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Abstract: Polymyxin B (PMB) is the final option for treating multidrug-resistant Gram-negative
bacterial infections. The acceptable pharmacokinetic/pharmacodynamic target is an area under the
concentration–time curve across 24 h at a steady state (AUCss,24h) of 50–100 mg·h/L. The limited
sampling strategy (LSS) is useful for predicting AUC values. However, establishing an LSS is
a time-consuming process requiring a relatively dense sampling of patients. Further, given the
variability among different centers, the predictability of LSSs is frequently questioned when it is
extrapolated to other clinical centers. Currently, limited data are available on a reliable PMB LSS
for estimating AUCss,24h. This study assessed and validated the practicability of LSSs established
in the literature based on data from our center to provide reliable and ready-made PMB LSSs for
laboratories performing therapeutic drug monitoring (TDM) of PMB. The influence of infusion and
sampling time errors on predictability was also explored to obtain the optimal time points for routine
PMB TDM. Using multiple regression analysis, PMB LSSs were generated from a model group
of 20 patients. A validation group (10 patients) was used to validate the established LSSs. PMB
LSSs from two published studies were validated using a dataset of 30 patients from our center. A
population pharmacokinetic model was established to simulate the individual plasma concentration
profiles for each infusion and sampling time error regimen. Pharmacokinetic data obtained from the
30 patients were fitted to a two-compartment model. Infusion and sampling time errors observed
in real-world clinical practice could considerably affect the predictability of PMB LSSs. Moreover,
we identified specific LSSs to be superior in predicting PMB AUCss,24h based on different infusion
times. We also discovered that sampling time error should be controlled within −10 to 15 min to
obtain better predictability. The present study provides validated PMB LSSs that can more accurately
predict PMB AUCss,24h in routine clinical practice, facilitating PMB TDM in other laboratories and
pharmacokinetics/pharmacodynamics-based clinical studies in the future.

Keywords: polymyxin B; limited sampling strategy; multiple linear regression; validation; therapeutic
drug monitoring

1. Introduction

Multidrug-resistant (MDR) Gram-negative bacteria, including Enterobacteriaceae,
Acinetobacter baumannii, and Pseudomonas aeruginosa, have rapidly developed worldwide.
In particular, carbapenem-resistant Enterobacteriaceae are a type of nosocomial pathogen
that is notorious for resisting antibiotics, posing a serious threat to public health [1]. There-
fore, the Centers for Disease Control and Prevention (CDC) defined carbapenem-resistant
Enterobacteriaceae as an “urgent threat”. In the United States, resistant pathogens already
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annually induce 2.8 million infections [2]. Moreover, ventilator-associated pneumonia, com-
plicated intra-abdominal infection, and bloodstream infection induced by MDR bacteria are
associated with a considerable morbidity and mortality rate [3,4], placing a complex chal-
lenge for clinicians as new antibiotic development lags behind increased resistance rates.

Since the 2000s, polymyxins have been re-introduced for clinical use and are con-
sidered the last resort for MDR Gram-negative bacterial infections due to their effective-
ness [5,6]. The outer membrane of Gram-negative bacteria is the target of polymyxins; the
α, γ-diaminobutyric acid residue of positively charged polymyxins forms an electrostatic
interaction with negatively charged phosphate groups of lipid A on the outer membrane of
a Gram-negative bacterium [7]. As a result, the lipopolysaccharide is destabilized, increas-
ing the permeability of the bacterial membrane, and resulting in cytoplasmic leakage and,
ultimately, cell death [8,9]. Polymyxins can also bind to and neutralize lipopolysaccharide
released during bacterial lysis, thereby preventing endotoxin reactions [10]. However,
polymyxins have been gradually phased out in favor of new antibacterial medications
owing to their limited antibacterial spectrum, nephrotoxicity, and neurotoxicity [11,12]. As
polymyxins are antibiotics that were initially used in the 1950s, they were not subjected to
modern drug development procedures [8]. Data on their pharmacokinetic and pharmaco-
dynamic characteristics are limited, including information on their clinical applications [13].
Two types of polymyxins are currently used in humans: polymyxin B (PMB) and polymyxin
E (colistin), although most of the clinical experience was derived from colistin or its prodrug,
colistimethate (CMS). Extensive case–control and randomized controlled trial (RCT) studies
use CMS [14–16]. However, limited information exists regarding PMB in clinical practice.

In 2019, several international institutions and academic organizations published the
International Consensus Guidelines for the Optimal Use of Polymyxins [17]. Therapeutic drug
monitoring (TDM) and adaptive feedback control (AFC) are recommended wherever
possible for use of both colistin and PMB. An area under the plasma concentration–time
curve across 24 h at a steady state (AUCss,24h) of 50–100 mg·h/L is acceptable for the
pharmacokinetic/pharmacodynamic (PK/PD) therapeutic targets to maximize efficacy
for PMB. This corresponds to an average steady-state plasma concentration (Css,avg) of
2–4 mg/L [17].

The limited sampling strategy (LSS) is useful for predicting AUC values and has re-
cently been applied to several antibiotics in clinical practice [18–20], allowing accurate AUC
prediction using less than three plasma drug concentrations per patient to establish a model.
However, establishing an LSS is a time-consuming process requiring a relatively dense
sampling of patients. To our knowledge, only two studies that included different char-
acteristic populations from two clinical centers have documented information regarding
PMB LSS [21,22]. Chen established PMB LSSs only in patients with severe pneumonia [21],
whereas Wang established PMB LSSs in patients with MDR Gram-negative bacterial in-
fections, excluding patients with renal replacement therapy [22]. Additionally, given the
variability among different centers, the predictability of these models is frequently ques-
tioned when it is extrapolated to other clinical centers. Similar to the LSS of other drugs
or other published population pharmacokinetic (popPK) models, poor predictabilities
and extrapolability have been demonstrated by external evaluation [23–25]. Furthermore,
PMB LSSs were established based on strict clinical trial designs, including precise infusion
and sampling times, which may not reflect actual clinical practice. Therefore, it is crucial
to comprehensively assess the cross-center of these published PMB LSS models using
external datasets.

