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Abstract

Platelets provide life-saving functions by halting external and internal bleeding. There is also 

a dark side to platelet biology, however. Recent reports provide evidence for increased platelet 

reactivity during aging of mice and humans, making platelets main suspects in the most prevalent 

aging-related human pathologies, including cardiovascular diseases, stroke, and cancer. What 

drives this platelet hyperreactivity during aging? Here, we discuss how hematopoietic stem cell 

differentiation pathways into the platelet lineage offer avenues to understand the fundamental 

differences between young and old platelets. Recent advances begin to unravel how the cellular 

and molecular regulation of the parent hematopoietic stem and progenitor cells likely imbue 

aging characteristics on the resulting Plt progeny. The resulting mechanistic insights into intrinsic 

platelet reactivity will provide strategies for selectively targeting age-related pathways. This brief 

viewpoint focuses on current concepts on aging hematopoiesis and the implications for platelet 

hyperactivity during aging.
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PLATELET-RELATED DISORDERS DURING AGING

Advanced aging is associated with significantly increased incidences of thrombotic diseases 

and comorbidities. The occurrence of thrombosis in the elderly is linked to age-related 

differences in platelet (Plt) biology, which may have their origins in Plt precursor cells 
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(Figure 1). Plts are anucleated cell fragments derived from megakaryocytes and are 

best known for their essential role in hemostasis, the process that stops bleeding while 

maintaining normal blood flow in the event of vascular injury. Upon damage, circulating 

Plts adhere to the site of injury, become activated, and promote aggregation to form 

a Plt plug (Figure 2). These properties make Plts key players in thrombotic disorders. 

Hemostasis is frequently compromised with age, and both thrombocytosis (too many Plts) 

and thrombocytopenia (too few Plts) lead to increased mortality in the elderly [1–6]. 

Consequently, millions of people take prophylactic anti-Plt therapies for long periods of time 

to reduce Plt count (by reducing agents such as hydroxyurea, anagrelide) or to inhibit Plt 

function (by antithrombotic agents such as aspirin) in order to reduce the risk of morbidity 

and mortality associated with occlusive thrombosis [7–9]. Despite the success of anti-Plt 

therapies, thrombotic diseases remain a leading cause of death, in part due to complications 

of anti-Plt therapies [2]. Due to the essential role of Plts in hemostasis, patients treated 

with anti-Plt drugs also face a risk of increased bleeding; therefore, alternative or more 

refined anti-Plt therapies are needed to balance the thrombotic risk and the subsequent 

risk of serious bleeding [7]. Targeted therapeutics are also needed in the disease states 

that require an increase in Plt count or accelerated Plt activity. Current treatments may 

include prophylactic Plt transfusion, antifibrinolytic agents (such as aminocaproic acid or 

tranexamic acid), or factor replacement therapy. Together, the numerous Plt-related disorders 

along with the increasing life expectancy of human populations underscores the profound 

financial and clinical burden imposed by age-related Plt diseases. Thus, the advancement 

of therapies that control Plt production and function by an improved understanding of the 

mechanisms of age-related Plt biology is a critical patient and public health goal.

NUMERICAL, MOLECULAR, AND FUNCTIONAL CHANGES TO PLATELETS 

DURING AGING

Aging is accompanied by changes to Plt biology. Epidemiological studies of Plt numbers 

remain inconclusive: some studies observed no differences between the young and elderly 

populations, while others suggest that Plt numbers are decreased in the elderly population 

compared to their younger counterparts [10–12]. This inconsistency is perhaps in part due 

to intra-individual variation during human aging [13,14]. In murine studies, conversely, 

there is a consistently observed increase in Plt count in old mice [6,15–17]. Despite these 

discrepancies between the abundance of Plts in aged humans and mice, both mouse and 

human aging are associated with Plt hyperreactivity. Therefore, translation of murine studies 

to human application will likely emerge from an understanding of the consequences of aging 

on Plt function. There are clear age-related changes to both Plt generation and function 

(Figure 2). Several in vitro studies of human Plts have reported an increase in aggregability, 

which is inversely associated with decreased bleeding time in the elderly [1,18,19]. These 

observations suggest faster clot formation upon aging, and that this enhanced Plt activity 

is a biomarker of thrombosis in humans. There is also evidence for potential molecular 

regulators of age-associated changes to Plt function. For example, sequencing analysis 

revealed differences in mRNA and microRNA expression patterns between young and 

old human Plts [20]. As in other tissues, oxidative stress in Plts has also been shown to 

increase during aging [6,21]. Another important line of evidence demonstrated that the 
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physiological agonists presented by an inflammatory state enhances age-related Plt reactivity 

and thrombosis [15]. These prothrombotic mechanisms appear intrinsically propagated by 

aged Plts even in the absence of the agonists [17]. These findings highlight the need to 

understand how distinct cellular and molecular hallmarks of aging drive changes to Plt 

function.

HEMATOPOIETIC STEM CELL CONTRIBUTION TO PLATELET AGING

Aging of the hematopoietic system has been the focus of intense investigation for decades, 

yet there remains a significant need to link mechanisms of hematopoiesis to the biology of 

their Plt progeny. Advanced age is associated with dysregulation in both the number and 

function of blood and immune cells. Due to the short half-life of circulating hematopoietic 

cells, including Plts, they are continuously produced from Hematopoietic Stem Cells (HSCs) 

via progenitor cells that primarily reside within the bone marrow (BM) (Figure 1). The 

short lifespan of mature cells means that they likely do not undergo true aging themselves, 

but “inherit” age-related properties from their parent stem and progenitor cells. Given that 

HSCs are at the top of the hematopoietic hierarchy, much focus has been directed towards 

understanding how aging affects HSCs [15,22–24]. Although HSC numbers increase with 

age, they exhibit functional decline when tested in transplantation experiments: old HSCs 

show less robust hematopoietic reconstitution efficiency in recipient mice relative to young 

HSCs. Despite comprising ~99% of all mature hematopoietic cells, Plts and red blood 

cells (RBCs) have been ignored in the vast majority of HSC transplantation studies due 

to technical limitations in distinguishing donor- from host-derived Plts and RBCs [25]. 

