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Abstract

We present tournament results and several powerful strategies for the Iterated Prisoner’s

Dilemma created using reinforcement learning techniques (evolutionary and particle swarm

algorithms). These strategies are trained to perform well against a corpus of over 170 dis-

tinct opponents, including many well-known and classic strategies. All the trained strategies

win standard tournaments against the total collection of other opponents. The trained strate-

gies and one particular human made designed strategy are the top performers in noisy tour-

naments also.

Introduction

The Prisoner’s Dilemma (PD) is a two player game used to model a variety of strategic interac-

tions. Each player chooses between cooperation (C) or defection (D). The payoffs of the game

are defined by the matrix
R S

T P

 !

, where T> R> P> S and 2R> T + S. The PD is a one

round game, but is commonly studied in a manner where the prior outcomes matter. This

repeated form is called the Iterated Prisoner’s Dilemma (IPD). The IPD is frequently used to

understand the evolution of cooperative behaviour from complex dynamics [1].

This manuscript uses the Axelrod library [2, 3], open source software for conducting IPD

research with reproducibility as a principal goal. Written in the Python programming lan-

guage, to date the library contains source code contributed by over 50 individuals from a

variety of geographic locations and technical backgrounds. The library is supported by a com-

prehensive test suite that covers all the intended behaviors of all of the strategies in the library,

as well as the features that conduct matches, tournaments, and population dynamics.

The library is continuously developed and as of version 3.0.0, the library contains over 200

strategies, many from the scientific literature, including classic strategies like Win Stay Lose

Shift [4] and previous tournament winners such as OmegaTFT [5], Adaptive Pavlov [6], and

ZDGTFT2 [7].
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Since Robert Axelrod’s seminal tournament [8], a number of IPD tournaments have been

undertaken and are summarised in Table 1. Further to the work described in [2] a regular set

of standard, noisy [9] and probabilistic ending [10] tournaments are carried out as more strat-

egies are added to the Axelrod library. Details and results are available here: http://axelrod-

tournament.readthedocs.io. This work presents a detailed analysis of tournaments with 176

strategies.

In this work we describe how collections of strategies in the Axelrod library have been used

to train new strategies specifically to win IPD tournaments. These strategies are trained using

generic strategy archetypes based on e.g. finite state machines, arriving at particularly effective

parameter choices through evolutionary or particle swarm algorithms. There are several previ-

ous publications that use evolutionary algorithms to evolve IPD strategies in various circum-

stances [13–22]. See also [23] for a strategy trained to win against a collection of well-known

IPD opponents and see [24] for a prior use of particle swarm algorithms. Our results are

unique in that we are able to train against a large and diverse collection of strategies available

from the scientific literature. Crucially, the software used in this work is openly available and

can be used to train strategies in the future in a reliable manner, with confidence that the oppo-

nent strategies are correctly implemented, tested and documented.

Materials and methods

The strategy archetypes

The Axelrod library now contains many parametrised strategies trained using machine learn-

ing methods. Most are deterministic, use many rounds of memory, and perform extremely

well in tournaments as will be discussed in the results Section. Training will be discussed in a

later section. These strategies can encode a variety of other strategies, including classic strate-

gies like Tit For Tat [25], handshake strategies, and grudging strategies, that always defect after

an opponent defection.

LookerUp. The LookerUp strategy is based on a lookup table and encodes a set of deter-

ministic responses based on the opponent’s first n1 moves, the opponent’s last m1 moves, and

the players last m2 moves. If n1 > 0 then the player has infinite memory depth, otherwise it has

depth max(m1, m2). This is illustrated diagrammatically in Fig 1.

Training of this strategy corresponds to finding maps from partial histories to actions,

either a cooperation or a defection. Although various combinations of n1, m1, and m2 have

been tried, the best performance at the time of training was obtained for n1 = m1 = m2 = 2 and

generally for n1 > 0. A strategy called EvolvedLookerUp2_2_2 is among the top strategies in

the library.

Table 1. An overview of a selection of published tournaments. Not all tournaments were ‘standard’ round robins; for more details see the indicated

references.

Year Reference Number of Strategies Type Source Code

1979 [8] 13 Standard Not immediately available

1979 [10] 64 Standard Available in FORTRAN

1991 [9] 13 Noisy Not immediately available

2002 [11] 16 Wildlife Not applicable

2005 [12] 223 Varied Not available

2012 [7] 13 Standard Not fully available

2016 [2] 129 Standard Fully available

https://doi.org/10.1371/journal.pone.0188046.t001
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This archetype can be used to train deterministic memory-n strategies with the parameters

n1 = 0 and m1 = m2 = n. For n = 1, the resulting strategy cooperates if the last round was mutual

cooperation and defects otherwise, known as Grim or Grudger.

Two strategies in the library, Winner12 and Winner21, from [26], are based on lookup

tables for n1 = 0, m1 = 1, and m2 = 2. The strategy Winner12 emerged in less than 10 genera-

tions of training in our framework using a score maximizing objective. Strategies nearly identi-

cal to Winner21 arise from training with a Moran process objective.

Gambler. Gambler is a stochastic variant of LookerUp. Instead of deterministically

encoded moves the lookup table emits probabilities which are used to choose cooperation or

defection. This is illustrated diagrammatically in Fig 2.

Fig 1. Diagrammatic representation of the looker up archetype.

https://doi.org/10.1371/journal.pone.0188046.g001

Fig 2. Diagrammatic representation of the Gambler archetype.

https://doi.org/10.1371/journal.pone.0188046.g002
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Training of this strategy corresponds to finding maps from histories to a probability of

cooperation. The library includes a strategy trained with n1 = m1 = m2 = 2 that is mostly deter-
ministic, with 52 of the 64 probabilities being 0 or 1.

This strategy type can be used to train arbitrary memory-n strategies. A memory one strat-

egy called PSOGamblerMem1 was trained, with probabilities (Pr(C | CC), Pr(C | CD), Pr(C |

DC), Pr(C | DD)) = (1, 0.5217, 0, 0.121). Though it performs well in standard tournaments

(see Table 2) it does not outperform the longer memory strategies, and is bested by a similar

strategy that also uses the first round of play: PSOGambler_1_1_1.

These strategies are trained with a particle swarm algorithm rather than an evolutionary

algorithm (though the former would suffice). Particle swarm algorithms have been used to

trained IPD strategies previously [24].