To provide reliable PMB LSSs for laboratories that are going to perform PMB TDM,
this study evaluated the external predictability of published PMB LSSs using data collected
from our center. Further, factors such as infusion and sampling time errors, which may
influence PMB LSS predictability, were also analyzed.
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2. Materials and Methods
2.1. Patients

A single-center clinical trial was conducted between October 2021 and July 2022 at
Fujian Medical University Union Hospital. The study was performed according to the
Declaration of Helsinki and its amendments and approved by the ethics committee of the
Fujian Medical University Union Hospital (No.2021KJT052). Written informed consent
was obtained from the patient’s relatives. Data on demographic characteristics and routine
laboratory examinations were collected from electronic medical records.

As shown in the flowchart (Figure S1), a total of 57 patients were enrolled for eligibility
assessment. Finally, 27 patients were excluded, and 30 eligible patients were included in
this study. The inclusion criteria were as follows: (1) aged ≥ 18 years; (2) patients who
received intravenous PMB (sulfate; PMB injection, Shanghai First Biochemical Pharma-
ceutical Co., Ltd., Shanghai, China) after clinical diagnosis; and (3) patients who received
intravenous PMB every 12 h for ≥2 days. Subjects were excluded if (1) blood sampling
was unavailable after the prescribed PMB was administered; (2) they stopped PMB or died
before PMB treatment; and (3) they started receiving or stopping renal replacement therapy
during sampling.

2.2. PMB Administration and Sample Collection

According to the manufacturer’s instructions, the PMB loading dose is 100–150 mg
(1 mg = 1 million units) in clinical practice. The maintenance dose was 40–75 mg every
12 h, and infusion time was approximately 1 h (±5 min error) in this study. The PMB
treatment regimen, including the dose and duration of therapy, depended on the medical
team. When the PMB concentration in the plasma reached a steady state (after at least four
doses), samples were collected into EDTA tubes for each patient at 0 (before administration,
C0), 1 (immediately after the end of infusion, C1), 2 (C2), 4 (C4), 8 (C8), and 12 (C12) h from
these ICU patients via a peripherally inserted central catheter or median cubital vein. All
samples were centrifuged at 9600× g for 5 min. The supernatant was collected and stored
at −80 ◦C until analysis.

2.3. Quantification of PMB Concentration in Plasma

As polymyxin B1 and B2 structures, molecular weights, pharmacological activities,
and pharmacokinetic properties are identical, their plasma concentrations were summed
to obtain total PMB concentrations [21,22]. Plasma PMB concentrations were determined
using liquid chromatography–tandem mass spectrometry (LC-MS/MS, Shimadzu JasperTM

HPLC system coupled to an AB SCIEX Triple QuadTM 4500MD-ESI mass spectrometer,
Singapore) according to a previously described method with minor modifications [26].
The calibration curves showed acceptable linearity, ranging from 0.156 to 10 µg/mL for
polymyxin B1 and 0.0156 to 1.0 µg/mL for polymyxin B2. The accuracy of intraday and
interday studies ranged from 80.6 to 114.9%. The coefficient of variation ranged from 2.6 to
14.8%. The plasma stability and the freeze–thaw cycle met the analytical requirements, and
the methodology proved stable and dependable.

2.4. Development of LSSs in Our Center

Thirty complete pharmacokinetic curves were obtained from the 30 patients enrolled
in the study. The pharmacokinetic curves were randomly divided into two groups: 20 for
the PMB LSS modeling datasets and 10 for the validation datasets. The observed AUCss,24h
(AUCobs) was calculated from all measured concentration–time points using the linear
trapezoidal rule [27,28]. SPSS software (version 25.0, Inc., Chicago, IL, USA) was used
to analyze the modeling group data. As previously described [21,22,29], the multiple
regression method (MLR) was used to develop PMB LSSs. AUC was the dependent
variable, whereas the concentration at each time point was the independent variable.
Considering clinical LSS feasibility, a maximum of four concentrations was used. The
relationship between AUCobs and the concentrations at each time point was analyzed using
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the stepwise forward method. The simplified formula for estimating PMB’s AUCss,24h
(mg·h/L) was derived from the linear regression equation (Equation (1)).

AUCss,24h (mg·h/L) = intercept + β1 × Ct1 + β2 × Ct2 + β3 × Ct3 + · · ·+ βi × Cti (1)

where βi is the fitted constant associated with each timed concentration and Cti (mg/L)
is the PMB concentration at sampling time ti. The coefficient of determination (r2) was
used to evaluate the equation’s regression level, and only the top five LSSs with the best r2

within the same concentration–time points strategy were considered for validation.

2.5. Validation of the Predictive Performance of LSSs Developed in Our Center

The remaining 10 PMB pharmacokinetic profiles were used to validate the developed
LSSs. The predicted PMB AUCss,24h (AUCpred) was compared with the AUCobs. The
Pearson correlation coefficient (R) was used to evaluate the correlation between AUCpred
and AUCobs. AUCpred was estimated and compared with the corresponding AUCobs by
estimating the relative prediction error (PE%, Equation (2)). There are two main criteria for
evaluating predictions: bias and precision [30]. Bias is the systematic error and tendency
of consistently over- or under-estimating the parameter. Precision is a random error that
reflects the magnitude of the variation in the prediction. The mean prediction error (MPE,
Equation (3)) was used to assess bias. The absolute precision was measured using the
root mean squared prediction error (RMSE, Equation (4)). The bias and precision within
±15% were considered satisfactory and clinically acceptable [29–32]. We also applied F15,
which indicated the percentage of PE falls within ±15%, as a combined bias and precision
predictor [23,31]. If the MPE and RMSE meet the requirements, the LSS with a larger F15
value is preferred. For the best match LSSs, Bland–Altman plots were used to evaluate
the agreement between the AUCpred and AUCobs for the highest predictive performance in
each group, and the fixed range was defined as the mean ± standard deviation (SD) [33].
Data analyses and processing of graphics were performed using Excel 2016 (Microsoft
Corporation, Redmond, WA, USA) and R (version 4.1.1, http://www.r-project.org, accessed
on 20 October 2021).

PEi =
AUCpred − AUCobs

AUCobs
× 100% (2)

MPE =
1
N ∑(PEi) (3)

RMSE =

√
1
N ∑(PEi)

2 (4)

where PEi = prediction error, N = number of data points.

