of
stable spherical oligomers when EGCG was added (Ehrnhoefer
et al., 2008). These oligomers were identified as non-toxic
amorphous species unable to promote seeding and disassembly
under denaturing conditions (resistance to sodium dodecyl
sulfate) (Ehrnhoefer et al., 2008). The presence of protein dimers,
tetramers and hexamers was observed after treatment with
EGCG, indicating crosslinking between α-syn and the compound
(Ehrnhoefer et al., 2008). Moreover, it has been shown that EGCG
binds specifically to intrinsically disordered proteins (α-syn and
Aβ), preventing the conversion of random-coil structures into
β-sheets (Ehrnhoefer et al., 2008). The EGCG interacted with
flexible regions in natively structured proteins and natively
disordered proteins (α-syn and Aβ) and the binding occurred
uniformly throughout the protein sequence (Fusco et al., 2018).
In addition, the protein oligomerization promoted by EGCG,
which redirects the pathway of amyloid formation to amorphous
species, probably occurs by the establishment of multiple
hydrogen bonds and aromatic interaction with backbone atoms
that inducing aggregation by protein-protein interaction (Fusco
et al., 2018). It has been suggested that the aggregation process
can be reduced by EGCG through the oxidation of α-syn
methionines (Ponzini et al., 2019). A later study discriminated
between the conformational states of α-syn in neutral pH solution
in the absence and presence of EGCG, proposing that EGCG
binds preferentially to compact α-syn species and does not
depend on covalent modifications to establish the protein-ligand
interaction (Konijnenberg et al., 2016).

Šneideris et al. (2015, 2019) argued that the EGCG may be not
an inhibitor of amyloidogenesis and demonstrated the possibility
of false-positive results related to the method of analysis applied
and the influence of environmental conditions. When the ThT
fluorescence assay, based on aggregation half-time, was used,
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Šneideris et al. (2015) observed that EGCG did not inhibit the
formation of α-syn and Aβ fibrils. The same was observed when
the pH was reduced from 7.0 to 6.0: the EGCG lost its anti-
amyloid effectiveness (Šneideris et al., 2019). However, despite
this controversy, several studies have reported the effectiveness of
EGCG (Ehrnhoefer et al., 2008; Caruana et al., 2011; Jha et al.,
2017; Zhao et al., 2017; Teng et al., 2019; Dominguez-Meijide
et al., 2020).

The potential of EGCG was also evaluated in the inhibition
of pre-formed amyloid fibrils (Bae et al., 2010; Bieschke et al.,
2010; Yoshida et al., 2013; Haney et al., 2017; Jha et al., 2017).
Similar to that described with α-syn monomers, new findings
indicated that EGCG bound directly to β-sheets of fibrils, altering
the amyloid conformation without disassembling them into toxic
oligomeric intermediates (Bieschke et al., 2010). The remodeling
of fibrils by the action of EGCG reduced the deposition of
amyloid and transformed them into amorphous non-cytotoxic
aggregates (Bieschke et al., 2010). Additionally, the effectiveness
of EGCG was assessed in simulations of physiological conditions
in a crowded macromolecular environment (Gautam et al.,
2017). EGCG, in synergy with β-cyclodextrin, which also acts
alone against aggregation (reviewed by Oliveri and Vecchio,
2016; Gautam et al., 2017), increased the inhibition of
amyloidogenesis and the disaggregation of pre-formed fibrils
(Gautam et al., 2017).