ANN: Single hidden layer artificial neural network. Strategies based on artificial neural

networks use a variety of features computed from the history of play:

• Opponent’s first move is C

• Opponent’s first move is D

• Opponent’s second move is C

• Opponent’s second move is D

• Player’s previous move is C

• Player’s previous move is D

• Player’s second previous move is C

• Player’s second previous move is D

• Opponent’s previous move is C

• Opponent’s previous move is D

• Opponent’s second previous move is C

Table 2. Standard tournament: Mean score per turn of top 15 strategies (ranked by median over 50000 tournaments). The leaderboard is dominated

by the trained strategies (indicated by a *).

mean std min 5% 25% 50% 75% 95% max

EvolvedLookerUp2_2_2* 2.955 0.010 2.915 2.937 2.948 2.956 2.963 2.971 2.989

Evolved HMM 5* 2.954 0.014 2.903 2.931 2.945 2.954 2.964 2.977 3.007

Evolved FSM 16* 2.952 0.013 2.900 2.930 2.943 2.953 2.962 2.973 2.993

PSO Gambler 2_2_2* 2.938 0.013 2.884 2.914 2.930 2.940 2.948 2.957 2.972

Evolved FSM 16 Noise 05* 2.919 0.013 2.874 2.898 2.910 2.919 2.928 2.939 2.965

PSO Gambler 1_1_1* 2.912 0.023 2.805 2.874 2.896 2.912 2.928 2.950 3.012

Evolved ANN 5* 2.912 0.010 2.871 2.894 2.905 2.912 2.919 2.928 2.945

Evolved FSM 4* 2.910 0.012 2.867 2.889 2.901 2.910 2.918 2.929 2.943

Evolved ANN* 2.907 0.010 2.865 2.890 2.900 2.908 2.914 2.923 2.942

PSO Gambler Mem1* 2.901 0.025 2.783 2.858 2.884 2.901 2.919 2.942 2.994

Evolved ANN 5 Noise 05* 2.864 0.008 2.830 2.850 2.858 2.865 2.870 2.877 2.891

DBS 2.857 0.009 2.823 2.842 2.851 2.857 2.863 2.872 2.899

Winner12 2.849 0.008 2.820 2.836 2.844 2.850 2.855 2.862 2.874

Fool Me Once 2.844 0.008 2.818 2.830 2.838 2.844 2.850 2.857 2.882

Omega TFT: 3, 8 2.841 0.011 2.800 2.822 2.833 2.841 2.849 2.859 2.882

https://doi.org/10.1371/journal.pone.0188046.t002
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• Opponent’s second previous move is D

• Total opponent cooperations

• Total opponent defections

• Total player cooperations

• Total player defections

• Round number

These are then input into a feed forward neural network with one layer and user-supplied

width. This is illustrated diagrammatically in Fig 3.

Training of this strategy corresponds to finding parameters of the neural network. An inner

layer with just five nodes performs quite well in both deterministic and noisy tournaments.

The output of the ANN used in this work is deterministic; a stochastic variant that outputs

probabilities rather than exact moves could be created.

Finite state machines. Strategies based on finite state machines are deterministic and

computationally efficient. In each round of play the strategy selects an action based on the cur-

rent state and the opponent’s last action, transitioning to a new state for the next round. This is

illustrated diagrammatically in Fig 4.

Fig 3. Diagrammatic representation of the ANN archetype.

https://doi.org/10.1371/journal.pone.0188046.g003

Fig 4. Diagrammatic representation of the finite state machine archetype.

https://doi.org/10.1371/journal.pone.0188046.g004
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Training this strategy corresponds to finding mappings of states and histories to an action

and a state. Figs 5 and 6 show two of the trained finite state machines. The layout of state

nodes is kept the same between Figs 5 and 6 to highlight the effect of different training envi-

ronments. Note also that two of the 16 states are not used, this is also an outcome of the train-

ing process.

Hidden markov models. A variant of finite state machine strategies are called hidden

Markov models (HMMs). Like the strategies based on finite state machines, these strategies

also encode an internal state. However, they use probabilistic transitions based on the prior

round of play to other states and cooperate or defect with various probabilities at each state.

This is shown diagrammatically in Fig 7. Training this strategy corresponds to finding map-

pings of states and histories to probabilities of cooperating as well as probabilities of the next

internal state.

Fig 5. Evolved_FSM_16: Trained to maximize score in a standard tournament.

https://doi.org/10.1371/journal.pone.0188046.g005
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Meta strategies. There are several strategies based on ensemble methods that are common

in machine learning called Meta strategies. These strategies are composed of a team of other

strategies. In each round, each member of the team is polled for its desired next move. The

ensemble then selects the next move based on a rule, such as the consensus vote in the case of

MetaMajority or the best individual performance in the case of MetaWinner. These strategies

were among the highest performing in the library before the inclusion of those trained by rein-

forcement learning.

Because these strategies inherit many of the properties of the strategies on which they are

based, including using knowledge of the match length to defect on the last round(s) of play,

not all of these strategies were included in results of this paper. These strategies do not typically

outperform the trained strategies described above.

Fig 6. Evolved_FSM_16_Noise_05: Trained to maximize score in a noisy tournament.

https://doi.org/10.1371/journal.pone.0188046.g006
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Training methods

The trained strategies (denoted by a � in Appendix A) were trained using reinforcement learn-

ing algorithms. The ideas of reinforcement learning can be attributed to the original work of

[27] in which the notion that computers would learn by taking random actions but according

to a distribution that picked actions with high rewards more often. The two particular algo-

rithms used here:

• Particle Swarm Algorithm: [28].

• Evolutionary algorithm: [29].

The Particle Swarm Algorithm is implemented using the pyswarm library: https://pypi.

python.org/pypi/pyswarm. This algorithm was used only to train the Gambler archetype.

All other strategies were trained using evolutionary algorithms. The evolutionary algo-

rithms used standard techniques, varying strategies by mutation and crossover, and evaluating

the performance against each opponent for many repetitions. The best performing strategies

in each generation are persisted, variants created, and objective functions computed again.

The default parameters for this procedure:

• A population size of 40 individuals (kept constant across the generations);

• A mutation rate of 10%;

• 10 individuals kept from one generation to the next;

• A total of 500 generations.

All implementations of these algorithms are archived at [30]. This software is (similarly to

the Axelrod library) available on github https://github.com/Axelrod-Python/axelrod-dojo.

There are objective functions for:

• total or mean payoff,

• total or mean payoff difference (unused in this work),

• total Moran process wins (fixation probability). This lead to the strategies named TF1, TF2,

TF3 listed in Appendix A.

Fig 7. Diagrammatic representation of the hidden markov model archetype.

https://doi.org/10.1371/journal.pone.0188046.g007
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These can be used in noisy or standard environments. These objectives can be further mod-

ified to suit other purposes. New strategies could be trained with variations including spatial

structure and probabilistically ending matches.

Results

This section presents the results of a large IPD tournament with strategies from the Axelrod

library, including some additional parametrized strategies (e.g. various parameter choices for

Generous Tit For Tat [23]). These are listed in Appendix A.