2.6. Validation of the Predictive Performance of LSSs in Other Study Centers

A comprehensive literature search for published PMB LSSs up to July 2022 was
performed using the PubMed and Web of Science databases. The search terms were “limited
sampling strategy”, “therapeutic drug monitoring”, and “polymyxin B”. The reference lists
of the identified articles were manually inspected for further relevant studies. Published
studies were included in the evaluation if (1) LSSs were established using MLR analysis,
(2) the identified studies were performed based on LC-MS/MS for PMB quantification, and
(3) the study language was limited to English. The exclusion criteria were non-intravenous
administration of PMB and studies with overlapping data or cohorts; only the most recent
period or the largest sample size was included.

All PMB concentration profiles from the 30 patients in our center were used as the ex-
ternal validation data. The PMB AUCpred was calculated using the corresponding sampling
time concentration measurements within the identified LSS equations. If the concentration–
time points specified by the LSSs were inconsistent with those in our study, the correspond-
ing sampling time concentration was estimated using linear interpolation from the two

http://www.r-project.org
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adjacent measurements [34]. The predictive performance was evaluated as described using
MPE, RMSE, R, and F15.

2.7. Prediction of the Performance of LSSs at Infusion Time and Sampling Time Error in
Real-World Clinical Practice
2.7.1. PopPK Model Analysis

As the LSSs were developed based on a relative 1 h infusion time (1 h ± 5 min error)
and precise sampling, infusion time and sampling time errors are inevitable in routine
clinical practice. Hence, it is necessary to explore the influence of different infusion times
and sampling time errors in routine clinical practice on the LSS predictive ability.

A popPK model was used to simulate individual serum concentration profiles for each
infusion regimen [35,36]. The popPK was developed and fitted to the PMB concentration–
time data using a nonlinear mixed-effect modeling approach with Phoenix NLME, ver-
sion 7.5 (Pharsight, Mountain View, CA, USA). Based on previous studies [22,37–40], the
first-order conditional estimation-extended least square method (FOCE-ELS) was used to
develop the popPK model. The Akaike information criterion (AIC) and Bayesian informa-
tion criterion (BIC) were used to set the base model. The interindividual variability of PK
parameters was described by an exponential error model. Residual variability was selected
with an additive error model, proportional error model, and combined error model. The
covariates considered for the modeling included age, sex, total body weight (TBW), height
(HT), total bilirubin (TBIL) and protein (TP), alanine aminotransferase (ALT), aspartate
aminotransferase (AST), glutamyl transpeptidase (GGT), serum creatinine (Scr), and cre-
atinine clearance (CrCl). The median of the continuous covariate was used to normalize
the covariate, and the categorical covariates entered the model as power functions, with a
separate dichotomous (0, 1) covariate serving as an on-off switch for each effect. A stepwise
method was used to screen the covariate. A reduction in objective function values (OFVs)
of >3.84 (p < 0.05) was considered to be statistically significant for the inclusion of one
additional parameter in the forward inclusion steps. An increase in OFVs of >6.63 (p < 0.01)
was considered to be statistically significant in backward elimination steps.

Goodness-of-fit plots were used to evaluate the final popPK model, which included
observed concentrations (DV) versus population predicted concentrations (PRED) or in-
dividual predicted concentrations (IPRED), and conditional weighted residuals (CWERS)
versus time (IVAR) or PRED. Moreover, a prediction-corrected visual predictive check
(pc-VPC) with 1000 replicates was used to assess the model performance. The precision
and robustness of parameters were assessed using the bootstrap method with 1000 datasets,
which were generated using the resampling method.

2.7.2. Infusion Time Error

Each patient’s PK parameters were estimated using the popPK model to simulate
individual serum concentration profiles for infusion times of 0.5, 1.5, 2, and 2.5 h. The
prediction qualities were assessed by calculating the MPE, RMSE, R, and F15 for each
infusion time regimen’s predictive performance.

2.7.3. Sampling Time Error

The predictive performance of sampling time error within half an hour was evaluated
in this study. Specifically, we evaluated the influence of different sampling time errors
(±5, ±10, ±15, ±20, ±25, and ±30 min) on AUCpred under a 1 h infusion. The LSS (C0,
C1) developed by our center was used to evaluate sampling time error on the predictive
performance. Concentrations at each sampling time point were calculated based on the
individual’s respective PK obtained using the above popPK modeling.
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3. Results
3.1. Patients and Data Collection

A total of 180 blood samples were obtained from the 30 patients. The demographic
characteristics and laboratory data are detailed in Table 1. Most patients were males
(70%), and the mean age and TBW were 58.86 and 58.73, respectively. Each patient’s PMB
concentration–time profiles are shown in Figure 1B. The PMB pharmacokinetic process
in patients can be described using a two-compartment model. To develop and validate
the PMB LSSs in our center, 30 patients were divided into the modeling (20 patients)
and validation (10 patients) groups. The demographic characteristics and laboratory data
did not exhibit any significant differences between the two groups (p > 0.05). As shown
in Figure 1A, the mean PMB concentration–time curves exhibited the same trend in the
model and validation groups, significantly increasing between 0 and 1 h during infusion
time, reaching a peak at 1 h, falling rapidly between 1.5 and 4 h at the distribution phase,
and then decreasing slowly after 4 h at the elimination phase. For the AUCobs values for
the 30 patients, the median AUCobs value was 46.10 mg·h/L. However, we determined
that the AUCobs values of 17 of the 30 (56.67%) patients were below 50 mg·h/L, those of
2 (6.67%) were above 100 mg/L·h, and those of 11 (36.7%) were within the acceptable target
(50~100 mg·h/L). In addition, the Kolmogorov–Smirnov test was used to compare the
difference between the mean PMB concentration–time curve profiles of the two groups
(p = 0.931), which indicated no significant difference between the groups.

Table 1. Characteristics of patients included in our center.