Based on the three-dimensional structure of the α-syn fibril, an
analysis of the molecular dynamics of the atoms was performed
to understand the remodeling process that occurs during the
binding between EGCG and the mature fibril (Liu et al., 2018).
The main types of EGCG interaction were hydrophobic and
hydrogen bonding, affecting three different fibril sites and with
participation to binding of some residues such as LYS58, GLU61,
THR64, LYS96, and ASP98 (Liu et al., 2018). The remodeling
promoted by EGCG occurred by generated disturbances in β-
sheets and hydrogen bonds in turn of the structure of the peptide,
disordering the fibril (Liu et al., 2018). It has been reported
that EGCG reduced the ordered structure of the fibril (Liu
et al., 2017; Yao et al., 2020) and enhanced the rupture of the
β-sheets occurred mainly in the regions of residues 45–55 and
86–96, affecting the overall structure of the fibril (Yao et al.,
2020). Furthermore, the EGCG interacted preferentially with the
charged residues E46, E61, K80, and E83 and the polar residue
S87 and with the hydrophobic residues H50, V66, V82, V95,
and F94, besides destroying the saline bridge E46-K80, stabilizer
of the amyloid structure (Yao et al., 2020). However, although
these studies demonstrate the ability of EGCG to remodel
fibrils, Sternke-Hoffmann et al. (2020) proposed that EGCG
cannot inhibit its α-syn seeding capacity. Sternke-Hoffmann et al.
(2020) argued that EGCG can interact with the fibril surface
and block binding to ThT. Additionally, the conditions used
during the tests, such as the types of plaques or pH of the
solutions, alter the results of the remodeling of fibrils. It has
been shown that, although EGCG promotes fibril remodeling,
ThT may not be the best probe to assess the occurrence of this
process (Kelley et al., 2021). Immediately after incubating the
fibril with EGCG, a reduction in ThT fluorescence was observed,
but this did not represent remodeling and when the washing
protocol was applied, the free EGCG was removed and ThT

levels were restored to a level similar to that observed prior
to treatment (Kelley et al., 2021). Thus, the authors suggested
the use of pentameric thiophene as an alternative to the use of
ThT in addition to the application of complementary techniques
and centrifugation/washing protocols to avoid unspecific results
(Kelley et al., 2021).

Effects on Cellular Mechanism and Neuroprotection
The EGCG also proved to be an efficient amyloid antagonist when
pre-formed oligomers were subjected to treatment (Caruana
et al., 2011). These amyloid aggregation intermediates, soluble
oligomers, can induce pore formation and permeabilization of
the lipid bilayer, leading to cell death. Indeed, they are known as
the most pathogenic amyloid species (Danzer et al., 2007). The
treatment with EGCG was able to inhibit cytotoxicity induced by
pre-fibrillar species in mouse neuroblastoma cells (Gautam et al.,
2017). The inhibition promoted by EGCG may be related to its
binding with the flexible C-terminal region of α-syn oligomers,
reducing damage to the membrane (Lorenzen et al., 2014).
The evidence points to a decrease in the oligomer-membrane
interaction after treatment of vesicles with EGCG, which may be
consequently associated to the protection of rat brain cells against
oligomer toxicity (Lorenzen et al., 2014). Another proposition
suggests that EGCG accelerates the formation of amyloid fibrils,
reducing the active toxic oligomers (Yang et al., 2017). Thus,
the cellular protection displayed after treatment with EGCG
would be to facilitate the conversion of active oligomers into
amyloid fibrils, decreasing rupture of the cell membrane and the
cytotoxicity of the aggregates (Yang et al., 2017).

