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Transcutaneous Spinal Cord Stimulation (TSCS) has been shown to enhance the

excitability of spinal neural circuits. This excitation is associated with enhanced voluntary

performance in patients with incomplete SCI (iSCI). Though there is much we do not

know, combining this altered state of exciability with therapy has the potential to enhance

the outcomes associated with activity-based interventions. It is a promising tool to

augment the work being done in therapeutic settings with the potential to expedite

recovery. There is, however, a lag in assimilating the science for clinical practice. This

article will examine current literature related to the application of TSCS in combination

with therapeutic interventions for motor recovery and aims to elucidate trends in

waveform selection, duration and frequency, and combinatorial therapies that may inform

clinical practice. With specific consideration for therapeutic settings, potential benefits,

applications, and pitfalls for clinical use are considered. Finally, the next steps in research

to move toward wider clinical utility are discussed.
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INTRODUCTION

The disruption of transmission ofmotor and sensory information associated with spinal cord injury
(SCI) significantly impacts a person’s ability to purposely move. Nearly 70% of new injuries each
year are incomplete with incomplete tetraplegia as the fastest growing injury classification (1).
Many of these patients will present with motor dysfunction (2). Recovery of hand and walking
functions are a high priority among individuals incomplete SCI (iSCI) and a common target of
physical therapy (3).

Compensation strategies used early in traditional rehabilitation provide patients with some
level of independence, but focus primarily on strong reliable movements (2). These strategies
ignore the potential for recovery of function and lack the input to the central nervous system
(CNS) required to induce change (4). At best, traditional rehabilitation strategies artificially limit
patients’ functional status, at worst they lead to progressive loss of latent function and worsening
disability over time (5). As patients with SCI are living longer and more active lives, there is a desire
to return to more normal function thereby reducing secondary complications and accessibility
barriers, which are costly in money, time, and quality of life. Driven by patient demands and
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emerging evidence on the recovery and repair of CNS damage,
there is a rehabilitation paradigm shift toward return to
pre-injury function (2, 6, 7). Activity-based therapy (ABT),
which provides intensive, high repetition training, is considered
the most effective intervention to improve walking function
following iSCI (8–11). Providing high-volume, task-specific
training to both improve the kinematics of walking and
upregulate CNS activity, locomotor training has been shown
to yield clinically meaningful improvements in gait speed,
endurance, balance, and lower extremity strength (2, 12–14).
However, even with these improvements, significant deficits in
walking function persist and recovery of independent walking
remains elusive for most patients with iSCI. Similarly, upper
extremity interventions lack the consistency and durable changes
associated with meaningful recovery.

The ABT evidence highlights the need for increased activation
of the CNS to induce change in motor function (4, 11).
Spinal cord stimulation was offered by researchers as an
option to provide neuromodulatory input to potentiate gains
achieved through physical rehabilitation interventions alone
(15). Implanted lumbosacral epidural spinal cord stimulation
(eSCS) (15–18), which acts by directly stimulating the dorsal
nerve roots to increase the excitability of interneuronal networks
involved in the control of locomotion, was explored first in
animals and then human models (16, 18–20). Researchers
demonstrated that lumbosacral epidural stimulation alone can
facilitate reciprocal, step-like movements, and when used
in combination with intensive locomotor training can lead
to improved walking abilities (16, 20–23). Researchers have
demonstrated that after long-term eSCS with training in chronic,
complete SCI, recovery of volitional movement is possible, even
in the absence of stimulation (24).

While impact of these improvements on quality of life for
patients with SCI cannot be underestimated, the true functional
impact and durability of these improvements remains to be seen.
eSCS also carries some inherent risk, notably invasive surgical
placement of the stimulator (18, 20, 21, 25, 26). Additionally,
there is a large variability in the stimulation parameters and
rehabilitation protocols reported post-implantation, ranging
from 0 to 85 weeks of intensive training (16, 20, 27). Though all
participants showed improvement in voluntary motor control,
not all recovered durable walking function, nor sustained usage
of the implant (16, 20, 24).

Transcutaneous spinal cord stimulation (TSCS) has the
potential to impact CNS excitability and, when paired with
training, create functional changes in patients with iSCI, that
may be comparable to results of eSCS (28). TSCS represents
a promising, clinically useful adjunct to existing physical
rehabilitation interventions, without the risk and accessibility
issues associated with surgical implantation for eSCS.

