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Predicting cesarean delivery among gravidas with
morbid obesity−a machine learning approach

Rajasri Kolli, MS; Talayeh Razzaghi, PhD; Stephanie Pierce, MD; Rodney K. Edwards, MD; Marta Maxted, MD, MS;
Pavan Parikh, MD, MS
BACKGROUND: Women with obesity have higher rates of complications following cesarean delivery, such as wound infection and endome-
tritis, with risks being the highest if a cesarean delivery is performed after labor. Previous efforts at predicting whether a patient’s labor course
would ultimately result in cesarean delivery have been intermediate with area under the curve in the 0.75 to 78 range.
OBJECTIVE: This study aimed to assess whether machine learning algorithms would outperform traditional modeling in developing a cesar-
ean delivery prediction model among gravidas with morbid obesity (body mass index of ≥40 kg/m2) to determine whether a primary cesarean
delivery may be beneficial.
STUDY DESIGN: This was a secondary analysis of a retrospective cohort of 1298 patients with morbid obesity presenting for vaginal delivery
at ≥37 weeks of gestation between 2011 and 2016 at a single institution. Data available at the time of admission and delivery were modeled
using logistic regression, decision tree, random forest, and support vector modeling with evaluation of area under the curve, accuracy, sensitivity,
and specificity.
RESULTS: Logistic regression demonstrated an area under the curve of 0.816 (95% confidence interval, 0.810−0.817), which was superior
to machine learning models when evaluating data at the time of delivery (demographic data, initial cervical examinations, comorbidities, and
obstetrical interventions) (P<.001). However, there was no significant difference between most machine learning models and logistic regression
area under the curve of 0.799 (95% confidence interval, 0.795−0.804) when evaluating parameters available at the time of admission (demo-
graphic data, initial cervical examinations, and comorbidities). Race was noted to be a significant predictor in both models (P<.001).
CONCLUSION: Machine learning and traditional modeling techniques are likely equivalent concerning cesarean delivery prediction in this
population. The models developed showed good discrimination and may be used to guide clinical decision-making concerning the optimal mode
of delivery.
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Introduction
The Centers for Disease Control and
Prevention reports that 41.9% of the
American population is obese (body
mass index [BMI], ≥30 kg/m2). Obesity
is an established risk factor for various
adverse pregnancy outcomes,1 including
the need for cesarean delivery.2,3 In
addition, women with obesity have
higher rates of complications after
cesarean delivery, such as wound infec-
tion and endometritis, with risks being
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the highest if a cesarean delivery is per-
formed after labor.4,5 In this high-risk
group, knowing a woman’s risk of
cesarean delivery could help guide man-
agement decisions.

Previous efforts at identifying factors
associated with unplanned primary
cesarean delivery demonstrated that
maternal sociodemographic characteris-
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pregestational diabetes mellitus, macro-
somia, the timing of hospital admission,
labor augmentation with oxytocin, and
hypertension) significantly modified
this risk profile.6,7 These factors have
been combined into several different
prediction models to help counsel
patients as to the best course of action
regarding their labor and delivery.8−11
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Why was this study conducted?
This study aimed to determine whether primary cesarean delivery among gravi-
das with morbid obesity could be predicted using machine learning (ML) to
avoid morbidity associated with cesarean delivery after labor.

Key findings
Both ML and traditional statistical methods were equivalent to the development
of a good model with an area under the curve of 0.802. However, ML was not
superior to traditional statistical techniques.

What does this add to what is known?
Previous models do not focus on gravidas with morbid obesity where the postce-
sarean delivery morbidity is the highest. The model developed in our study has
good predictive ability and may help reduce maternal morbidity.
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increased length of labor, risk of cesar-
ean, and maternal and neonatal mor-
bidity using a modest predictive model
with area under the curve (AUC) of
0.73. Subramaniam et al5 demonstrated
a 45% risk of maternal morbidity with
cesarean delivery after labor induction
among gravidas with morbid obesity
(BMI, ≥40 kg/m2). With the associated
risks, it may be preferable for some
patients to consider a primary cesarean
delivery before labor induction to
reduce the morbidity associated with a
cesarean delivery during labor.
The construction of the aforemen-