A different mechanism has been suggested for the action of
EGCG in the yeast model of α-synucleinopathy (Griffioen et al.,
2006). Due to its antioxidant and metal-chelating properties,
EGCG inhibited aggregation and cytotoxicity. The polyphenol
also preserved dopaminergic neurons and motor functions,
decreasing the accumulation of amyloid in the brain of non-
human primates with induced parkinsonism (Chen et al.,
2015). The reduction in amyloid promoted by EGCG was
observed in tissues of patients with PD (Xu et al., 2016),
suggesting therapeutic potential. In addition, the neuroblastoma
cells expressing wild-type or mutant α-syn were challenged
by 6-hydroxydopamine (6-OHDA) and the genomic response
was measured after EGCG treatment (Ma et al., 2010). The
expression of α-syn sensitizes the cell to the insult and the
effect of EGCG can be evaluated under the combination of
genetic risk factors and environmental stress (simulated by 6-
OHDA) that leads to oxidative damages similar to occurred
in PD disease (Ma et al., 2010). The EGCG inhibited 70% of
changes in the transcriptome induced by 6-OHDA, including
the block of genes associated with erythroid-related nuclear
factor 2 (Nrf2)-mediated antioxidant response (Ma et al., 2010).
The knowledge about the modulation promoted by EGCG,
an antioxidant, in stress response pathways may be used to
understand the molecular bases of therapeutic strategies (Ma
et al., 2010). Despite the 6-OHDA toxicity can be related to
generation of ROS and both promote the caspase activation, it
is important to identify the transcriptional network involved in
neurotoxicity and EGCG action to search for new treatments
(Ma et al., 2010).
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Effects of EGCG in Alzheimer’s Disease
Amyloid plaques and neurofibrillary tangles are hallmarks of AD.
These structures are composed of amyloid-β peptide (Aβ) and
tau protein, respectively (reviewed by Vaz and Silvestre, 2020).
The Aβ formation and consequent aggregation depend on the
sequential cleavage of amyloid precursor protein (APP) (Vaz and
Silvestre, 2020). When APP is cleaved by α- and γ-secretase,
the soluble product is non-amyloidogenic, but when cleavage
occurs by β- and γ-secretase, amyloid-β is generated (Vaz and
Silvestre, 2020). The Aβ is toxic and can aggregate, depositing
in the brain tissue (Vaz and Silvestre, 2020). The new therapies
focus on anti-amyloid compounds, increasing attention to the tau
protein and aiming to act against the progression of the disease,
not just alleviating symptoms (Vaz and Silvestre, 2020).

Indirect Effects of EGCG
The main green-tea polyphenol, EGCG, was first investigated for
action against neuronal toxicity promoted by amyloid-β peptide
with the focus on the antioxidant property of EGCG (Choi et al.,
2001). The EGCG reduced the death of hippocampal neurons,
and its protective effect was attributed to the scavenging of ROS
(Choi et al., 2001). Furthermore, it has been reported that EGCG
can restore nerve growth factor balance, reducing apoptosis and
neurodegeneration through activation of the tropomyosin kinase
A receptor (TrkA) (Liu et al., 2014). The EGCG neuroprotection
also involved the nicotinic acetylcholine receptor α7 (nAChR
α7) signaling cascade (Zhang X. et al., 2014). In rat neurons,
EGCG protected against Aβ neurotoxicity by activating nAChR
α7, which consequently activated phosphoinositide-3-kinase
(PI3K), leading to Akt (protein kinase B) phosphorylation and
attenuating the reduction of the anti-apoptotic Bcl-2 effector
(Zhang X. et al., 2014). In a mouse model of AD, EGCG
restored mitochondrial respiratory rates, adenosine triphosphate
(ATP), and ROS levels and the membrane potential (Dragicevic
et al., 2011). This investigation indicated that the EGCG action
occurred in part by its antioxidant property and in part by
stabilization of the electron transport chain (Dragicevic et al.,
2011). The mitochondrial dysfunction can also be associated with
prolonged exposure to oligomeric species of Aβ (He et al., 2011).
These toxic species stimulate the ROS production that depends
on the NADPH oxidase pathway and attenuate Ca2+ influx
mediated by N-methyl-D-aspartate (NMDA)-receptor activity
(He et al., 2011). The treatment with EGCG was able to protect
against neurotoxic effects induced by Aβ oligomers, inhibiting
ROS generation and mitigating mitochondrial damage (He
et al., 2011). Moreover, the EGCG treatment can also prevented
neuronal apoptosis induced by endoplasmic reticulum (ER) stress
after Aβ exposure (Du et al., 2018). This array of mechanisms
related to EGCG activity indicate a remarkably broad spectrum
of molecular actions performed.