The purpose of this mini review is to elucidate trends and
discuss the clinical relevance of TSCS as an adjunct to physical
rehabilitation interventions. A PubMed search was conducted
with the following search terms in all fields: transcutaneous spinal
cord stimulation AND spinal cord injury AND rehabilitation.
Articles were limited to the last 5 years (2016–2021) and
English language. Articles that included exclusive examination

of animal experiments, other diagnoses (ex: multiple sclerosis
and cerebral palsy), and autonomic and non-voluntary functions
(ex: bladder) were excluded. The discussion here is limited to
studies with clinical relevance, as such, study of healthy persons
and description of isolated neurophysiologic charges are also
excluded. One hundred fifteen abstracts were screened, 13 articles
were reviewed in full and are included here. Table 1 includes
key study elements and a brief description of the results of each
reference. This mini review aims to build upon the work of
previous systematic reviews (41) of the topic by revealing trends
meaningful for clinical settings.

WHAT WE KNOW

Via computational modeling and human EMG studies, non-
invasive spinal cord stimulation has been shown to increase
excitability of local spinal networks via dorsal root afferents
with additional signal enhancement along the full length of the
spinal cord (34, 42–45). This change in excitability capitalizes on
functionally silent descending pathways to unmask and enhance
voluntary movements of involved limbs (34, 44, 45). The priming
of the nervous system offered via TSCS could augment existing
physical rehabilitation interventions and has shown promise
in many common therapeutic targets. TSCS, both in single
sessions and repeated applications, is associated with improved
standing postural control, gait kinematics, and upper extremity
function. TSCS has also been demonstrated to have an impact
on autonomic and non-voluntary functions (blood pressure
regulation, bladder function, etc.) but those will not be discussed
here (28, 34, 36, 46). Therapists should be aware that these may
be consequences of interventions targeting motor recovery.

Early reports of TSCS demonstrate involuntary stepping
with both single-session and repeated-exposure stimulation (45).
Stimulation was delivered via electrodes over the T11/T12 or
L1/L2 intervertebral space with anodes over bilateral iliac crest.
The waveform consisted of 1 millisecond (msec) pulses with
a frequency of 5–30Hz, filled by a 10 kHz carrier frequency.
Participants placed in a side-lying gravity eliminated position
and stimulated as described exhibited oscillatory, step-like
movements without voluntary effort. Participants demonstrated
greater amplitude hip and knee oscillations when stimulation was
combined with voluntary effort and with the addition of a second
coccygeal stimulation site. Notably, this effect was demonstrated
in uninjured, chronic complete and incomplete SCI. This work
demonstrates that spinal neural circuits can be altered through
spinal stimulation, supraspinal inputs (voluntary effort), and
a combination of the two. This allows the field to shift from
isolated stimulation to stimulation with training for recovery of
voluntary effort.

Lower Limb Applications
In 2018, 15 participants with chronic SCI demonstrated
recovered ability to maintain upright standing with minimal
to no external assistance, following TSCS and training (34).
Stimulation paradigms matched those described above (45),
notably with use of carrier frequency. Participants showed
decreased motor activation threshold, increased lower extremity
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TABLE 1 | Key study elements and brief results.

References Design N SCI NL/AIS Intervention Stimulation details* Results

Gad et al. (29) CR 1 T9A Training in EKSO robot

+/- TSCS and fEmc

Electrodes at T11 (30Hz) or

Co1 (5Hz), intensity to

tolerance

pcEmc + fEmc improved voluntary effort and

coordination during stepping. pcEmc alone

resulted in more modest improvements. fEMC

alone had no positive impact on stepping.

Freyvert et al. (30) CCT 6 C2-C6 B Grip strength

exercises +/- TSCS

and buspirone

Electrodes at C5, 5–30Hz,

20–100mA

pcEMc with or without buspirone improved grip

force. UEMS, ARAT scores, and spasticity

improved over the duration of the study.

Gad et al. (31) CS 6 C4-C8 B, C Grip strengthening

and grasp and release

training + TSCS

Electrodes at C3-C4 and

C6-C7, 30Hz with 10 kHz

carrier frequency, 1ms pulse

duration, 10–250mA

Subjects demonstrated greater grip force and

activation of distal musculature with TSCS

(∼325%) and without TSCS following 8 training

sessions (∼225%). EMG shows inhibition of

proximal UE muscles with multisite stimulation.