All strategies in the tournament follow a simple set of rules in accordance with earlier

tournaments:

• Players are unaware of the number of turns in a match.

• Players carry no acquired state between matches.

• Players cannot observe the outcome of other matches.

• Players cannot identify their opponent by any label or identifier.

• Players cannot manipulate or inspect their opponents in any way.

Any strategy that does not follow these rules, such as a strategy that defects on the last

round of play, was omitted from the tournament presented here (but not necessarily from the

training pool).

A total of 176 are included, of which 53 are stochastic. A standard tournament with 200

turns and a tournament with 5% noise is discussed. Due to the inherent stochasticity of these

IPD tournaments, these tournaments were repeated 50000 times. This allows for a detailed

and confident analysis of the performance of strategies. To illustrate the results considered, Fig

8 shows the distribution of the mean score per turn of Tit For Tat over all the repetitions.

Fig 8. Scores for Tit for Tat over 50000 tournaments.

https://doi.org/10.1371/journal.pone.0188046.g008
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Similarly, Fig 9 shows the ranks of of Tit For Tat for each repetition. (We note that it never

wins a tournament). Finally Fig 10 shows the number of opponents beaten in any given tour-

nament: Tit For Tat does not win any match. (This is due to the fact that it will either draw

with mutual cooperation or defect second).

Fig 9. Ranks for Tit for Tat over 50000 tournaments.

https://doi.org/10.1371/journal.pone.0188046.g009

Fig 10. Wins for Tit for Tat over 50000 tournaments.

https://doi.org/10.1371/journal.pone.0188046.g010

Reinforcement learning produces dominant strategies for the Iterated Prisoner’s Dilemma

PLOS ONE | https://doi.org/10.1371/journal.pone.0188046 December 11, 2017 10 / 33

https://doi.org/10.1371/journal.pone.0188046.g009
https://doi.org/10.1371/journal.pone.0188046.g010
https://doi.org/10.1371/journal.pone.0188046


The utilities used are (R, P, T, S) = (3, 1, 5, 0) thus the specific Prisoner’s Dilemma being

played is:

3 0

5 1

 !

ð1Þ

All data generated for this work is archived and available at [31].

Standard tournament

The top 11 performing strategies by median payoff are all strategies trained to maximize total

payoff against a subset of the strategies (Table 2). The next strategy is Desired Belief Strategy

(DBS) [32], which actively analyzes the opponent and responds accordingly. The next two

strategies are Winner12, based on a lookup table, Fool Me Once [3], a grudging strategy that

defects indefinitely on the second defection, and Omega Tit For Tat [12].

For completeness, violin plots showing the distribution of the scores of each strategy (again

ranked by median score) are shown in Fig 11.

Pairwise payoff results are given as a heatmap (Fig 12) which shows that many strategies

achieve mutual cooperation (obtaining a score of 3). The top performing strategies never

defect first yet are able to exploit weaker strategies that attempt to defect.

The strategies that win the most matches (Table 3) are Defector [1] and Aggravater [3], fol-

lowed by handshaking and zero determinant strategies [33]. This includes two handshaking

strategies that were the result of training to maximize Moran process fixation (TF1 and TF2).

No strategies were trained specifically to win matches. None of the top scoring strategies

appear in the top 15 list of strategies ranked by match wins. This can be seen in Fig 13 where

the distribution of the number of wins of each strategy is shown.

Fig 11. Standard tournament: Mean score per turn (strategies ordered by median score over 50000 tournaments).

https://doi.org/10.1371/journal.pone.0188046.g011
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The number of wins of the top strategies of Table 2 are shown in Table 4. It is evident that

although these strategies score highly they do not win many matches: the strategy with the

most number of wins is the Evolved FSM 16 strategy that at most won 60 (60/175� 34%)

matches in a given tournament.

Finally, Table 5 and Fig 14 show the ranks (based on median score) of each strategy over

the repeated tournaments. Whilst there is some stochasticity, the top three strategies almost

always rank in the top three. For example, the worst that the EvolvedLookerUp_2_2_2 ranks

in any tournament is 8th.

Figs 15–17 shows the rate of cooperation in each round for the top three strategies. The

opponents in these figures are ordered according to performance by median score. It is evident

that the high performing strategies share a common thread against the top strategies: they do

Fig 12. Standard tournament: Mean score per turn of row players against column players (ranked by median over 50000

tournaments).

https://doi.org/10.1371/journal.pone.0188046.g012
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not defect first and achieve mutual cooperation. Against the lower strategies they also do not

defect first (a mean cooperation rate of 1 in the first round) but do learn to quickly retaliate.

Noisy tournament

Results from noisy tournaments in which there is a 5% chance that an action is flipped are

now described. As shown in Table 6 and Fig 18, the best performing strategies in median

Table 3. Standard tournament: Number of wins per tournament of top 15 strategies (ranked by median wins over 50000 tournaments).

mean std min 5% 25% 50% 75% 95% max

Aggravater 161.595 0.862 160 160.0 161.0 162.0 162.0 163.0 163

Defector 161.605 0.864 160 160.0 161.0 162.0 162.0 163.0 163

CS 159.646 1.005 155 158.0 159.0 160.0 160.0 161.0 161

ZD-Extort-4 150.598 2.662 138 146.0 149.0 151.0 152.0 155.0 162

Handshake 149.552 1.754 142 147.0 148.0 150.0 151.0 152.0 154

ZD-Extort-2 146.094 3.445 129 140.0 144.0 146.0 148.0 152.0 160

ZD-Extort-2 v2 146.291 3.425 131 141.0 144.0 146.0 149.0 152.0 160

Winner21 139.946 1.225 136 138.0 139.0 140.0 141.0 142.0 143

TF2 138.240 1.700 130 135.0 137.0 138.0 139.0 141.0 143

TF1 135.692 1.408 130 133.0 135.0 136.0 137.0 138.0 140

Naive Prober: 0.1 136.016 2.504 127 132.0 134.0 136.0 138.0 140.0 147

Feld: 1.0, 0.5, 200 136.087 1.696 130 133.0 135.0 136.0 137.0 139.0 144

Joss: 0.9 136.015 2.503 126 132.0 134.0 136.0 138.0 140.0 146

Predator 133.718 1.385 129 131.0 133.0 134.0 135.0 136.0 138

SolutionB5 125.843 1.509 120 123.0 125.0 126.0 127.0 128.0 131

https://doi.org/10.1371/journal.pone.0188046.t003

Fig 13. Standard tournament: Number of wins per tournament (ranked by median over 50000 tournaments).

https://doi.org/10.1371/journal.pone.0188046.g013
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payoff are DBS, designed to account for noise, followed by two strategies trained in the pres-

ence of noise and three trained strategies trained without noise. One of the strategies trained

with noise (PSO Gambler) actually performs less well than some of the other high ranking

strategies including Spiteful TFT (TFT but defects indefinitely if the opponent defects twice

consecutively) and OmegaTFT (also designed to handle noise). While DBS is the clear winner,

it comes at a 6x increased run time over Evolved FSM 16 Noise 05.