Activity of EGCG in APP Processing and Aβ

Generation
It was found that EGCG can also suppress the increase in
β-secretase expression (Shimmyo et al., 2008) and inhibit
β-secretase activity directly (Jeon et al., 2003). Furthermore, in
murine neuroblastoma cells transfected with the human APP
mutant, EGCG inhibited the generation of Aβ1−40 and Aβ1−42

by increasing the action of α-secretase, which promotes the
non-amyloidogenic processing of APP (Rezai-Zadeh et al., 2005).

Although the mechanism of action of EGCG has not yet
been elucidated, metalloproteases and protein kinase C (PKC)
may be involved. It was observed that EGCG depends on PKC
and metalloproteinases for APP processing into soluble non-
amyloidogenic products (Levites et al., 2003; Obregon et al.,
2006). The increase in APP non-amyloidogenic processing
promoted with EGCG treatment was attributed to activation
of disintegrin and metalloproteinase domain-containing protein
10 (ADAM10) through estrogen receptor/phosphoinositide
(Fernandez et al., 2010). Moreover, EGCG inhibited the
activation of extracellular signal-regulated kinase (ERK) and the
nuclear transcription factor-kB (NF-kB) induced by Aβ (Lee
et al., 2009). Concomitantly, in AD mice, EGCG attenuated
the reduction in α-secretase expression and the increase in
β-secretase and Aβ that AD causes in the brain, suggesting
that memory dysfunction was prevented by changes in APP
processing (Lee et al., 2009). Thus, these changes in APP
cleavage by secretases were correlated with the inactivation of
ERK and NF-kB promoted by EGCG and the observations
suggest that ERK and NF-kB may be modulating secretase
activity (Lee et al., 2009). The EGCG also can decrease the Aβ

levels by enhancing APP non-amyloidogenic processing when
affecting c-Abl (Abelson tyrosine kinase) distribution in cells. The
polyphenol can reduce nuclear translocation of c-Abl (Lin et al.,
2009), involved in the regulation of cellular apoptosis (Yuan et al.,
1997), and the interaction between c-Abl and FE65 (Lin et al.,
2009), an adaptor protein involved in cellular movement and
APP proteolytic processing (Wiley et al., 2007; Minopoli et al.,
2012). In addition, it was demonstrated that EGCG can mitigate
the expression of β-secretase and Aβ generation via nuclear
peroxisome receptor activated by gamma receptor proliferator
(PPARγ) (Zhang et al., 2017). Thus, reducing inflammatory
agents, oxidative stress and apoptotic proteins (Zhang et al.,
2017). The reduction in nuclear translocation of c-Abl inhibited
glycogen synthase kinase-3β activity, an enzyme responsible
for phosphorylating tau protein (Lin et al., 2009). Thus, the
decrease in tyrosine phosphorylation of tau, which was indirectly
generated by EGCG, can protect the cells (Lin et al., 2009).

EGCG Reduction in Aβ Levels and Amyloid Plaques
Analysis of the transgenic AD mouse model showed a reduction
in brain amyloid plaques after treatment with EGCG and
validated the results found in cells (Rezai-Zadeh et al., 2005). The
reduction in amyloid plaques, Aβ levels and cognitive deficits
was observed with intraperitoneal injection of EGCG (Rezai-
Zadeh et al., 2005), as well as with oral administration in
drinking water (Rezai-Zadeh et al., 2008). Furthermore, it was
observed that the reduction in Aβ levels in mice treated with
EGCG was accompanied by the inhibition in signaling to tumor
necrosis factor alpha/c-Jun N-terminal kinase (TNF-α/JNK) and
a decrease in insulin receptor substrate-1 (IRS-1), suggesting a
correlation with the restoration of memory impairment by EGCG
and the attenuation of insulin resistance (Jia et al., 2013).