tioned models used various methods,
including univariate and multivariate
analyses. However, the accuracy of the
available prediction models remains in
an intermediate zone, with AUCs of
0.75 and 0.78.10,13 Recently, there has
been an increasing interest in using
machine learning (ML) methods to
improve the accuracy of prediction
models in healthcare settings, including
obstetrics and gynecology.14 In general,
ML models use different algorithms,
such as those noted in the Glossary to
identify patterns in data in a training
dataset. Subsequently, the pattern is
applied to a test dataset to determine
the accuracy. The advantages of ML
compared with traditional model build-
ing include the ability to analyze large
multidimensional data, with continuous
revision of pattern from 1 patient to the
next and the adjustment of the impor-
tance of any given variable in the model
in an iterative fashion. In large datasets,
such as thousands of patient medical
2 AJOG Global Reports November 2023
records, there are a large number of var-
iables with differing distributions, types
of information, and significant amounts
of missing data that may be skewed,
which can be challenging to handle
with traditional modeling. The analyti-
cal methodology of ML allows for the
analysis of such datasets without signifi-
cant data manipulation. This approach
has been used to improve the prediction
of maternal intensive care unit admis-
sion and postpartum maternal readmis-
sion rates among others with good
discrimination.14 As such, we hypothe-
sized that ML algorithms would outper-
form traditional modeling in
developing a cesarean delivery predic-
tion model among gravidas with mor-
bid obesity (BMI, ≥40 kg/m2) who
presented for delivery at ≥37 weeks of
gestation.

Materials and Methods
This was a secondary analysis of a retro-
spective cohort study of 1298 patients
presenting to a large tertiary care refer-
ral center for delivery at ≥37 weeks of
gestation with a BMI of ≥40 kg/m2

between 2011 and 2016, regardless of
gravidity. Obstetrical data included
maternal demographic variables and
features (eg, age, weight, height, pre-
pregnancy BMI, race, payor status [eg,
self, government, or commercial]) and
maternal and fetal clinical variables (eg,
parity, chronic hypertension, antihyper-
tensive medication, gestational hyper-
tension, preeclampsia, preeclampsia
with severe features, gestational diabetes
mellitus, pregestational diabetes
mellitus, fetal growth restriction, mac-
rosomia, group B streptococcus [GBS]
colonization status, previous cesarean
delivery, antepartum hospitalization,
stillbirth, date of delivery admission,
gestational age at delivery, in labor on
admission, BMI at delivery, cervical
dilation, cervical effacement, station of
the presenting part, use of ripening
agent, ripening agent specification, oxy-
tocin induction, oxytocin augmentation,
oxytocin maximum dose, labor epidu-
ral, intrapartum antibiotics, GBS pro-
phylaxis, chorioamnionitis, purulent
discharge, urinary tract infection or
pyelonephritis, number of hours in
labor and delivery, and neonatal sex).
Both demographic and clinical variables
were abstracted from the medical record
by trained clinicians. Women who were
not eligible for vaginal delivery were
excluded. We considered the mode of
delivery (cesarean delivery vs noncesar-
ean delivery) as an outcome variable of
interest. We developed 2 models. The
first was to explore the ability to predict
cesarean delivery with all variables
available until the time of delivery, the
second was to use only features poten-
tially available at admission. Institu-
tional ethical review board approval was
obtained for the original study (n=7179;
August 25, 2016).
Before learning models, categorical

variables were converted into binary
values by performing one-hot encoding,
which produces a vector with a length
equal to the number of categories of a
variable. This allows for the translation
of categorical variables into a format
that can be inputted into ML algo-
rithms. Continuous variables were nor-
malized using a MinMaxScaler, which
scales the lowest and highest values of
any numeric variable to 0 and 1. This
ensures that all variables contribute
equally to the analysis without any bias
created toward a specific range. Missing
values within the cervix dilation, efface-
ment, and fetal station parameters were
imputed using an iterative imputation
technique, called multivariate imputa-
tion by chained equations (MICE).15 To
measure the significance of MICE in
our data, we further compared our ML
models with the models where no
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FIGURE 1
Cesarean associated variables ranked non-directionally by SVM-RFE using all data

The ranking criterion used in SVM-RFE is W2 where W is the weight vector computed by SVM-LI when trained on the set of all features.
BMI, body mass index; GBS, group B streptococcus; SVM-LI, support vector machine with linear function; SVM-RFE, support vector machine with recursive feature elimination function.