Characteristic All Patients (n = 30) Model Group (n = 20) Validation Group (n = 10) p Value a

No. (%) of patients

Sex 0.431
Male 21 (70) 15 (75) 6 (60)

Female 9 (30) 5 (25) 4 (40)
PMB doses (mg/12 h)

40 1 (3.3) 1 (5) 0 (0) 0.294
50 18 (60) 10 (50) 8 (80)
75 11 (36.7) 9 (45) 2 (20)

Infusion duration (h) 1 1 1
Frequency (h) 12 12 12

Mean ± SD or median (interquartile range)

Age (years) 58.86 ± 17.01 59.21 ± 16.81 58.20 ± 18.27 0.882
Total body weight (kg) 58.73 ± 10.93 60.83 ± 11.55 54.55 ± 8.60 0.141

Height (cm) 166.17 ± 6.79 166.80 ± 6.88 164.9 ± 6.77 0.480
Total bilirubin (µmol/L) 47.06 ± 48.30 40.13 ± 38.78 59.53 ± 62.35 0.317

Total protein (g/L) 56.94 ± 9.15 56.19 ± 9.61 58.52 ± 8.41 0.539
Alanine aminotransferase (U/L) 35.28 ± 33.47 29.89 ± 32.40 45.50 ± 34.75 0.239

Aspartate aminotransferase (U/L) 45.17 ± 29.00 39.11 ± 19.58 56.70 ± 40.30 0.122
Glutamyl transpeptidase (U/L) 74.55 ± 85.18 71.53 ± 95.35 80.30 ± 65.59 0.797

Serum creatinine (µmol/L) 123.21 ± 83.10 126.42 ± 96.03 117.10 ± 54.5 0.780
Creatinine clearance (mL/min) 66.37 ± 45.84 69.41 ± 45.32 60.60 ± 48.72 0.631

AUCobs (mg·h/L) 46.10 (34.02–65.52) 46.09 (32.36–68.75) 47.69 (36.40–65.76) 0.971

Creatinine clearance was calculated according to the Cockcroft–Gault formula. AUCobs, the observed area under
the plasma concentration–time curve across 24 h at a steady state. a Fisher’s exact test was used for comparing
the proportions of categories in two group variables, and the Mann–Whitney U test was used to compare
continuous variables.
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Figure 1. The concentration–time profiles of the model group and validation group. (A) The PMB
concentration (arithmetic mean ± SD) versus time profiles of all patients, model group, and validation
group. The red lines represent all patients, and the blue lines and green lines represent the model
group and validation group, respectively. (B) The concentration–time profiles of the model group
(n = 20) and validation group (n = 10). The blue lines and green lines represent the model group and
validation group, respectively.

3.2. Development and Validation of LSSs in Our Center

All possible regression equations consisted of one to four concentration–time points,
which were shown in Table S1. For the LSSs with single concentration–time points, C2, C4,
and C8 presented good correlations with AUCobs, with r2 values of 0.943, 0.935, and 0.922,
respectively. Of the 15 LSSs that included two concentration–time points, the correlations
were generally good (r2 > 0.900), except for LSS (C0, C12) with r2 = 0.896. The LSS including
C2 and C8 exhibited the best correlation with an r2 value of 0.993. All LSSs that included
three and four concentration–time points generally displayed greater correlation, with r2

values >0.950, except for LSS (C0, C8, C12) with r2 = 0.931; LSS (C1, C4, C8, C12) had the
highest r2 value (up to 0.999).

The top five LSSs with the best r2 were determined using the validation group within
the same concentration–time point strategy; their corresponding predictive performances
are shown in Table S2. Concerning the PE% for each LSS displayed in Figure 2, in the
single, two, three, and four concentration–time point schemes, the C4, (C0, C1), (C1, C2,
C8), and (C1, C2, C8, C12) LSSs exhibited the best predictive performance with a bias and
precision within ±15%; the R and F15 values were >0.99 and ≥90%, respectively. For these
LSS equations, the graphs describing the correlations between the AUCobs and AUCpred are
shown in Figure S2. The Bland–Altman test demonstrated that none or only one plotted
difference exceeded the fixed range of the mean ± SD in each model, indicating agreement
between the AUCobs and AUCpred (Figure S3). The best PMB LSSs from our center are
summarized in Table 2.
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this study. The black solid line and dashed vertical lines represent 0% and ±15% prediction error,
respectively. Green, purple, blue, and red boxes represent LSSs consisting of single, two, three, and
four concentration–time points, respectively. * Model with the best predictability within the same
number of concentration–time points.

Table 2. Predictive performance of the best PMB LSSs developed by MLR analysis from our center.

Time Point Equation MPE% RMSE% R F15%

C4 20.623 × C4 + 2.889 −2.31 10.6 0.994 90
C0, C1 23.006 × C0 + 6.037 × C1 − 1.853 1.53 6.21 0.992 100
C1, C2, C8 0.600 × C1 + 8.356 × C2 + 14.078 × C8 + 0.997 0.44 6.9 0.992 100
C1, C2, C8, C12 0.637 × C1 + 8.749 × C2 + 9.749 × C8 + 4.380 × C12 + 0.669 −0.18 6.87 0.991 100

MPE, mean prediction error; RMSE, root mean squared prediction error; R, the Pearson correlation coefficient
between AUCpred and AUCobs; F15, the percentage of prediction error falling within the ±15%.

3.3. Validation of the Predictive Performance of LSSs in the Published Literature

After searching the literature, 26 PMB LSSs were identified based on relatively in-
tensive sampling from Chen et al. [21] and Wang et al. [22] and eventually retained. As
summarized in Table S3, both studies were from China and were conducted at a single cen-
ter. The infusion time and dose frequencies of both studies were 1 h and 12 h, respectively.
The daily doses were 100–200 mg and 100 mg, respectively, in both studies. In addition,
the included patients were diagnosed with MDR Gram-negative bacterial infections and
severe pneumonia in both studies.