Inanici et al. (32) CR 1 C3 D UE interventions +/-

TSCS

Electrodes at C3-C4 and

C6-C7, 30Hz with 10 kHz

carrier frequency, 1ms pulse

duration, 80–120mA

TSCS + therapy yielded improvements in

strength, dexterity, and prehension, as reflected

on the GRASSP, UEMS, and functional tasks.

Gains were maintained during follow-up

without stimulation.

Rath et al. (33) CS 8 C4-C9A, C Motor tasks during

sitting +/- TSCS

Electrodes at T11-T12 (30Hz)

and L1-L2 (15Hz) with 10 kHz

carrier frequency, 1ms pulse

duration, 10–140mA

During TSCS, subjects were able to achieve a

more erect posture and sustain wider

perturbations, as compared to sitting without

TSCS.

Sayenko et al. (34) CCT 15 C4-T2A, B, C Standing exercises

+/- TSCS

Electrodes at T11-T12 and

L1-L2, 0.2–30Hz with 10 kHz

carrier frequency, 1ms pulse

duration, 10–150mA

During TSCS, subjects were able to maintain

upright standing with minimum to no

stimulation. Seven subjects recovered

independent standing with only intermittent UE

support during stimulation. Without stimulation,

none of the subjects could maintain standing

without external support.

Alam et al. (35) CR 1 C7, NR Standing, treadmill

walking, and LE

strengthening + TSCS

Electrodes at T11 and L1,

0.5–30Hz with 9.4 kHz carrier

frequency, 100 µs-1ms pulse

duration, 20–120mA

100 µs stimulation yielded more consistent

muscle recruitment per EMG, as compared to

1ms stimulation. After training, subject

recovered volitional LE movement and

functional skills (sit to stand, upright weight

bearing). These gains were maintained 6 weeks

after training and without stimulation.

McHugh et al. (36) CS 10 C4-T9C, D Walking-based

therapy + TSCS

Electrodes at T11-T12,

biphasic symmetrical wave,

50Hz, 1ms pulse duration,

20–80mA

Subjects demonstrated significant

improvements in walking speed, endurance,

and quality following 8 weeks of training. No

subjects reported pain with stimulation. Some

subjects reported improvement in bowel,

bladder, and pain markers.

Meyer et al. (37) CS 10 C3-T10 D Ankle control

exercises +/- TSCS

Electrodes at T11-T12,

biphasic rectangular wave,

15/30/50Hz, 1ms, 15–70mA

Immediate significant improvements in ankle

motility were observed at 30Hz, with

suppression of pathological activity, assessed

by polysynaptic spinal reflex. Non-significant

improvements in walking speed were also

observed.

Shapkova et al. (38) CS 19 C5-T12A,

B, C

Exoskeleton walk

training + TSCS

Electrodes at T12,

monophasic square wave,

1/3/67Hz, 0.5ms, <70mA

Ekoskeleton walk training with stimulation

improved weight loading capacity and

decreased gait asymmetry. Higher frequencies

(67Hz) had an antispasticity effect allowing

independent walking. Subjects reported

changes in proprioception, sensation, and

paresthesias while walking with TSCS.

Zhang et al. (39) CR 1 C5A UE interventions +

TSCS

Electrodes at C3-C4 and

C7-T1, 30Hz with 10 kHz

carrier frequency, 1ms pulse

duration, 15–50mA

UE function (GRASSP, NRS, grip strength)

improved after 18 sessions of task specific

training with TSCS. These gains were

maintained without stimulation at 3 months.

(Continued)
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TABLE 1 | Continued

References Design N SCI NL/AIS Intervention Stimulation details* Results

Estes et al. (40) RCT 16 C1-T11 B,

C, D

Locomotor Training

+/- TSCS

Electrodes at T11-T12,

biphasic symmetrical wave,

50Hz. No pulse duration was

reported, but the indicated

device has a maximum output

of 400 µs. Intensity is

reported only as submotor.

Significant improvements in walking function

(speed and symmetry) were observed in the

LT+TSCS group. The control group did not

show significant improvements. Neither group

showed changes in spasticity, though large

variations may have obscured change

measurements. No subject reported

stimulation-related pain limits to participation.

TSCS was a useful and feasible adjunct to LT.