Kolli. Predicting cesarean with machine learning. Am J Obstet Gynecol Glob Rep 2023.
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missing data imputation is used and
data with missing values are removed.
The data preprocessing scheme and
overview of our approach are illustrated
in Supplemental Figure. Statistical anal-
ysis was performed with Python 3.9.7
and scikit-learn library 1.0.2 on an Intel
core i5, 2.42 GHz with 8 GB of RAM in
a 64-bit OS platform.
To determine significant predictor

variables, we used recursive feature
elimination (RFE),16 which is a wrapper
method that eliminates variables with
less importance in a recursive manner.
Random forest (RF) and support vector
machine (SVM) algorithms are used,
which are well-known base classifiers
for the RFE method to determine signif-
icant variables. This resulted in 2 sub-
sets of variables, one given by RF-RFE
and the other by SVM-RFE. A correla-
tion matrix was created, and variables
with high degrees of positive or negative
relationship were eliminated.
Here, we used several ML models,

including decision tree (DT), RF, and
SVM with linear kernel (SVM-LI) and
SVM with radial basis kernel (SVM-RB)
and compared with backward elimina-
tion logistic regression (LR) based on
both the significant variables obtained
from RF-RFE and SVM-RFE. Tuning
hyperparameters is an important task in
enhancing the performance of an ML
model. Hyperparameter optimization
was implemented on all classification
algorithms to select the best-performing
model. AUC, accuracy (ACC), sensitiv-
ity, and specificity were calculated as
performance measures for classification
models. For the sake of consistency and
robustness of the results, the ACC and
AUC values for all models were calcu-
lated over 100 iterations through the
same train and test split. The models
were trained on a training set (75% of
data) and tested on the test set (25% of
data). We further performed a pairwise
Wilcoxon rank-sum test to compare
these models.

Despite the profound benefits of ML
models compared with traditional sta-
tistical models, their predictions are
often difficult to interpret. Therefore,
we used the Local Interpretable Model-
Agnostic Explanations (LIME) method
to interpret the behavior of the complex
ML models for each patient.17 LIME is
a common technique to explain a pre-
diction based on a model concerning a
similar patient and accounting for the
differences in any factors.
Results
All the significant variables selected by
SVM-RFE and RF-RFE and their order
of importance without reference to the
directionality of their effect (ranking)
are shown in Figures 1 and 2. When
each modeling technique was compared
using variables selected by SVM-RFE
and RF-RFE, all the models using SVM-
RFE were noted to be superior to those
using RF-RFE (P<.05) in both sets of
analyses. The initial analysis examined
all available variables to optimize model
performance with Table 1 demonstrat-
ing the AUC, ACC, sensitivity, and
specificity of each approach using
SVM-RFE. We further simplified the
model by dropping features that were
highly correlated. In addition, the
importance of iterative imputation was
confirmed by evaluating the model with
and without missing variables (cervix
dilation, effacement, and fetal station),
indicating a significant difference
among all models (P<.001). Finally,
each ML model was compared with the
logistic regression model, with the LR
model outperforming the rest (AUC,
0.813; 95% confidence interval [CI],
0.810−0.817; P<.001) concerning AUC,
ACC, sensitivity, and specificity. The
second analysis employing similar tech-
niques examined the predictive ability
concerning cesarean delivery isolating
variables available at the time of admis-
sion and noted reduced model
November 2023 AJOG Global Reports 3
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FIGURE 2
Cesarean associated variables ranked non-directionally by SVM-RFE - only admission data

The ranking criterion used in SVM-RFE is W2 where W is the weight vector computed by SVM-LI when trained on the set of all features.
BMI, body mass index; GBS, group B streptococcus; SVM-LI, support vector machine with linear function; SVM-RFE, support vector machine with recursive feature elimination function.

Kolli. Predicting cesarean with machine learning. Am J Obstet Gynecol Glob Rep 2023.

TABLE 1
Computational results for machine learning algorithms using significant
variables selected by SVM-RFE after dropping colinear variables
Model AUC ACC Sensitivity Specificity

LR 0.813a 0.830a 0.757 0.981

DT 0.743 0.765 0.550 0.972

RF 0.793 0.807 0.739 0.931

SVM-LI 0.797 0.816 0.715 0.963

SVM-RB 0.802 0.820 0.721 0.977
ACC, accuracy; AUC, area under the curve; DT, decision tree; LR, logistic regression; RF, random forest; SVM-LI, support vector
machine with linear function; SVM-RB, support vector machine with radial basis function; SVM-RFE, support vector machine
with recursive feature elimination function.
a P<.001: Wilcoxon rank-sum test LR compared with DT, RF, SVM-LI, and SVM-RB.