The predictive performance for estimating PMB AUCpred using the 26 LSSs available
in the literature is provided in Table S4. The PE% values for these LSSs are shown in
Figure 3. For the single concentration–time point, of the seven equations, Equations (3)–(6)
satisfied R > 0.95; only Equations (3) and (5), consisting of C4 and C6, respectively, meet
the ±15% for MPE and RMSE requirements. This provides a comprehensive evaluation of
bias and precision. Equations (3) and (5) had an F15 value of more than 70%. Nine of the
eleven LSS equations met the MPE and RMSE criteria for two concentration–time points,
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except for Equations (8) and (10). The R of all equations was >0.95, including an F15 > 70%.
For three and four concentration–time points, all LSS equations met the MPE and RMSE
criteria within ±15%, R > 0.95, and F15 > 90%, except Equation (22), in which F15 was 83.3%.
Taking all the indicators together, Equations (3), (5), (9), and (11)–(26) in Table S4 showed
satisfactory predictive performances with MPE and RMSE criteria within 15%, R > 0.900,
and F15 > 70%. The best predictive performances were observed in Equations (5) (LSS C6),
(16) (LSS C4, C6), (20) (LSS C1.5, C4, C8), and (24) (LSS C1, C1.5, C4, C8), ranging from one to
four concentration–time points. The correlations between AUCobs and AUCpred are shown
in Figure S4 for these equations, and the Bland–Altman plot was generated as shown in
Figure S5. For each of the four equations, only one or two plotted differences exceeded the
fixed range of mean ± 1.96 SD in the Bland–Altman test, confirming the good agreement
between AUCobs and AUCpred. The best PMB LSS from the literature are summarized in
Table 3.
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Figure 3. Boxplot of prediction error (PE%) of MLR-based PMB LSSs available in the literature
for estimation of PMB AUCpred (Chen et al., 2021 [21] and Wang et al., 2020 [22]). The black solid
line and dashed vertical lines represent 0% and ±15% prediction error, respectively. Green, purple,
blue, and red boxes represent LSSs consisting of single, two, three, and four concentration–time
points, respectively. * Model with the best predictability within the same number of concentration–
time points.

Table 3. The predictive performance of best MLR-based PMB LSSs available in the literature for
estimation of PMB AUCpred in patients with MDR Gram-negative bacteria infection treated with PMB.

Time Point Equation Reference MPE% RMSE% R F15%

C6 8.147 + 21.961 × C6 [21] a 3.71 11.57 0.993 90
C4, C6 2.030 + 8.532 × C4 + 13.465 × C6 [21] −4.34 9.48 0.991 90
C1.5, C4, C8 0.599 + 1.964 × C1.5 + 3.169 × C4 + 6.633 × C8 [22] b 0.13 3.63 0.997 100
C1, C1.5, C4, C8 0.260 + 0.460 × C1 + 1.137 × C1.5 + 3.644 × C4 + 6.480 × C8 [22] −1.84 4.26 0.998 100

MPE, mean prediction error; RMSE, root mean squared prediction error; R, the Pearson correlation coefficient
between AUCpred and AUCobs; F15, the percentage of prediction error falling within the ±15%. a Prediction of
AUCss,24h. b Prediction of AUCss,12h.
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3.4. Predictive Performance of LSSs at Infusion Time and Sampling Time Error in Real-World
Clinical Practice
3.4.1. PopPK Model

The two-compartment base model performed better than the one-compartment model
(AIC and BIC of 266 and 295 versus 291 and 320, respectively); thus, a two-compartment
model was used as the base model. A proportional error was applied to evaluate the
residual variability. In the covariate analysis, age, sex, TBW, HT, TBIL, TP, ALT, AST, GGT,
Scr, and CrCl did not exhibit a systematic relationship with PK. No correlation between
random effects was identified during modeling. The final popPK parameter estimates
along with bootstrap estimates are shown in Table S5. The goodness-of-fit plots for the final
model are shown in Figure S6. The observed concentrations were consistent with PRED
and IPRED, and the plots of CWRES vs. time and PRED were normally distributed. The
pc-VPC is presented in Figure S7, which indicates that the prediction of simulated data
matched the observed plots.

3.4.2. Infusion Time Error

The predictive performance of the validated PMB LSSs from published literature (met
the MPE criteria within ±20%, RMSE < 20%, R > 0.95, and F15 > 70%) was evaluated in the
30 patients from our center at different infusion times. Individual plasma concentration
profiles were simulated according to the respective individual PK obtained from the popPK
modeling (Table S6). As shown in Figure 4 and Table S7, the predictive performances of the
0.5, 1.5, 2, and 2.5 h infusion time regimens were compared with that of the 1 h infusion
time regimen.
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Figure 4. The MPE and the RMSE of the AUCpred under the selected LSSs following the different
infusion times (Chen et al., 2021 [21] and Wang et al., 2020 [22]). * Model with the most stable
predictive performance.

Of all the LSS equations, when infusion time was 0.5, 1.5, 2, and 2.5 h, no LSS met the
previous criteria of RMSE within ±15%. If the criteria were extended to 20% for RMSE,
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only the LSS (C0, C1), (C0, C4), and (C4, C12) by Chen et al. [21] and (C1, C4, C8) and (C1,
C1.5, C4, C8) by Wang et al. [22] showed the most stable predictive performance, whereas
the other LSSs showed wide fluctuations. All five LSSs satisfied the requirements of ±15%
for MPE, 20% for RMSE, F15 > 70%, and R > 0.900, except for F15 of LSS (C0, C1) by Chen
et al. [21], which only reached 63.33% at the 2.5 h infusion time, and the RMSE of LSS (C0,
C4) by Chen et al. [21] was 20.20% at the 0.5 h infusion time.

3.4.3. Sampling Time Error

Considering the clinical practice feasibility, the evaluation was performed using the
LSS (C0, C1), the most commonly used strategy exhibiting the smallest prediction error at
our center. As shown in Figure 5, when the sampling time errors were 0, ±5, ±10, ±15,
±20, ±25, and ±30 min, the MPE, RMSE, and F15 ranged from 1.46% to −15.58%, 8.57% to
18.09%, and 50.00% to 93.33%, respectively, and the R values were all >0.980 (Table S8).
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Figure 5. The MPE, RMSE, and F15 of the AUCpred using LSS (C0, C1) were developed by our center
following the different sampling time errors (0, ±5, ±10, ±15, ±20, ±25, and ±30 min).