Inanici et al. (28) CCT 6 C3-C5 B, C, D UE interventions +/-

TSCS

Electrodes above and below

the LOI, 30Hz with 10 kHz

carrier frequency, 1ms pulse

duration, 40–90mA

Intensive training with TSCS restored UE

function (strength and prehension) better than

training alone. Subjects also reported

improvements in spasticity and autonomic

functions. Gains were maintained at follow-up

(3–6 months) without stimulation.

*Stimulation details are reported here as they are in their respective studies. Detail and descriptions of stimulation vary greatly and all parameters were not available for all studies.

AIS, American Spinal Injury Association Impairment Scale; ARAT, Action Research Arm Test; CCT, cross-over clinical trial; CR, case report; CS, case series; fEmc, pharmacological

enabling motor control; GRASSP, Graded Redefined Assessment of Strength, Sensibility, and Prehension; LE, lower extremity; LOI, level of injury; LT, locomotor training; N, sample

size; NL, neurological level; NR, not reported; NRS, Neurorecovery Scale; pcEmc, painless transcutaneous electrical enabling motor control, stimulation is intended to enable task

performance, avoiding direct muscle contraction; RCT, randomized control trial; UE, upper extremity; UEMS, upper extremity motor score.

(LE) muscle activity via surface EMG, and improved weight
acceptance during TSCS. Without stimulation, none of the
participants were able to support themselves in upright. None
of the participants reported pain associated with stimulation
or adverse events during the course of the study. Participants
reported changes in spasticity, proprioception, and mood, which
were not quantified. The authors note the relative speed of skill
acquisition, as compared to eSCS studies (18, 20), suggesting that
TSCSmay have a broader modulatory impact on neural networks
and multisegmental projections.

Using the same stimulation parameters with task-specific
training, benefits to trunk control (33) and ankle mobility
(37) have been reported in participants with both complete
and incomplete SCI. Participants improve performance with
stimulation only and no maintenance of change without
stimulation are reported. Here, again, the speed of skill
acquisition is highlighted by the authors.

Exploration of walking functions with TSCS include a wide
variety of interventions including over-ground, treadmill-based,
and robotic-assisted studies. In a single case report (29), a
participant with motor complete SCI underwent training in
an exoskeleton with TSCS that included a carrier frequency.
In a larger case series (38), participants were provided
similar exoskeleton-based training with TSCS without a carrier
frequency. The benefits reported were consistent across the
two studies including improved voluntary control, coordination,

and weight acceptance during stepping. In addition to the
differing waveforms, authors of respective studies explored the

impact of frequency on spasticity interrupting smooth gait.

Higher frequencies were found to have the most benefit on

spasticity (38).
Studies of over-ground and treadmill-based walk training with

TSCS show similar improvements in gait (35, 36, 40). First, ten

participants with iSCI received 23 sessions of TSCS with walking-
based physical therapy (36). Here stimulation was delivered
with a commercially available, clinically relevant stimulator
using a biphasic waveform with 1ms pulses at 50Hz. Electrode
placement was consistent with previous studies. Authors report
that statistically significant improvements in walking speed,
endurance, and quality, with changes exceeding individual test
minimal clinically important difference (MCID) at or before
sessions 18. Again, it is highlighted that TSCS yield functionally
important improvements in shorter time frames than traditional
models of care or with eSCS. As an adjunct to this work, another
group published the results of an experiment comparing TSCS
with locomotor training to sham stimulation with locomotor
training (40). Biphasic stimulation was again provided with
a commercially available stimulator. Participants receiving the
experimental stimulation improved their walking speed and
distance. No adverse events or protocol deviations due to pain
were reported in either paper. Authors of both groups endorse
the feasibility of TSCS in clinical settings. In a single case report
(35), TSCS including a carrier frequency with the same electrode
placement was applied during standing, treadmill walking, and
strengthening activities. Authors report recovery of volitional
movement and functional skills, which were maintained over 6
weeks without stimulation. The report of more durable changes
indicates the addition of TSCS may contribute to recovery of
function, rather than a transient state of hyperexcitability.