Overall, it has been demonstrated that EGCG can reduce
Aβ levels, inhibiting the deposition of plaques and recovering
learning and memory functions that have been depleted by
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neurotoxic effects of aggregates (Chang et al., 2015; Schimidt
et al., 2017; Mori et al., 2019; Bao et al., 2020). EGCG was
effective in decreasing amyloid fibrillation (Wang et al., 2017;
Rho et al., 2019), redirecting to non-toxic, amorphous species
of oligomers (Ehrnhoefer et al., 2008; Sinha et al., 2012) and
remodeling pre-formed fibrils (Ehrnhoefer et al., 2008; Palhano
et al., 2013; Ahmed et al., 2017; Wang et al., 2017; Lee et al.,
2020). However, the protective effects of EGCG in neurons are
not restricted to the reduction of Aβ levels. It also protects against
mitochondrial damage (Dragicevic et al., 2011), induced metal
toxicity (Reznichenko et al., 2006; Hyung et al., 2013; Chan et al.,
2016; Ayyalasomayajula et al., 2019), stress by ROS generation
(Shimmyo et al., 2008; Kim et al., 2009; Ayyalasomayajula
et al., 2019) and neuroinflammation events (Lee et al., 2009;
Cheng-Chung Wei et al., 2016) related to AD. A study developed
in transgenic Caenorhabditis elegans demonstrated that EGCG
inhibited oligomerization and Aβ deposition, and in the worms
exposed only to oxidative stress, the EGCG reduced the levels
of small heat shock protein, under the control of DAF-2/insulin-
like signaling pathway (Abbas and Wink, 2010). Thus, suggesting
that EGCG can protect against age-related diseases, like AD, and
ROS-mediated damages (Abbas and Wink, 2010).

EGCG Binding to β-Amyloid
To better understand the mechanism of EGCG binding to
amyloid protein, thermodynamic analyses were performed
(Wang et al., 2010). Hydrophobic interactions and hydrogen
bonds appeared to be the main actors in the process of
Aβ-EGCG interaction (Wang et al., 2010). There were gradual
changes from hydrogen bonding to hydrophobic interactions
during the increase in the EGCG/Aβ ratio and the experimental
conditions as such increase in temperature, salt concentration
or changes in pH facilitated the formation of the EGCG-
protein bond (Wang et al., 2010). Hydrogen interactions have
been shown to occur primarily in the protein backbone and
hydrophobic interactions in the side-chains (Liu et al., 2011). In
addition, it was found that van der Waals interactions and the
participation of 12 amino-acid residues (F4, R5, F19, F20, E22,
K28, G29, L34, M35, V36, G37, and I41) occurred during EGCG
contacts with the Aβ peptide, preventing the conformation
conversion of α-helices into β-sheets that is characteristic of
Aβ1−42 (Liu et al., 2011). During analysis of Aβ1−42 fragments,
it was observed that hydrogen bonds occur in Aβ1−16 more
frequently, while hydrophobic interactions occur mainly in
Aβ17−42. However, thermodynamic evaluations performed in
different solutions containing the peptide fragments and EGCG
did not suggest specific binding sites for EGCG (Wang et al.,
2012). NMR characterizations of oligomers formed in the
presence of EGCG showed that the compound interacts with the
aromatic hydrophobic nucleus of Aβ (residues 17–20) (Lopez
del Amo et al., 2012). There was an immobilization of 1–
20 Aβ-peptide residues after EGCG interaction, inhibiting the
characteristic β-sheet formation of amyloid aggregation (Lopez
del Amo et al., 2012). Subsequent investigations demonstrated
that 3 molecules of EGCG were attached to Aβ and the planar
ring of EGCG prevented the β-sheets formation (Bleiholder
et al., 2013). However, solid-state NMR assay indicated that the

oligomers generated with EGCG treatment were not amorphous
as previously described (Ehrnhoefer et al., 2008), but instead were
well structured (Lopez del Amo et al., 2012). In the same study,
it was reported that EGCG may have prevented the metal ions’
coordination with residues Y10, H13, and H14, justifying the
loss of neurotoxicity by oligomers generated in the presence of
EGCG (Lopez del Amo et al., 2012). This interaction with Y10
of Aβ peptide and the His influence was confirmed subsequently
(Zhang B. et al., 2013). Furthermore, the metal-Aβ interaction
was associated with neuronal toxicity and pathogenesis of AD,
and evaluation of the effects of EGCG demonstrated that in the
presence of metal that was free or complexed with the peptide,
the induced neurotoxicity was reduced (Hyung et al., 2013).
EGCG can bind to metal-Aβ species and also promote metal
chelation, both related to this positive action of the compound
(Hyung et al., 2013).