Although the predictive performance of each model varied at different infusion times
and sampling errors, feasible strategies were still identified if the acceptable RMSE was
extended to ±20%. The LSSs (C4, C12) described by Chen et al. [21] and those by Wang
et al. [22], (C1, C4, C8) and (C1, C1.5, C4, C8), presented overall acceptable predictability in
terms of infusion time error (0.5 to 2.5 h). However, the LSSs (C1, C4, C8) and (C1, C1.5, C4,
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C8) proposed by Wang et al. [22] were not practical because of frequent sampling. Although
the F15 of the LSS (C0, C1) described by Chen et al. [21] was poor (only 63.33% for the 2.5 h
infusion time), it was a worthwhile strategy when the infusion time was <2 h. The LSS (C2,
C8) by Wang et al. [22] and that (C4, C8) by Chen et al. [21] presented the best acceptable
predictability with an F15 of 83.3% for the 0.5 and 1.5 h infusion time. Meanwhile, the LSS
(C4, C12) presented by Chen et al. [21] exhibited the best acceptable predictability with an
F15 of 83.3% for the 2 and 2.5 h infusion time. Table 4 summarizes the recommended PMB
LSSs for a more accurate AUC prediction at different infusion times in this study.

Table 4. Predictive performance of PMB LSSs from the published literature which was validated in
our center and LSSs recommended for routine clinical practice.

Infusion
Duration Time Point LSSs Equation Reference MPE% RMSE% R F15%

0.5 h C2, C8 −0.274 + 4.671 × C2 + 7.181 × C8 [22] a 2.31 18.83 0.947 83.33

1 h
C6 8.147 + 21.961 × C6 [21] b 3.71 11.57 0.993 90.00

C4, C6 2.030 + 8.532 × C4 + 13.465 × C6 [21] −4.34 9.48 0.991 90.00
1.5 h C4, C8 0.196 + 13.903 × C4 + 9.725 × C8 [21] 1.90 19.85 0.942 83.33
2 h C4, C12 0.546 + 14.120 × C4 + 11.235 × C12 [21]

1.63 18.86 0.947 83.33
2.5 h 4.93 19.67 0.948 83.33

MPE, mean prediction error; RMSE, root mean squared prediction error; R, the Pearson correlation coefficient
between AUCpred and AUCobs; F15, the percentage of prediction error falling within the ±15%. a Prediction of
AUCss,24h. b Prediction of AUCss,12h.

4. Discussion

Like most antibiotics, the efficacy of PMB is determined by drug exposure to the infec-
tion site. Suboptimal exposure may not only lead to treatment failure but also increase the
emergence of resistance. Exposure in a specific patient can be evaluated using TDM, which
is a significant tool for PK/PD target-guided personalized medication and thereby im-
proves clinical outcome, whereas currently, the relationship between clinical outcomes and
TDM data is scarce for PMB. Although the AUCss,24h of 50~100 mg·h/L of PMB that was
recommended by international guidelines mainly comes from in vitro or animal studies,
a recent study reported that the achievement of this target of PMB was independently asso-
ciated with favorable clinical outcome in patients with severe pneumonia [41]. Reaching
the therapeutic target of AUCss,24h, a favorable microbiological response, and complications
with septic shock were independently associated with favorable clinical outcomes of PMB
treatment [41]. Nephrotoxicity is the most clinically relevant and dose-limiting adverse
reaction of polymyxins. Wang et al. reported that the AUCss,24h of PMB in patients with
renal insufficiency was slightly higher than that in patients with normal renal function, and
the AUCss,24h of PMB in patients without acute kidney injury (AKI) was significantly lower
than that in patients with AKI [42]. Therefore, exposure to PMB also plays a prominent role
in toxicity, such as nephrotoxicity. These findings suggested that TDM of PMB is a valuable
intervention that should be introduced more widely in clinical practice.

Over the past few years, only two studies have characterized TDM strategies in pre-
dicting PMB AUCss,24h in patients with MDR Gram-negative bacterial infections. However,
the predictability of the established PMB LSS was unclear when extrapolated to other
clinical sites because of the center-specific nature of the two studies. Here, we developed
PMB LSSs based on data from our research center, assessed the practicability of PMB LSSs
established in the literature, and explored the infusion and sampling time error influence
on the prediction performance to obtain the optimal time points for routine PMB TDM. To
the best of our knowledge, this is the first study to systematically evaluate the predictive
performance of published PMB LSSs using external validation. Moreover, only 36.67% of
patients who achieved the PMB PK/PD target of 50~100 mg·h/L in our study demonstrated
the clinical significance of PMB TDM. Our study will provide reliable and ready-made
PMB LSSs for other laboratories performing PMB TDM.
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For the LSS method, the Bayesian technique or MLR analysis can be used. The
MLR technique uses an equation developed from stepwise regression analysis based on
concentrations collected at predefined times after dosing and is easier to apply than the
Bayesian analysis [32]. Therefore, MLR has been widely adopted for LSS studies, including
the two PMB LSS studies [21,22]. Comparing the predictive performance of the PMB
LSS in the published literature with that at our center, the accuracy and precision were
enhanced with increased concentration–time points. When the concentration–time points
were ≥3, all validated models met the MPE and RMSE criteria within ±15%, R > 0.900, and
F15 > 70%. The improvement of the predictive ability was limited when compared with
the best LSSs C6 and (C4, C6) by Chen et al. [21], which consisted of only single and two
concentration–time points, respectively.

Specific time point inclusion may be important, as it reflects the PMB AUC. In the
LSSs established in our center, 13 of the 17 (76.5%) best-matched equations included C8,
10 included C2, and 7 included C4. Of all LSSs from published literature tested in this study,
10 of the 19 (52.6%) best-matched equations included C4, 9 included C8, 7 included C0, and
6 included C6. C4, C6, and C8 differed from the other time points obtained after the fast
distribution phases (Figure 1). Furthermore, LSSs C4 or C6, (C4, C6), (C1.5, C4, C8), and (C1,
C1.5, C4, C8) showed the best ability to predict PMB AUC, consistent with the published
literature [21,22]. Therefore, the concentration–time points at 4, 6, and 8 h may greatly
influence the accuracy of the prediction of PMB blood exposure.

In addition to the relatively accurate 1 h infusion time in the studies (1 h ± 5 min
error), the PMB infusion time was varied or prolonged due to inaccurate infusion rate or
increased dosage administered to patients in clinical practice. We also aimed to determine
the predictive ability of LSSs at different infusion time schemes used in the clinic. The
predictability was highly variable and depended on two factors: (1) the number of sampling
points used to estimate the PMB AUC and (2) infusion time. When compared with the
1 h infusion time, the bias and precision of most LSSs indicated a considerable fluctuation
under different infusion times, indicating that accurate PMB AUC prediction using LSSs
depends on strict infusion time control.