Recalling Table 2, the strategies trained in the presence of noise are also among the best per-

formers in the absence of noise. As shown in Fig 19 the cluster of mutually cooperative strate-

gies is broken by the noise at 5%. A similar collection of players excels at winning matches but

again they have a poor total payoff.

Table 4. Standard tournament: Number of wins per tournament of top 15 strategies (ranked by median score over 50000 tournaments) * indicates

that the strategy was trained.

mean std min 5% 25% 50% 75% 95% max

EvolvedLookerUp2_2_2* 48.259 1.336 43 46.0 47.0 48.0 49.0 50.0 53

Evolved HMM 5* 41.358 1.221 36 39.0 41.0 41.0 42.0 43.0 45

Evolved FSM 16* 56.978 1.099 51 55.0 56.0 57.0 58.0 59.0 60

PSO Gambler 2_2_2* 40.692 1.089 36 39.0 40.0 41.0 41.0 42.0 45

Evolved FSM 16 Noise 05* 40.070 1.673 34 37.0 39.0 40.0 41.0 43.0 47

PSO Gambler 1_1_1* 45.005 1.595 38 42.0 44.0 45.0 46.0 48.0 51

Evolved ANN 5* 43.224 0.674 41 42.0 43.0 43.0 44.0 44.0 47

Evolved FSM 4* 37.227 0.951 34 36.0 37.0 37.0 38.0 39.0 41

Evolved ANN* 43.100 1.021 40 42.0 42.0 43.0 44.0 45.0 48

PSO Gambler Mem1* 43.444 1.837 34 40.0 42.0 43.0 45.0 46.0 51

Evolved ANN 5 Noise 05* 33.711 1.125 30 32.0 33.0 34.0 34.0 35.0 38

DBS 32.329 1.198 28 30.0 32.0 32.0 33.0 34.0 38

Winner12 40.179 1.037 36 39.0 39.0 40.0 41.0 42.0 44

Fool Me Once 50.121 0.422 48 50.0 50.0 50.0 50.0 51.0 52

Omega TFT: 3, 8 35.157 0.859 32 34.0 35.0 35.0 36.0 37.0 39

https://doi.org/10.1371/journal.pone.0188046.t004

Table 5. Standard tournament: Rank in each tournament of top 15 strategies (ranked by median over 50000 tournaments) * indicates that the strat-

egy was trained.

mean std min 5% 25% 50% 75% 95% max

EvolvedLookerUp2_2_2* 2.173 1.070 1 1.0 1.0 2.0 3.0 4.0 8

Evolved HMM 5* 2.321 1.275 1 1.0 1.0 2.0 3.0 5.0 10

Evolved FSM 16* 2.489 1.299 1 1.0 1.0 2.0 3.0 5.0 10

PSO Gambler 2_2_2* 3.961 1.525 1 2.0 3.0 4.0 5.0 7.0 10

Evolved FSM 16 Noise 05* 6.300 1.688 1 4.0 5.0 6.0 7.0 9.0 11

PSO Gambler 1_1_1* 7.082 2.499 1 3.0 5.0 7.0 9.0 10.0 17

Evolved ANN 5* 7.287 1.523 2 5.0 6.0 7.0 8.0 10.0 11

Evolved FSM 4* 7.527 1.631 2 5.0 6.0 8.0 9.0 10.0 12

Evolved ANN* 7.901 1.450 2 5.0 7.0 8.0 9.0 10.0 12

PSO Gambler Mem1* 8.222 2.535 1 4.0 6.0 9.0 10.0 12.0 20

Evolved ANN 5 Noise 05* 11.362 0.872 8 10.0 11.0 11.0 12.0 13.0 16

DBS 12.197 1.125 9 11.0 11.0 12.0 13.0 14.0 16

Winner12 13.221 1.137 9 11.0 12.0 13.0 14.0 15.0 17

Fool Me Once 13.960 1.083 9 12.0 13.0 14.0 15.0 15.0 17

Omega TFT: 3, 8 14.275 1.301 9 12.0 13.0 15.0 15.0 16.0 19

https://doi.org/10.1371/journal.pone.0188046.t005
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As shown in Table 7 and Fig 20 the strategies tallying the most wins are somewhat similar

to the standard tournaments, with Defector, the handshaking CollectiveStrategy [34], and

Aggravater appearing as the top three again.

As shown in Table 8, the top ranking strategies win a larger number of matches in the pres-

ence of noise. For example Spiteful Tit For Tat [35] in one tournament won almost all its

matches (167).

Finally, Table 9 and Fig 21 show the ranks (based on median score) of each strategy over

the repeated tournaments. We see that the stochasticity of the ranks understandably increases

relative to the standard tournament. An exception is the top three strategies, for example, the

DBS strategy never ranks lower than second and wins 75% of the time. The two strategies

trained for noisy tournaments rank in the top three 95% of the time.

Figs 22–24 shows the rate of cooperation in each round for the top three strategies (in the

absence of noise) and just as for the top performing strategies in the standard tournament it is

evident that the strategies never defect first and learn to quickly punish poorer strategies.

‘

Discussion

The tournament results indicate that pre-trained strategies are generally better than human

designed strategies at maximizing payoff against a diverse set of opponents. An evolutionary

algorithm produces strategies based on multiple generic archetypes that are able to achieve a

higher average score than any other known opponent in a standard tournament. Most of the

trained strategies use multiple rounds of the history of play (some using all of it) and outper-

form memory-one strategies from the literature. Interestingly, a trained memory one strategy

produced by a particle swarm algorithm performs well, better than human designed strategies

Fig 14. Standard tournament: Rank in each tournament (ranked by median over 50000 tournaments).

https://doi.org/10.1371/journal.pone.0188046.g014
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such as Win Stay Lose Shift and zero determinant strategies (which enforce a payoff difference

rather than maximize total payoff).

In opposition to historical tournament results and community folklore, our results show

that complex strategies can be effective for the IPD. Of all the human-designed strategies in

the library, only DBS consistently performs well, and it is substantially more complex than tra-

ditional tournament winners like TFT, OmegaTFT, and zero determinant strategies.