The first investigation of the binding between EGCG and
the Aβ dimers (smallest aggregates) showed higher number
of contacts of three aromatic rings of EGCG with Aβ and
its preferential interaction with residues G29, A30, G37, G38,
V39, and A42 of the backbone and strong with residues F4,
F19, F20, T10, I31, I32, M35, V36, V39, and I41 of the
side-chains (Zhang T. et al., 2013). Furthermore, analysis of
the molecular mechanism of EGCG interactions during the
remodeling of mature amyloid fibrils identified as the main factor
the interactions between the compound and hydrophobic fiber
sites (Palhano et al., 2013). This remodeling process depended
on EGCG auto-oxidation, which generates a mixture of EGCG-
quinone monomers and polymers (Palhano et al., 2013). The
EGCG’s oxidized molecules formed Schiff bases with amyloid
fibrils by reaction with free amines in the protein (Palhano
et al., 2013). The crosslink thus generated was responsible
for preventing fibril dissociation in toxic oligomeric species
(Palhano et al., 2013). Despite the observation that oxidized
EGCG was able to bind to fibrils, the role of EGCG auto-
oxidation in driving the amyloid fibril remodeling remains
unclear (Palhano et al., 2013). Through NMR spectroscopy
analysis, it was observed that the flavon-3-ol unit of catechins
was essential for the interaction with the Aβ oligomers and the
EGCG interaction affinity can be enhanced by the presence of
the gallate motif (Sironi et al., 2014). Later, it was observed
that EGCG can interfere in the interaction of residues in
the central region of Aβ (F19 and L34) that are important
in the structure of amyloid fibrils (Tavanti et al., 2020).
Molecular dynamics simulations indicated that EGCG alters the
Aβ protofibril conformation by breaking the hydrogen bond
between H6 and E11 residues, interacting with H14/Y10, and
interacting with residue A42, disrupting the salt bridge with
the side chain of K28 (Zhan et al., 2020). This same lysine
also interacted with the gallic acid of EGCG, confirming that
group’s critical role in protofibril disruption (Zhan et al., 2020).
Thus, it was observed that the central interference promoted
by EGCG in fibril formation is the disruption of inter-chain
hydrogen bonds and salt bridges crucial to amyloid structure
(Acharya et al., 2020). Even though the mechanism of action
of EGCG has not been elucidated, the knowledge of some
forms of interaction between the compound and amyloid
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proteins can generate valuable information for therapeutic
strategies against aggregation. The EGCG seems to interact
preferably with intrinsically disordered proteins as such Aβ

and α-syn (Ehrnhoefer et al., 2008) and with flexible regions
of ordered proteins (Fusco et al., 2018). The aromatic rings,
hydroxyls groups and gallate motif of EGCG appear to be
essential for the interactions with proteins and the anti-amyloid
effectiveness (Rambold et al., 2008; Sironi et al., 2014; Fusco
et al., 2018). Moreover, the hydrophobic interactions and
hydrogen bonds represent the main form of protein-compound
interaction, resulting in inhibition of the conversion in β amyloid
toxic structures (Wang et al., 2010), and the break of saline
bridges promoted by EGCG can be crucial to interrupt the
fibril structuration (Acharya et al., 2020; Yao et al., 2020;
Zhan et al., 2020).