Kolli. Predicting cesarean with machine learning. Am J Obstet Gynecol Glob Rep 2023.
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performance across each modeling type
(P<.0001); however, SVM-LI, SVM-RB,
and RF were noted to be equivalent to
LR concerning AUC and ACC (P=.45,
P=.06, and P=.14) (Table 2). Further-
more, the importance of race as a pre-
dictor was explored by excluding this
characteristic in each prediction model
across both analyses with a significant
change in the model performance char-
acteristics (P<.001).

Discussion
Principal findings
ML approaches have become popular
and have provided significant insights
4 AJOG Global Reports November 2023
into various obstetrics and gynecology
applications. Compared with traditional
regression analysis, ML algorithms are
more robust in their ability to handle
various data types and seamlessly inte-
grate both parametric and nonparamet-
ric data and skewed data to optimize
prediction models. The goal of this arti-
cle was to compare traditional modeling
techniques and ML approaches to pre-
dict the risk of cesarean delivery in a
large cohort of patients with morbid
obesity with a large array of clinically
available variables with different distri-
butions, skew, sparsity, and categoriza-
tions. Contrary to our expectation,
logistic regression and ML approaches
seem to perform similarly to predict the
risk of cesarean delivery in our popula-
tion. However, the model did demon-
strate good discriminatory ability to
predict cesarean delivery after labor
with an AUC of 0.802. In addition, we
observed that the inclusion of race, as a
variable, did improve the performance
of our models (P<.001).
Results
Our study represents outcomes of a
large cohort of gravidas with morbid
obesity that have been studied to create
an optimal model to inform clinical
decision-making. Previous studies have
evaluated the chances of failed labor
induction in both populations with and
without obesity, some using only demo-
graphic data and others using patient-
specific physical examination data.
However, our work includes a combina-
tion of a large cohort, with both demo-
graphic and physical examination data
and only examines outcomes in patients
with morbid obesity. The AUC of 0.802
seems to be superior to previously pub-
lished models with AUCs of 0.73 to
0.789,10,12 and may improve patient-
centered care.

http://www.ajog.org


TABLE 2
Comparison of machine learning algorithms with variables selected by
SVM-RFE only considering data available at the time of admission
Model AUC ACC Sensitivity Specificity

LR 0.799a 0.809 0.775 0.844

DT 0.746 0.767 0.757 0.739

RF 0.797a 0.810 0.763 0.867

SVM-LI 0.800a 0.811 0.786 0.863

SVM-RB 0.802a 0.818 0.751 0.908
ACC, accuracy; AUC, area under the curve; DT, decision tree; LR, logistic regression; RF, random forest; SVM-LI, support vector
machine with linear function; SVM-RB, support vector machine with radial basis function; SVM-RFE, support vector machine
with recursive feature elimination function.
a P<.05: Wilcoxon rank-sum test LR, SVM-LI, SVM-RB, and RF compared with DT.

Kolli. Predicting cesarean with machine learning. Am J Obstet Gynecol Glob Rep 2023.
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Clinical implications
Gravidas with morbid obesity are more
likely to undergo labor induction and
cesarean delivery and are at high risk of
surgical site infections.18 Furthermore,
cesarean delivery after failed labor
induction in this group has been dem-
onstrated to almost double maternal
morbidities, triple infection risks, and
double wound complications.5 Here,
FIGURE 3
Using LIME to illustrate reasons for c

The graph explains the behavior of the model in rela
delivery prediction problem. All the positive correla
and the negative correlations are shown in green.
are contributing to cesarean delivery prediction for a
BMI, body mass index; GBS, group B streptococcus.

Kolli. Predicting cesarean with machine learning. Am J Obstet
the model may help select patients who
would benefit from primary cesarean
delivery, as opposed to those undergo-
ing cesarean delivery after labor to
reduce morbidity. Visually intuitive
explanations using algorithms, such as
LIME (Figure 3), can help explain indi-
vidual patient factors that could
increase the risk of cesarean delivery
and facilitate open and deliberate
esarean in a given patient

tion to classifying a test instance in the cesarean
tions toward cesarean delivery are shown in red,
From this figure, we can explain which features
patient.

Gynecol Glob Rep 2023.
conversations surrounding delivery
approaches, including methods of labor
induction. However, before implemen-
tation, this model must be externally
validated. Interestingly, the inclusion of
parity did not improve the AUC of our
model, and the model remains robust
among both parous and nonparous
gravidas. We will plan on studying this
further with a cohort that includes all
classes of obesity.