The generic structure of the trained strategies did not appear to be critical for the standard

tournament—strategies based on lookup tables, finite state machines, neural networks, and

stochastic variants all performed well. Single layer neural networks performed well in both

noisy and standard tournaments though these had some aspect of human involvement in the

selection of features. This is in line with the other strategies also where some human decisions

are made regarding the structure. For the LookerUp and Gambler archetypes a decision has to

be made regarding the number of rounds of history and initial play that are to be used. In con-

trast, the finite state machines and hidden Markov models required only a choice of the num-

ber of states, and the training algorithm can eliminate unneeded states in the case of finite state

Fig 15. Cooperation rates for EvolvedLookerUp_2_2_2 (strategies ordered by median score over 10000 tournaments).

https://doi.org/10.1371/journal.pone.0188046.g015
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machines (evidenced by the unconnected nodes in the diagrams for the included

representations).

Many strategies can be represented by multiple archetypes, however some archetypes will

be more efficient in encoding the patterns present in the data. The fact that the Lookerup strat-

egy does the best for the standard tournament indicates that it represents an efficient reduction

of dimension which in turn makes its training more efficient. In particular the first rounds of

play were valuable bits of information. For the noisy tournament however the dimension

reduction represented by some archetypes indicates that some features of the data are not cap-

tured by the lookup tables while they are by the neural networks and the finite state machines,

allowing the latter to adapt better to the noisy environment. Intuitively, a noisy environment

can significantly affect a lookup table based on the last two rounds of play since these action

pairs compete with probing defections, apologies, and retaliations. Accordingly, it is not sur-

prising that additional parameter space is needed to adapt to a noisy environment.

Two strategies designed specifically to account for noise, DBS and OmegaTFT, perform

well and only DBS performs better than the trained strategies and only in noisy contexts.

Fig 16. Cooperation rates for Evolved_HMM_5 (strategies ordered by median score over 10000 tournaments).

https://doi.org/10.1371/journal.pone.0188046.g016

Reinforcement learning produces dominant strategies for the Iterated Prisoner’s Dilemma

PLOS ONE | https://doi.org/10.1371/journal.pone.0188046 December 11, 2017 17 / 33

https://doi.org/10.1371/journal.pone.0188046.g016
https://doi.org/10.1371/journal.pone.0188046


Empirically we find that DBS (with its default parameters) does not win tournaments at 1%

noise. However DBS has a parameter that accounts for the expected amount of noise and a fol-

lowup study with various noise levels could make a more complete study of the performance

of DBS and strategies trained at various noise levels.

The strategies trained to maximize their average score are generally cooperative and do not

defect first. Maximizing for individual performance across a collection of opponents leads to

mutual cooperation despite the fact that mutual cooperation is an unstable evolutionary equi-

librium for the prisoner’s dilemma. Specifically it is noted that the reinforcement learning pro-

cess for maximizing payoff does not lead to exploitative zero determinant strategies, which

may also be a result of the collection of training strategies, of which several retaliate harshly.

Training with the objective of maximizing payoff difference may produce strategies more like

zero determinant strategies.

For the trained strategies utilizing look up tables we generally found those that incorporate

one or more of the initial rounds of play outperformed those that did not. The strategies based

on neural networks and finite state machines also are able to condition throughout a match on

Fig 17. Cooperation rates for Evolved_FSM_16 (strategies ordered by median score over 10000 tournaments).

https://doi.org/10.1371/journal.pone.0188046.g017
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the first rounds of play. Accordingly, we conclude that first impressions matter in the IPD.

The best strategies are nice (never defecting first) and the impact of the first rounds of play

could be further investigated with the Axelrod library in future work by e.g. forcing all strate-

gies to defect on the first round.

Table 6. Noisy (5%) tournament: Mean score per turn of top 15 strategies (ranked by median over 50000 tournaments) * indicates that the strategy

was trained.

mean std min 5% 25% 50% 75% 95% max

DBS 2.573 0.025 2.474 2.533 2.556 2.573 2.589 2.614 2.675

Evolved ANN 5 Noise 05* 2.534 0.025 2.418 2.492 2.517 2.534 2.551 2.575 2.629

Evolved FSM 16 Noise 05* 2.515 0.031 2.374 2.464 2.494 2.515 2.536 2.565 2.642

Evolved ANN 5* 2.410 0.030 2.273 2.359 2.389 2.410 2.430 2.459 2.536

Evolved FSM 4* 2.393 0.027 2.286 2.348 2.374 2.393 2.411 2.437 2.505

Evolved HMM 5* 2.392 0.026 2.289 2.348 2.374 2.392 2.409 2.435 2.493

Level Punisher 2.388 0.025 2.281 2.347 2.372 2.389 2.405 2.429 2.503

Omega TFT: 3, 8 2.387 0.026 2.270 2.344 2.370 2.388 2.405 2.430 2.498

Spiteful Tit For Tat 2.383 0.030 2.259 2.334 2.363 2.383 2.403 2.432 2.517

Evolved FSM 16* 2.375 0.029 2.239 2.326 2.355 2.375 2.395 2.423 2.507

PSO Gambler 2_2_2 Noise 05* 2.371 0.029 2.250 2.323 2.352 2.371 2.390 2.418 2.480

Adaptive 2.369 0.038 2.217 2.306 2.344 2.369 2.395 2.431 2.524

Evolved ANN* 2.365 0.022 2.270 2.329 2.351 2.366 2.380 2.401 2.483

Math Constant Hunter 2.344 0.022 2.257 2.308 2.329 2.344 2.359 2.382 2.445

Gradual 2.341 0.021 2.248 2.306 2.327 2.341 2.355 2.376 2.429

https://doi.org/10.1371/journal.pone.0188046.t006

Fig 18. Noisy (5%) tournament: Mean score per turn (strategies ordered by median score over 50000 tournaments).

https://doi.org/10.1371/journal.pone.0188046.g018
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We note that as the library grows, the top performing strategies sometimes shuffle, and are

not retrained automatically. Most of the strategies were trained on an earlier version of the

library (v2.2.0: [36]) that did not include DBS and several other opponents. The precise param-

eters that are optimal will depend on the pool of opponents. Moreover we have not extensively

trained strategies to determine the minimum parameter spaces that are sufficient—neural net-

works with fewer nodes and features and finite state machines with fewer states may suffice.

See [37] for discussion of resource availability for IPD strategies.

Finally, whilst we have considered the robustness of our claims and results with respect to

noise it would also be of interest to train strategies for different versions of the stage game (also

referred to as dilemma strength) [38, 39]. Our findings seems to indicate that obtaining strong

strategies for other games through reinforcement learning would be possible.

Fig 19. Noisy (5%) tournament: Mean score per turn of row players against column players (ranked by median over 50000

tournaments).

https://doi.org/10.1371/journal.pone.0188046.g019
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A Appendix A: List of players

The players used for this study are from Axelrod version 2.13.0 [3].