As the predictive ability of LSSs using the MLR method is dependent on the precision
of blood sample collection times, sampling time error may result in inaccurate concen-
trations, resulting in the risk of AUCpred calculation error. Currently, most PMB AUCpred
is calculated based on the trough and peak concentrations, LSS (C0, C1), which will also
be recommended as part of the consensus guidelines for PMB TDM by the Division of
Therapeutic Drug Monitoring, Chinese Pharmacological Society (not published). The draft
recommends that the blood specimen (Ctrough or C0) should be sampled 30 min before
PMB administration and another specimen (Cpeak or C1) within 30 min after infusion at
a steady state (not published). Given that the maximum 30 min sampling time error and
PMB concentration decreased dramatically during the fast distribution phase after the PMB
concentration reached a peak, the C1 error may significantly impact the AUCpred. In our
study, the sampling time error result demonstrated that the bias and precision increased
and decreased from 0 to ±30 min, respectively, but still met the MPE and RMSE criteria
of ±15%, except for sampling error at −25 and −30 min. As PMB peaked 1 h after ad-
ministration and gradually decreased, the predicted value was underestimated. A further
novel finding was that when the sampling error time ranged from −10 to 15 min, F15 was
maintained at 90% and began to decline after −10 or 15 min. Therefore, it is reasonable to
recommend that the sampling time error should be controlled within −10 to 15 min using
LSS (C0, C1).

Many authors have emphasized the high variability of performance of published LSSs
when evaluated in populations different from those in which they were derived [34,36].
However, several LSSs have been proposed for use in multiple patient groups rather than
the same group; Ting et al. [43] determined that the LSS developed using lung transplant
recipients was also applicable to a heart transplant population. Sobiak et al. [32] observed
that the application of an LSS developed using mycophenolate mofetil-treated renal trans-
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plant recipients to children with nephrotic syndrome yielded satisfactory prediction results.
Similarly, the LSS developed by Chen et al. [21] based on patients with severe pneumo-
nia was validated by the data from our center, even though the population at our center
included patients with severe pneumonia and other patients with MDR Gram-negative
bacterial infections, including lung transplant patients. The overall validation results in-
dicated a good predictive performance regardless of the varying population, including
patients undergoing continuous renal replacement therapy and extracorporeal membrane
oxygenation that covered the entire PMB therapy time. However, for patients starting or
ending continuous renal replacement therapy and extracorporeal membrane oxygenation
during the sampling period, PMB LSSs may not be applicable considering the sudden
change in PMB pharmacokinetic profiles, resulting in an AUC calculation error.

The popPK model was mainly used as a fit-for-purpose model to perform concentration–
time curve simulation and to provide concentrations of specific times in each patient to
assess the impact of errors in sampling time points and infusion length. A popPK model
with a Bayesian feedback method could also be used to estimate the PK of a subject with
limited blood concentration points. Furthermore, the guidelines also recommend that AFC
could be used for PMB AUC prediction [17]. However, there was no accurate verification
of the prediction of exposure in the patient population. In the present study, an obvious
individual variation regarding AUC was observed because of large physio-pathological
variations in patients. Consistent with other studies [42,44,45], we did not discover any
covariate that influences the characteristics of PMB PK by establishing the popPK model
due to possible insufficient samples. The methods based on the popPK model were not
used because of the limited number of patients in the present study. More PK data are
needed to support population PK models with potential covariates for accurate prediction.

Commercial PMB formulations for IV administration are chemical mixtures of struc-
turally related components. The chemical structure of PMB is shown in Figure 6. Polymyxin
B1, B2, B3, and PB1-I are the primary components of PB, which differ only in the fatty
acyl moiety. In the study by Wang et al. [22], the total PMB concentration was obtained
from the sum of the concentrations of polymyxin B1 and B2, consistent with our study.
In contrast, Chen et al. [21] determined the PMB concentration using the B1, B2, and B3
concentrations. Our results showed that some LSSs from Chen et al. also exhibited excellent
predictive performance after validation using PMB concentration, which was determined
using only polymyxin B1 and B2. It may indicate that the contribution of polymyxin B3
concentrations to that of PMB was negligible and insufficient to affect the total PMB plasma
concentration. This result was consistent with those of studies describing polymyxin B3
concentrations [46,47]. In addition, most tested LSS equations (including those that proved
superior in our cohort) were derived from concentrations measured using LC-MS/MS or
ultra-performance liquid chromatography–tandem mass spectrometry. LC-MS/MS was
also used in our study; however, this technique may not be used in many other centers. The
applicability of these equations to populations in which PMB concentrations are measured
using alternative methodologies is unclear.

In addition, the evaluation of the predictive performance of LSS equations based only
on r2 values is insufficient. During the LSS development using the MLR method, it is clear
that r2 is a significant indicator of the correlation between the predicted and observed
values. However, r2 only exhibits an association and provided no information regarding
the prediction bias or precision. Several authors may have concentrated on LSS with the
highest r2, ignoring others. As shown in Tables S1 and S2, the r2 values of LSS C2 and
LSS C4 at our center were 0.943 and 0.935, respectively. Although the r2 value of LSS C2
was slightly higher than that of LSS C4, the LSS C2 precision fell beyond the ±15% range,
and the LSS C4 exhibited the best predictive performance at single concentration–time
points. Therefore, multiple comprehensive indicators should be applied to evaluate an
LSS [29,31,32].
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This study had several limitations. First, all PMB LSS studies were based on the
Chinese Han population; the PMB pharmacokinetic profiles in different ethnicities that
may influence the predictive performance of PMB LSSs need to be further validated [48].
Second, the small sample size may result in sampling bias. Third, some sampling time
points specified by the equations in the published literature were inconsistent with ours;
linear interpolation from the measured concentrations was applied. Given the potential
inherent errors in this process, bias and imprecise estimates may occur. Fourth, sampling
time errors and infusion time errors were investigated separately with different datasets
and models, and the more complicated situations that include both errors have not been
explored. Finally, there is little evidence in the literature on LSS therapeutic benefits in
directing the PMB administration to date. Our study did not examine the association
between LSSs and clinical efficacy, and further studies are needed to determine the guiding
role of PMB LSS in clinical outcomes.