Upper Limb Applications
Improvements in upper extremity (UE) function are also
reported in relation to TSCS. In single-case reports (32, 39),
case series (31) and prospective cohorts (28, 30) of subjects
with motor incomplete SCI, sustained recovery of arm and hand
movement is reported. In all of these reports stimulation was
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delivered in 1ms pulses at 5–30Hz, with a carrier frequency
of 10 kHz. Electrode placement included one or more cervical
intervertebral space, sometimes surrounding the level of injury.
Anodes remain over the iliac crest. Interventions varied widely,
as is common in UE exploration, with more focused training in
grasp and release, as compared to other patterns of prehension.
As with lower extremity and walking outcomes, the magnitude
and speed of changes associated with TSCS, as compared
to traditional rehabilitation is highlighted. Grip strength and
functional dexterity show improvement with TSCS and, in
several cases, improvements are shown to be durable over time
without continued stimulation. TSCS is also reported to have a
benefit on spasticity management in the UE (28).

WHAT WE DON’T KNOW

With all the evidence and apparent utility in relation to
therapeutic targets, it stands to wonder why TSCS does not
have greater clinical deployment. The first obvious issue is
lack of consensus on stimulation parameters. Most studies use
low frequencies (30–50Hz) (36, 40) but some add a carrier
frequency (34, 45), claiming this makes the stimulation pain
free. Proponents claim the carrier frequency selectively blocks
transmission of pain information and lowers tissue impedance
for deeper penetration of stimulation (47). However, direct
comparison of a traditional a symmetrical biphasic waveform and
a waveformwith carrier frequency found no significant difference
in intensity necessary for motor activation and participants’
subjective reports of discomfort was equal across the stimulation
paradigms (48). Largely the field agrees that electrode placement
determines current direction and consequently motor targets
(i.e., cervical placements for UE interventions). Without large-
scale controlled trials, it is difficult to pick the most efficacious
stimulation parameters. As a somewhat related issue, identifying
the best responders and the need for individual adjustments
in stimulation parameters is a gap in our collective knowledge.
Existing evidence suggests that TSCS may be more useful in
iSCI, but perhaps it also has a role in screening or conditioning
patients with complete injury prior to eSCS. The availability
of appropriate stimulation devices may also be an issue for
successful deployment into therapeutic settings. Few studies
use commercially available, clinically relevant stimulators (36,
40). Additionally, longitudinal study is warranted to more fully
glean the impact of TSCS. We don’t yet understand if the
changes associated with the intervention are long lasting, or
if patients will need to use neuromodulatory inputs regularly,
like a vitamin or charging a battery, or only as needed, like an
orthotic for walking. Finally, there are always the limitations and
barriers associated with clinical services, including time, training,
and reimbursement.

HOW TO CLOSE THE GAP

Even with all the unknowns, the data in support of TSCS is
compelling. Though very few studies have demonstrated the use
of TSCS in clinical settings, they have made a case for its utility
and feasibility, demonstrating it to be a low burden, low risk
adjunct to existing interventions (36, 40). When looking at the
studies discussed here in aggregate, a few commonalities can
be identified. Successful TSCS applications include long pulse
duration (0.5 µs to 1ms) and moderate frequencies (30–50Hz).
Electrode placements targeting upper and lower extremities are
well-defined. There is no conclusive evidence that the carrier
frequency is necessary. Outcomes between studies with and
without carrier frequency are similar and in direct comparison,
subject tolerance was not impacted by the carrier frequency.
Carrier frequencies are not readily available in clinical stimulators
and so, in their absence, clinicians may opt to pursue TSCS
with standard biphasic waveforms. For the evidence to be
advanced and conclusive decisions on parameters to be made,
well-controlled, larger sample studies are needed. Given the
heterogeneity and recruitment challenges associated with SCI,
this may require multiple centers to come together, agreeing on
study design, stimulation parameters, and outcomes.

Finally, there is likely benefit in extending the study of TSCS
into other populations. Work has begun in children with iSCI
and cerebral palsy (CP) (49, 50). Reports of decreased spasticity
lends TSCS to other neurological diagnoses, like stroke (51) and
multiple sclerosis (MS) (52), where dysregulation in the CNS
leads to dysfunction and atrophy of spinal neural networks. The
more populations in which TSCS is demonstrated as useful, the
more attention and funding it will draw, ultimately leading to
better acceptance in therapeutic settings.

Increasingly, patients are acutely aware of these developing
and advancing interventions and seek clinics willing to offer
them. Companies are stepping in to fill the technology void and
so the responsibility falls to the therapists to decide who and how
and when.
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