1. ϕ—Deterministic—Memory depth:1. [3]

2. π—Deterministic—Memory depth:1. [3]

Table 7. Noisy (5%) tournament: Number of wins per tournament of top 15 strategies (ranked by median wins over 50000 tournaments).

mean std min 5% 25% 50% 75% 95% max

Aggravater 156.654 3.328 141 151.0 154.0 157.0 159.0 162.0 170

CS 156.875 3.265 144 151.0 155.0 157.0 159.0 162.0 169

Defector 157.324 3.262 144 152.0 155.0 157.0 160.0 163.0 170

Grudger 155.590 3.303 143 150.0 153.0 156.0 158.0 161.0 168

Retaliate 3: 0.05 155.382 3.306 141 150.0 153.0 155.0 158.0 161.0 169

Retaliate 2: 0.08 155.365 3.320 140 150.0 153.0 155.0 158.0 161.0 169

MEM2 155.052 3.349 140 149.0 153.0 155.0 157.0 160.0 169

HTfT 155.298 3.344 141 150.0 153.0 155.0 158.0 161.0 168

Retaliate: 0.1 155.370 3.314 139 150.0 153.0 155.0 158.0 161.0 168

Spiteful Tit For Tat 155.030 3.326 133 150.0 153.0 155.0 157.0 160.0 167

Punisher 153.281 3.375 140 148.0 151.0 153.0 156.0 159.0 167

2TfT 152.823 3.429 138 147.0 151.0 153.0 155.0 158.0 165

TF3 153.031 3.327 138 148.0 151.0 153.0 155.0 158.0 166

Fool Me Once 152.817 3.344 138 147.0 151.0 153.0 155.0 158.0 166

Predator 151.406 3.403 138 146.0 149.0 151.0 154.0 157.0 165

https://doi.org/10.1371/journal.pone.0188046.t007

Fig 20. Noisy (5%) tournament: Number of wins per tournament (strategies ordered by median score over 50000 tournaments).

https://doi.org/10.1371/journal.pone.0188046.g020
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3. e—Deterministic—Memory depth:1. [3]

4. ALLCorALLD—Stochastic—Memory depth: 1. [3]

5. Adaptive—Deterministic—Memory depth:1. [43]

6. Adaptive Pavlov 2006—Deterministic—Memory depth:1. [12]

7. Adaptive Pavlov 2011—Deterministic—Memory depth:1. [43]

8. Adaptive Tit For Tat: 0.5—Deterministic—Memory depth:1. [44]

9. Aggravater—Deterministic—Memory depth:1. [3]

Table 8. Noisy (5%) tournament: Number of wins per tournament of top 15 strategies (ranked by median score over 50000 tournaments) * indicates

that the strategy was trained.

mean std min 5% 25% 50% 75% 95% max

DBS 102.545 3.671 87 97.0 100.0 103.0 105.0 109.0 118

Evolved ANN 5 Noise 05* 75.026 4.226 57 68.0 72.0 75.0 78.0 82.0 93

Evolved FSM 16 Noise 05* 88.699 3.864 74 82.0 86.0 89.0 91.0 95.0 104

Evolved ANN 5* 137.878 4.350 118 131.0 135.0 138.0 141.0 145.0 156

Evolved FSM 4* 74.250 2.694 64 70.0 72.0 74.0 76.0 79.0 85

Evolved HMM 5* 88.189 2.774 77 84.0 86.0 88.0 90.0 93.0 99

Level Punisher 94.263 4.789 75 86.0 91.0 94.0 97.0 102.0 116

Omega TFT: 3, 8 131.655 4.302 112 125.0 129.0 132.0 135.0 139.0 150

Spiteful Tit For Tat 155.030 3.326 133 150.0 153.0 155.0 157.0 160.0 167

Evolved FSM 16* 103.288 3.631 89 97.0 101.0 103.0 106.0 109.0 118

PSO Gambler 2_2_2 Noise 05* 90.515 4.012 75 84.0 88.0 90.0 93.0 97.0 109

Adaptive 101.898 4.899 83 94.0 99.0 102.0 105.0 110.0 124

Evolved ANN* 138.514 3.401 125 133.0 136.0 139.0 141.0 144.0 153

Math Constant Hunter 93.010 3.254 79 88.0 91.0 93.0 95.0 98.0 107

Gradual 101.899 2.870 91 97.0 100.0 102.0 104.0 107.0 114

https://doi.org/10.1371/journal.pone.0188046.t008

Table 9. Noisy (5%) tournament: Rank in each tournament of top 15 strategies (ranked by median over 50000 tournaments) * indicates that the

strategy was trained.

mean std min 5% 25% 50% 75% 95% max

DBS 1.205 0.468 1 1.000 1.0 1.0 1.0 2.0 3

Evolved ANN 5 Noise 05* 2.184 0.629 1 1.000 2.0 2.0 3.0 3.0 5

Evolved FSM 16 Noise 05* 2.626 0.618 1 1.000 2.0 3.0 3.0 3.0 9

Evolved ANN 5* 6.371 2.786 2 4.000 4.0 5.0 8.0 12.0 31

Evolved FSM 4* 7.919 3.175 3 4.000 5.0 7.0 10.0 14.0 33

Evolved HMM 5* 7.996 3.110 3 4.000 6.0 7.0 10.0 14.0 26

Level Punisher 8.337 3.083 3 4.000 6.0 8.0 10.0 14.0 26

Omega TFT: 3, 8 8.510 3.249 3 4.000 6.0 8.0 11.0 14.0 32

Spiteful Tit For Tat 9.159 3.772 3 4.000 6.0 9.0 12.0 16.0 40

Evolved FSM 16* 10.218 4.099 3 4.975 7.0 10.0 13.0 17.0 56

PSO Gambler 2_2_2 Noise 05* 10.760 4.102 3 5.000 8.0 10.0 13.0 18.0 47

Evolved ANN* 11.346 3.252 3 6.000 9.0 11.0 13.0 17.0 32

Adaptive 11.420 5.739 3 4.000 7.0 11.0 14.0 21.0 63

Math Constant Hunter 14.668 3.788 3 9.000 12.0 15.0 17.0 21.0 43

Gradual 15.163 3.672 4 10.000 13.0 15.0 17.0 21.0 49

https://doi.org/10.1371/journal.pone.0188046.t009
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10. Alternator—Deterministic—Memory depth: 1. [1, 45]