Research implications
Several studies have examined the role
of conventional statistical modeling and
compared it to ML approaches, with
occasional studies demonstrating equal-
ity between the techniques. Although
this study evaluated a large cohort of
patients, many datasets for which ML
analysis is used include tens of thou-
sands of patients with hundreds of vari-
ables. Perhaps the relative size of the
cohort is 1 reason for the disparity in
the expected outcome. To this end,
recent studies have investigated the con-
cept of synthetic data generation and
transfer learning to improve the accu-
racy of predictive models built with ML
for small datasets.19 Future studies
should work to identify an optimal
cohort size at which ML may outper-
form conventional modeling. Further-
more, it remains a challenge to design
fair ML algorithms, where sensitive fea-
tures, such as race, gender, age, geo-
graphic location, or any specific
information about minority groups, do
not contribute to biased predictions.20

Unlike in the recent retooling of the
vaginal birth after cesarean calculator,21

we did note a significant difference in
the AUC of our model when excluding
race and ethnicity. Understandably,
there is concern that the inclusion of
such parameters may represent histori-
cal and ongoing implicit bias within our
population. Presumably, the association
with cesarean delivery among Native
American and African American
patients is a consequence of prejudice
rather than underlying biology. How-
ever, the main goal of our study was to
evaluate the ability of ML compared
with logistic regression. Certainly, we
are already planning further external
November 2023 AJOG Global Reports 5
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validation studies to ensure we are not
perpetuating such bias. Furthermore, as
recognition and training to minimize
implicit bias becomes more widespread,
new data can be easily added or com-
pared with such datasets to determine
whether these features become less asso-
ciated with cesarean delivery.

Strengths and limitations
The retrospective nature of this study
certainly limits the assessment of unre-
corded confounders and missing data
that may explain the outcome. Further-
more, this study would be enhanced
with prospective or external validation.
However, the large size of the cohort
that included (1287 patients) the lack of
a prescriptive delivery management
strategy and the diverse population that
included a large number of self-identi-
fied Native American or Alaska Natives
are significant strengths.

Conclusions
Our work demonstrates that ML algo-
rithms did not outperform conventional
logistic regression modeling in predict-
ing cesarean delivery in a cohort of
gravidas with morbid obesity. Future
investigations should include external
validation and work toward a model
with excellent discriminatory ability to
minimize maternal morbidity.

Glossary
Recursive feature elimination (RFE):
Recursive feature elimination (RFE) is a
feature selection technique used in
selecting the subset of features or varia-
bles that are significant in predicting the
outcome of a target variable. RFE works
by iteratively discarding the least impor-
tant features at every step based on the
ranking criterion of the individual ML
model, which fits the data. This process
is repeated multiple times by refitting
the model until it obtains a specified
number of features.
Support vector machine (SVM): A

support vector machine (SVM) is a
supervised machine learning algorithm
used for classification, regression, and
outlier identification problems. The
SVM iteratively generates hyperplanes
6 AJOG Global Reports November 2023
to partition the datasets into a certain
number of categories until the maxi-
mum marginal hyperplane that best
separates all the categories is identified.
The SVM further employs a different
set of algorithms called kernel methods
to analyze the data pattern and trans-
form the data into desirable output. Dif-
ferent kernel functions include linear,
polynomial, radial basis function kernel,
and sigmoid.

Random forest (RF): A random forest
(RF) is a supervised machine learning
algorithm used for classification and
regression problems. It is an ensemble
learning method made up of multiple
decision trees called estimators, each of
which makes its predictions. A more
accurate forecast is made by integrating
all the estimator’s predictions.

Decision tree (DT): A decision tree is
a supervised machine learning algo-
rithm that can handle both numerical
and categorical data. It represents a
sequence of decisions and their possible
outcomes and consequences in the form
of a tree.

Logistic regression (LR): A logistic
regression is a commonly used machine
learning algorithm for binary classifica-
tion problems. It is a statistical method
used to estimate the probability of an
event occurring by measuring the rela-
tionship between a binary-dependent
variable and one or more independent
variables.

Local Interpretable Model-Agnostic
Explanations (LIME): Local Interpret-
able Model Explanations are used to
explain the predictions of any given
model. Although machine learning
models are considered a black box,
these techniques interpret the math
behind the algorithms. We built these
frameworks on our best-performed
logistic regression algorithm by evaluat-
ing their ability to define distinct groups
of observations, employing the weights
assigned to features through their local
interpretability algorithm. &
Supplementary materials
Supplementary material associated
with this article can be found, in the
online version, at doi:10.1016/j.
xagr.2023.100276.
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