DRUG DELIVERY SYSTEMS CONTAININ
EPIGALLOCATECHIN-GALLATE

Despite the several benefits promoted by EGCG treatment of
AmD, their low intestinal absorbance and instability constitute an
important limitation to consider in developing new therapeutic
strategies (reviewed by Granja et al., 2017). Different types of
nanocarriers have been evaluated for their ability to enhance
EGCG efficacy, mainly related to this catechin’s antioxidant and
anti-inflammatory properties (Granja et al., 2017). Nanolipid
particles (lipid complexes: EGCG; formation of non-traditional
micelles) have been synthesized to improve oral bioavailability
of EGCG and BBB penetration and prevent APP cleavage
of Aβ peptide by inducing α-secretase activity (Smith et al.,
2010). The increased bioavailability of these particles may be
important to reduce the required concentration of EGCG in
promoting benefits and its future success in clinical trials
(Smith et al., 2010). New types of nanoparticles containing
EGCG have been evaluated for their ability to inhibit amyloid
aggregation (Zhang J. et al., 2014; Debnath et al., 2016; Liu
et al., 2017; Li et al., 2018; Singh et al., 2018; Fernandes et al.,
2020). Selenium nanoparticles bound to EGCG and coated by
the TET-1 peptide, which increases their delivery to neuronal
cells, were effective at inhibiting amyloid cytotoxicity, blocking
the Aβ aggregation and disaggregating mature fibrils (Zhang J.
et al., 2014). These anti-amyloidogenic effects have also been
shown during the evaluation of EGCG nanoparticles produced
from polysuccinimide and functionalized with octadecylamine,
dopamine and ethylenediamine and loaded with EGCG (Debnath
et al., 2016). Enhancement of the chemical stability of EGCG
by nanoparticle formation, their improvement in ease of
cellular internalization, and stronger binding with amyloids were
considered to contribute to their better performance (Debnath
et al., 2016). In addition, when the EGCG was linked to negatively
charged polymeric nanoparticles (NP10) it showed synergistic
action against aggregation of Aβ and seeding capacity using
a low concentration of the polyphenol (Liu et al., 2017). The
NP10 inhibits the aggregation through hydrophobic binding
and electrostatic repulsion and the hydrophobicity of EGCG
stabilizes the Aβ in a stable oligomeric state, preventing the

amyloid structuration (Liu et al., 2017). Both NP10 and EGCG,
individually could act as anti-aggregating compounds, however
in dual system were more efficient (Liu et al., 2017). In rats
in which AD was induced by the administration of aluminum
chloride, nanoparticles loaded with EGCG (synthesized by
the solvent evaporation method in double emulsion) showed
greater protective efficiency than free EGCG (Singh et al.,
2018). These EGCG nanoparticles inhibited the accumulation
of amyloid plaques and neurofibrillary tangles and reduced the
immunoreactivity of the Aβ peptide and the ROS production
in the brain tissues of AD rat model (Singh et al., 2018).
Thus, the EGCG nanoparticles led to an increase in locomotor
activity and recognition memory in these rats (Singh et al.,
2018). In addition, EGCG together with ascorbic acid (AA)
were encapsulated by a dual formulation of chemical polymers
and also demonstrated a reduction in amyloid plaques and
Aβ content in mice with familial AD (Cano et al., 2019).
The increase in synapses and decrease in neuroinflammation
generated after the treatment with encapsulated EGCG/AA
were accompanied by improved learning and memory (Cano
et al., 2019). The AA was responsible for creating an
antioxidative environment for EGCG and promoted an increase
in the positive effects of nanoparticles (Cano et al., 2019).
In the mouse model with PD, similar results were observed
when nanolipid particles carrying EGCG improved motor
performance, decreased α-syn aggregation in neurons and
protected dopaminergic cells (Li et al., 2018). These nanoparticles
were more permeable and accumulated in brain tissue because
of the link with the B6 peptide, which has a high affinity for the
transferrin endothelial receptor, and also because of the loading
with supermagnetic iron oxide nanocubes (Li et al., 2018).
Furthermore, liposomes assembled with 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphate and leptin used for EGCG delivery were
more permeable than unmodified liposomes, reducing MPTP
toxin-induced neurotoxicity and the cellular expression of α-syn
and proteins involved in apoptotic processes (Kuo et al., 2021).
Finally, a different concept was introduced by the synthesis of
functional spheres of EGCG, synthesized by a simple method
of catechin auto-oxidation under controlled heating and in
the presence of a specific metal concentration (Chen et al.,
2013). These functional microparticles, with oxidized EGCG as
carrier, have been shown to inhibit α-syn aggregation, reduce
the cytotoxicity of oligomers and, modestly, remodel mature
fibrils (Fernandes et al., 2020). Moreover, when the EGCG
microparticle was loaded with an additional amyloidogenesis
inhibitor, ortho-iminoquinone (Largeron and Fleury, 2012;
Fernandes et al., 2017), its activity increased, demonstrating
a synergistic action between the microcarrier and the loaded
molecule (Fernandes et al., 2020).