11. Alternator Hunter—Deterministic—Memory depth:1. [3]

12. Anti Tit For Tat—Deterministic—Memory depth: 1. [46]

13. AntiCycler—Deterministic—Memory depth:1. [3]

14. Appeaser—Deterministic—Memory depth:1. [3]

15. Arrogant QLearner—Stochastic—Memory depth:1. [3]

16. Average Copier—Stochastic—Memory depth:1. [3]

17. Better and Better—Stochastic—Memory depth:1. [35]

18. Bully—Deterministic—Memory depth: 1. [47]

19. Calculator—Stochastic—Memory depth:1. [35]

20. Cautious QLearner—Stochastic—Memory depth:1. [3]

21. CollectiveStrategy (CS)—Deterministic—Memory depth:1. [34]

22. Contrite Tit For Tat (CTfT)—Deterministic—Memory depth: 3. [48]

23. Cooperator—Deterministic—Memory depth: 0. [1, 33, 45]

24. Cooperator Hunter—Deterministic—Memory depth:1. [3]

25. Cycle Hunter—Deterministic—Memory depth:1. [3]

26. Cycler CCCCCD—Deterministic—Memory depth: 5. [3]

Fig 21. Noisy (5%) tournament: Rank in each tournament (strategies ordered by median score over 50000 tournaments).

https://doi.org/10.1371/journal.pone.0188046.g021
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27. Cycler CCCD—Deterministic—Memory depth: 3. [3]

28. Cycler CCCDCD—Deterministic—Memory depth: 5. [3]

29. Cycler CCD—Deterministic—Memory depth: 2. [45]

30. Cycler DC—Deterministic—Memory depth: 1. [3]

31. Cycler DDC—Deterministic—Memory depth: 2. [45]

32. DBS: 0.75, 3, 4, 3, 5—Deterministic—Memory depth:1. [32]

33. Davis: 10—Deterministic—Memory depth:1. [25]

34. Defector—Deterministic—Memory depth: 0. [1, 33, 45]

35. Defector Hunter—Deterministic—Memory depth:1. [3]

36. Desperate—Stochastic—Memory depth: 1. [49]

37. DoubleResurrection—Deterministic—Memory depth: 5. [50]

Fig 22. Cooperation rates for DBS (strategies ordered by median score over 10000 tournaments).

https://doi.org/10.1371/journal.pone.0188046.g022
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38. Doubler—Deterministic—Memory depth:1. [35]

39. Dynamic Two Tits For Tat—Stochastic—Memory depth: 2. [3]

40. EasyGo—Deterministic—Memory depth:1. [35, 43]

41. Eatherley—Stochastic—Memory depth:1. [10]

42. Eventual Cycle Hunter—Deterministic—Memory depth:1. [3]

43. Evolved ANN—Deterministic—Memory depth:1. [3]

44. Evolved ANN 5—Deterministic—Memory depth:1. [3]

45. Evolved ANN 5 Noise 05—Deterministic—Memory depth:1. [3]

46. Evolved FSM 16—Deterministic—Memory depth: 16. [3]

47. Evolved FSM 16 Noise 05—Deterministic—Memory depth: 16. [3]

48. Evolved FSM 4—Deterministic—Memory depth: 4. [3]

Fig 23. Cooperation rates for Evolved_ANN_5_Noise_05 (strategies ordered by median score over 10000 tournaments).

https://doi.org/10.1371/journal.pone.0188046.g023
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49. Evolved HMM 5—Stochastic—Memory depth: 5. [3]

50. EvolvedLookerUp1_1_1—Deterministic—Memory depth:1. [3]

51. EvolvedLookerUp2_2_2—Deterministic—Memory depth:1. [3]

52. Feld: 1.0, 0.5, 200—Stochastic—Memory depth: 200. [25]

53. Firm But Fair—Stochastic—Memory depth: 1. [51]

54. Fool Me Forever—Deterministic—Memory depth:1. [3]

55. Fool Me Once—Deterministic—Memory depth:1. [3]

56. Forgetful Fool Me Once: 0.05—Stochastic—Memory depth:1. [3]

57. Forgetful Grudger—Deterministic—Memory depth: 10. [3]

58. Forgiver—Deterministic—Memory depth:1. [3]

59. Forgiving Tit For Tat (FTfT)—Deterministic—Memory depth:1. [3]

Fig 24. Cooperation rates for Evolved_FSM_16_Noise_05 (strategies ordered by median score over 10000 tournaments).

https://doi.org/10.1371/journal.pone.0188046.g024
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60. Fortress3—Deterministic—Memory depth: 3. [14]

61. Fortress4—Deterministic—Memory depth: 4. [14]

62. GTFT: 0.1—Stochastic—Memory depth: 1.

63. GTFT: 0.3—Stochastic—Memory depth: 1.

64. GTFT: 0.33—Stochastic—Memory depth: 1. [23, 52]

65. GTFT: 0.7—Stochastic—Memory depth: 1.

66. GTFT: 0.9—Stochastic—Memory depth: 1.

67. General Soft Grudger: n = 1, d = 4, c = 2—Deterministic—Memory depth:1. [3]

68. Gradual—Deterministic—Memory depth:1. [53]

69. Gradual Killer: (‘D’, ‘D’, ‘D’, ‘D’, ‘D’, ‘C’, ‘C’)—Deterministic—Memory depth:1. [35]

70. Grofman—Stochastic—Memory depth:1. [25]

71. Grudger—Deterministic—Memory depth: 1. [25, 43, 49, 53, 54]

72. GrudgerAlternator—Deterministic—Memory depth:1. [35]

73. Grumpy: Nice, 10, −10—Deterministic—Memory depth:1. [3]

74. Handshake—Deterministic—Memory depth:1. [55]

75. Hard Go By Majority—Deterministic—Memory depth:1. [45]

76. Hard Go By Majority: 10—Deterministic—Memory depth: 10. [3]

77. Hard Go By Majority: 20—Deterministic—Memory depth: 20. [3]

78. Hard Go By Majority: 40—Deterministic—Memory depth: 40. [3]

79. Hard Go By Majority: 5—Deterministic—Memory depth: 5. [3]

80. Hard Prober—Deterministic—Memory depth:1. [35]

81. Hard Tit For 2 Tats (HTf2T)—Deterministic—Memory depth: 3. [7]

82. Hard Tit For Tat (HTfT)—Deterministic—Memory depth: 3. [56]

83. Hesitant QLearner—Stochastic—Memory depth:1. [3]

84. Hopeless—Stochastic—Memory depth: 1. [49]

85. Inverse—Stochastic—Memory depth:1. [3]

86. Inverse Punisher—Deterministic—Memory depth:1. [3]

87. Joss: 0.9—Stochastic—Memory depth: 1. [7, 25]

88. Level Punisher—Deterministic—Memory depth:1. [50]

89. Limited Retaliate 2: 0.08, 15—Deterministic—Memory depth:1. [3]

90. Limited Retaliate 3: 0.05, 20—Deterministic—Memory depth:1. [3]

91. Limited Retaliate: 0.1, 20—Deterministic—Memory depth:1. [3]

92. MEM2—Deterministic—Memory depth:1. [57]
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93. Math Constant Hunter—Deterministic—Memory depth:1. [3]