The Plt and RBC potential of HSCs and progenitor cells has therefore more often been 

investigated by in vitro differentiation assays rather than by in vivo studies. Development 

of fluorescent transgenic mice such as Ubc-GFP and KuO mice that harbor fluorescent Plts 

and RBCs has rectified the technical limitations with transplantation experiments because 

these models allow direct tracking of donor-derived Plts and RBCs [25–29]. Additionally, 

recent barcoding studies include endpoint analyses of the immediate progenitors of Plts 

and RBCs [30]. Implementation of these tools has led to exciting findings, including the 

reported existence of self-renewing Plt-restricted or Plt-biased cells [26,31–33]. However, 

the differentiation paths, abundance, regulation, and functional significance of these 

putative, lineage-restricted but self-renewing, cells are currently unclear. At present, our 

understanding of HSC differentiation into Plts and RBCs lag significantly behind other 

lineages, particularly in the context of aging.

ENHANCED FUNCTION OF OLD MEGAKARYOCYTE PROGENITOR CELLS: 

IMPLICATIONS FOR AGE-RELATED PLATELET HYPERREACTIVITY

Our recent discoveries on the mechanisms of aging megakaryopoiesis advanced our 

understanding of the hematopoietic BM origins of Plt biology during aging [15]. In 

this study, we investigated the regulation of Plt production modulated by HSCs and 

megakaryocyte-committed progenitor cells (MkPs). In old mice, the expansion of HSCs was 

accompanied by an expansion of MkPs and their descendant Plts. To determine how intrinsic 

and extrinsic factors influence Plt production from aged HSCs, we transplanted young 
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HSCs into young and old recipient mice, and vice versa. Interestingly, these experiments 

revealed that old HSCs did not generate a selective increase in the number of MkPs and 

Plts, as in unmanipulated aged mice (Figures 2 and 3) [15,17,34]. These observations raised 

our curiosity around aging MkPs. Given the reconstitution deficit displayed by old HSCs, 

we reasoned that MkPs would also display functional deficiency. Surprisingly, old MkPs 

displayed a remarkable capacity to engraft into recipient mice by generating greater Plt 

numbers compared to young MkPs (Figure 3). Our in vitro analysis also demonstrated 

greater expansion capacity of old MkPs. Importantly, RNA sequencing of young and old 

MkPs revealed age-related changes in gene expression profiles, including changes in genes 

involved in Plt production and function and in bleeding disorders. Interestingly, a few 

of the genes upregulated in old MkPs are also implicated in acute myeloid leukemia, 

including Pbx3, Lair1, and Mllt3 [35–37]. These changes in the transcriptome of old 

MkPs support a model in which MkPs propagate age-related dysregulation of Plt biology. 

Therefore, our study revealed novel cellular and molecular mechanisms of age-related 

alterations to megakaryopoiesis. In addition to the chronic stress presented by aging, acute 

stress condition has been shown to influence MkPs. Upon infection, acute inflammation 

drives MkP maturation and increases Plt counts in young mice [32]. Together, these 

findings may help to explain intrinsic and extrinsic regulation of MkPs during youthful 

and aging megakaryopoiesis. Furthermore, given that both the increase in Plt numbers and 

hyperactivity appear to play a significant role in the increase of thrombotic risk during aging, 

an important next step is to determine how age-related alterations to MkPs may poise their 

descendent Plts for activation and aggregation.

Collectively, the new insights from our group and others on aging megakaryopoiesis shed 

light on the mechanisms of aging by which Plts “inherit” their properties from their parent 

stem and progenitor cells (Figure 1). While HSC Plt potential declines during aging, MkPs 

gain a remarkable capacity to contribute to Plt production. These functional alterations may 

dictate the etiology of Plt-related disorders during aging and provide therapeutic avenues 

for manipulating hematopoietic stem and progenitor cells to control hemostasis throughout 

life. Unraveling the specific contributions of hematopoietic stem and progenitor cells to 

consequential Plt production and function will be critical to the success of ameliorating and 

treating life-threatening Plt disorders that accompany aging.
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Figure 1. Hematopoietic stem cells (HSCs) give rise to platelets via megakaryocyte progenitors 
(MkPs).
This review focuses on recent reports that have shown that HSC and MkP aging influence 

the number and function of platelets.
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Figure 2. Age-related changes in platelets support prothrombotic state observed in the elderly.
Platelets are derived via Megakaryocyte Progenitors (MkP). Upon vascular injury, platelets 

adhere to the exposed subendothelial matrix, become activated, and aggregate with nearby 

platelets to form a clot. Mice, and possibly humans, have increased Plt numbers upon aging; 

both species display Plt hyperreactivity. During aging, MkPs likely give rise to deleterious 

platelets with functional defects, the culprits of potentially occlusive clots observed in 

thrombotic disorders that plague the elderly.
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Figure 3. Hematopoietic stem and progenitor cell origins of platelets are altered during aging.
Transplantation experiments revealed that old Hematopoietic Stem Cells (HSCs) exhibited 

a decline in generation of all hematopoietic lineages, including Megakaryocyte Progenitors 

(MkPs) and platelets. However, old MkPs exhibited a remarkably greater expansion capacity 

upon aging, giving rise to significantly greater numbers of platelets compared to young 

MkPs.
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