CLINICAL TRIALS INVOLVING GREEN
TEA AND EGCG

Since green tea components are well absorbed and bioavailable in
humans (Nakagawa et al., 1997; van het Hof et al., 1998; Chow
et al., 2003), several clinical trials have been conducted to dissect
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FIGURE 2 | Epigallocatechin-gallate (EGCG) interferes in different steps of amyloid formation. EGCG can bind to unfolded monomers and inhibit the formation of
amyloid fibrils or amorphous aggregates. It also is able to remodel amyloid fibrils to form amorphous aggregates. Created with BioRender.com.

the role of complete green tea or its purified constituents in
different conditions and diseases.

In human clinical trials, green tea extracts and EGCG were
shown to be safe for use in children and adults, including during
prolonged periods (Kumar et al., 2016; de la Torre et al., 2020;
Vilela et al., 2020), which reinforces the treatment potential of
those components.

Most clinical trials involving green tea and EGCG are related
to several cancer types, cardiovascular diseases, and metabolic
disorders such as diabetes, dyslipidemia and obesity. Despite
evidence from in vitro and in vivo studies involving amyloidoses
and EGCG, only a few clinical trials are registered, and even
fewer have produced accessible results. In phase 1 clinical trials,
green tea reduced cardiac TTR amyloidosis-related symptoms
and amyloid plaques (Kristen et al., 2012; Aus dem Siepen et al.,
2015) and improved health quality in patients.

Neurological clinical trials are almost entirely restricted to
cognitive performance studies. In a study conducted in 2012,
EGCG (300 mg) improved neurological effects during alpha, beta,
and theta brainwave stimulation, promoting, among other effects,
increased calmness and reduced stress self-evaluated by healthy
individuals over periods of 120 min (Scholey et al., 2012). These
studies are corroborated by a more recent phase 1 trial conducted
by de la Torre et al. (2020). EGCG improved cognition and
functional competence when combined with cognitive training
during a 3-month follow-up (de la Torre et al., 2020).

Epigallocatechin-gallate also abrogated cognitive deficits
related to Down syndrome, an amyloid-related disease (reviewed
by Abrahamson et al., 2019), since its administration during 3
or 12 months induced episodic memory and working memory
improvement and visual recognition memory and adaptive
behavior, respectively (de la Torre et al., 2014, 2016). The
consumption of green tea was related to a reduced risk of
dementia n elderly Japanese (Tomata et al., 2016), suggesting that
its use may be related to a better prognosis in AD.

In patients with multiple system atrophy, a disease related
to α-synuclein aggregation, EGCG administered daily for

48 weeks showed no effect against disease progression
(Levin et al., 2019).

As reviewed here, green tea EGCG is a potent molecule
with several therapeutic properties against different neurological
diseases. However, there is a lack of clinical trials involving
this promising molecule against these types of disease and
amyloidoses especially.

FINAL CONSIDERATIONS

Considering the evidence presented above, the use of EGCG in
amyloidogenic neurodegenerative diseases is a very promising
therapeutic tool, since it has been used in pre-clinical and clinical
studies to treat several amyloidoses. Figure 2 summarizes the
interference and anti-amyloid effects of EGCG in different steps
of protein aggregation and amyloid formation.
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