94. Meta Hunter Aggressive: 7 players—Deterministic—Memory depth:1. [3]

95. Meta Hunter: 6 players—Deterministic—Memory depth:1. [3]

96. Meta Mixer: 173 players—Stochastic—Memory depth:1. [3]

97. Naive Prober: 0.1—Stochastic—Memory depth: 1. [43]

98. Negation—Stochastic—Memory depth: 1. [56]

99. Nice Average Copier—Stochastic—Memory depth:1. [3]

100. Nydegger—Deterministic—Memory depth: 3. [25]

101. Omega TFT: 3, 8—Deterministic—Memory depth:1. [12]

102. Once Bitten—Deterministic—Memory depth: 12. [3]

103. Opposite Grudger—Deterministic—Memory depth:1. [3]

104. PSO Gambler 1_1_1—Stochastic—Memory depth:1. [3]

105. PSO Gambler 2_2_2—Stochastic—Memory depth:1. [3]

106. PSO Gambler 2_2_2 Noise 05—Stochastic—Memory depth:1. [3]

107. PSO Gambler Mem1—Stochastic—Memory depth: 1. [3]

108. Predator—Deterministic—Memory depth: 9. [14]

109. Prober—Deterministic—Memory depth:1. [43]

110. Prober 2—Deterministic—Memory depth:1. [35]

111. Prober 3—Deterministic—Memory depth:1. [35]

112. Prober 4—Deterministic—Memory depth:1. [35]

113. Pun1—Deterministic—Memory depth: 2. [14]

114. Punisher—Deterministic—Memory depth:1. [3]

115. Raider—Deterministic—Memory depth: 3. [17]

116. Random Hunter—Deterministic—Memory depth:1. [3]

117. Random: 0.1—Stochastic—Memory depth: 0.

118. Random: 0.3—Stochastic—Memory depth: 0.

119. Random: 0.5—Stochastic—Memory depth: 0. [25, 44]

120. Random: 0.7—Stochastic—Memory depth: 0.

121. Random: 0.9—Stochastic—Memory depth: 0.

122. Remorseful Prober: 0.1—Stochastic—Memory depth: 2. [43]

123. Resurrection—Deterministic—Memory depth: 5. [50]

124. Retaliate 2: 0.08—Deterministic—Memory depth:1. [3]

125. Retaliate 3: 0.05—Deterministic—Memory depth:1. [3]
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126. Retaliate: 0.1—Deterministic—Memory depth:1. [3]

127. Revised Downing: True—Deterministic—Memory depth:1. [25]

128. Ripoff—Deterministic—Memory depth: 2. [58]

129. Risky QLearner—Stochastic—Memory depth:1. [3]

130. SelfSteem—Stochastic—Memory depth:1. [59]

131. ShortMem—Deterministic—Memory depth: 10. [59]

132. Shubik—Deterministic—Memory depth:1. [25]

133. Slow Tit For Two Tats—Deterministic—Memory depth: 2. [3]

134. Slow Tit For Two Tats 2—Deterministic—Memory depth: 2. [35]

135. Sneaky Tit For Tat—Deterministic—Memory depth:1. [3]

136. Soft Go By Majority—Deterministic—Memory depth:1. [1, 45]

137. Soft Go By Majority: 10—Deterministic—Memory depth: 10. [3]

138. Soft Go By Majority: 20—Deterministic—Memory depth: 20. [3]

139. Soft Go By Majority: 40—Deterministic—Memory depth: 40. [3]

140. Soft Go By Majority: 5—Deterministic—Memory depth: 5. [3]

141. Soft Grudger—Deterministic—Memory depth: 6. [43]

142. Soft Joss: 0.9—Stochastic—Memory depth: 1. [35]

143. SolutionB1—Deterministic—Memory depth: 3. [15]

144. SolutionB5—Deterministic—Memory depth: 5. [15]

145. Spiteful Tit For Tat—Deterministic—Memory depth:1. [35]

146. Stochastic Cooperator—Stochastic—Memory depth: 1. [60]

147. Stochastic WSLS: 0.05—Stochastic—Memory depth: 1. [3]

148. Suspicious Tit For Tat—Deterministic—Memory depth: 1. [46, 53]

149. TF1—Deterministic—Memory depth:1. [3]

150. TF2—Deterministic—Memory depth:1. [3]

151. TF3—Deterministic—Memory depth:1. [3]

152. Tester—Deterministic—Memory depth:1. [10]

153. ThueMorse—Deterministic—Memory depth:1. [3]

154. ThueMorseInverse—Deterministic—Memory depth:1. [3]

155. Thumper—Deterministic—Memory depth: 2. [58]

156. Tit For 2 Tats (Tf2T)—Deterministic—Memory depth: 2. [1]

157. Tit For Tat (TfT)—Deterministic—Memory depth: 1. [25]

158. Tricky Cooperator—Deterministic—Memory depth: 10. [3]
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159. Tricky Defector—Deterministic—Memory depth:1. [3]

160. Tullock: 11—Stochastic—Memory depth: 11. [25]

161. Two Tits For Tat (2TfT)—Deterministic—Memory depth: 2. [1]

162. VeryBad—Deterministic—Memory depth:1. [59]

163. Willing—Stochastic—Memory depth: 1. [49]

164. Win-Shift Lose-Stay: D (WShLSt)—Deterministic—Memory depth: 1. [43]

165. Win-Stay Lose-Shift: C (WSLS)—Deterministic—Memory depth: 1. [7, 52, 61]

166. Winner12—Deterministic—Memory depth: 2. [26]

167. Winner21—Deterministic—Memory depth: 2. [26]

168. Worse and Worse—Stochastic—Memory depth:1. [35]

169. Worse and Worse 2—Stochastic—Memory depth:1. [35]

170. Worse and Worse 3—Stochastic—Memory depth:1. [35]

171. ZD-Extort-2 v2: 0.125, 0.5, 1—Stochastic—Memory depth: 1. [62]

172. ZD-Extort-2: 0.1111111111111111, 0.5—Stochastic—Memory depth: 1. [7]

173. ZD-Extort-4: 0.23529411764705882, 0.25, 1—Stochastic—Memory depth: 1. [3]

174. ZD-GEN-2: 0.125, 0.5, 3—Stochastic—Memory depth: 1. [62]

175. ZD-GTFT-2: 0.25, 0.5—Stochastic—Memory depth: 1. [7]

176. ZD-SET-2: 0.25, 0.0, 2—Stochastic—Memory depth: 1. [62]
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