5. Conclusions

We evaluated and validated PMB LSSs in patients with MDR Gram-negative infections.
Some of these PMB LSSs established in other centers were proven to be applicable in terms
of predictive performance after validation using data from our center. The constructed LSS
equations by our center may also provide a reference for other researchers if more necessary
validation is needed. Furthermore, the infusion and sampling time error observed in routine
clinical practice can considerably affect the predictive performance of LSSs. Accordingly, we
made some suggestions and offered some countermeasures. Our work provided the optimal
LSSs that could be selected to better predict PMB AUC under different clinical situations,
facilitating PMB TDM in other laboratories and future PMB PK/PD-based clinical studies.
Further studies are warranted to verify our findings and the guiding role of PMB LSSs in
clinical outcomes. With the help of PMB LSS-based AUCss,24h prediction, future research
should focus on defining optimal exposure targets in patients to determine the relationship
between PMB exposure and clinical success and failure in different clinical settings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14112323/s1, Figure S1: Study flow diagram;
Figure S2: Correlation between observed area under the (0–24 h) concentration–time curve (AUCobs)
and predicted area under the (0–24 h) concentration–time curve (AUCpred). AUCpred was estimated
from LSS C4, (C0, C1), (C1, C2, C8), and (C1, C2, C4, C8) in our center; Figure S3: Bland–Altman
plots of the relative difference between AUCpred and AUCobs versus the average of AUCpred and
AUCobs. AUCpred was estimated from LSS C4, (C0, C1), (C1, C2, C8), and (C1, C2, C4, C8) in our center;
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Figure S4: Correlation between AUCobs and AUCpred. AUCpred was estimated from LSS C6 (Chen
et al. [21]), LSS C4, C6 (Chen et al. [21]), LSS C1.5, C4, C6, C8 (Wang et al. [22]), and LSS C1, C1.5,
C4, C8 (Wang et al. [22]); Figure S5: Bland–Altman plots of the relative difference between AUCpred
and AUCobs versus the average of AUCpred and AUCobs. AUCpred was estimated from LSS C6 (Chen
et al. [21]), LSS C4, C6 (Chen et al. [21]), LSS C1.5, C4, C6, C8 (Wang et al. [22]), and LSS C1, C1.5,
C4, C8 (Wang et al. [22]); Figure S6: Goodness-of-fit plots for the final population pharmacokinetic
model. (A) Conditional weighted residuals versus time (CWRES vs. IVAR); (B) conditional weighted
residuals versus population predicted concentrations (CWRES vs. PRED); (C) observed versus
individual predicted concentrations (DV vs. IPRED); (D) observed versus population predicted
concentrations (DV vs. PRED); Figure S7: Prediction-corrected visual predictive check of the final
model. Red lines represent the 5th, 50th, and 95th percentiles of the observed concentration; the
shaded areas represent the 90% confidence intervals of the 5th, 50th, and 95th percentiles of simulated
concentrations, respectively; the dots represent the observed data; DV, PMB observed concentration;
IVAR, time after the last dose; Table S1: PMB LSSs developed by multiple regression analysis from our
center (n = 20); Table S2: Predictive performance of selected PMB LSSs developed by MLR analysis
from our center; Table S3: A summary of the published PMB LSS studies; Table S4: The predictive
performance of MLR-based PMB LSSs available in the literature for estimation of PMB AUCpred
in patients with MDR Gram-negative bacteria infection treated with PMB; Table S5: Population
PK parameter estimates in the final model and bootstrap; Table S6: Individual pharmacokinetic
parameter estimates; Table S7: The predictive performance of the validated LSSs from the published
literature following the simulation under infusion time of 0.5, 1.5, 2, and 2.5 h; Table S8: The predictive
performance of the LSSs (C0, C1) that were established by our center following the sampling time
error of 0, ±5, ±10, ±15, ±20, ±25, and ±30 min.

Author Contributions: Conceptualization, H.Q., H.Z. and Q.W.; methodology, X.L., Y.C. and B.Z.;
software, X.L.; validation, X.L., B.Z., Y.C. and L.Z.; formal analysis, M.C.; investigation, M.C. and
H.L.; resources, B.H., W.Q. and L.Z.; data curation, Y.C.; writing—original draft preparation, X.L. and
B.Z.; writing—review and editing, H.Q. and H.Z.; visualization, X.L., B.Z., Y.C. and L.Z.; supervision,
H.Q., H.Z. and M.L.; project administration, Y.C.; funding acquisition, Y.C. and H.Q. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Joint Funds for the Innovation of Science and Technology,
Fujian Province (Grant No. 2019Y9051), Guiding Project of Science and Technology, Fujian Province
(Grant No. 2021Y0019), and Fujian Natural Science Foundation Project (Grant No. 2021J01761,
2021J01783).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the ethics committee of the Fujian Medical University Union Hospital
(No.2021KJT052).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All data included in this study are available from the corresponding
author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Morrill, H.J.; Pogue, J.M.; Kaye, K.S.; LaPlante, K.L. Treatment Options for Carbapenem-Resistant Enterobacteriaceae Infections.

Open Forum Infect. Dis. 2015, 2, ofv050. [CrossRef] [PubMed]
2. Centers for Disease Control and Prevention (U.S.). Antibiotic Resistance Threats in the United States, 2019; Centers for Disease

Control and Prevention: Atlanta, GA, USA, 2019. [CrossRef]
3. Medina, E.; Pieper, D.H. Tackling Threats and Future Problems of Multidrug-Resistant Bacteria. Curr. Top. Microbiol. Immunol.

2016, 398, 3–33. [CrossRef]
4. Frieri, M.; Kumar, K.; Boutin, A. Antibiotic Resistance. J. Infect. Public Health 2017, 10, 369–378. [CrossRef] [PubMed]
5. Velkov, T.; Roberts, K.D.; Nation, R.L.; Thompson, P.E.; Li, J. Pharmacology of Polymyxins: New Insights into an “old” Class of

Antibiotics. Future Microbiol. 2013, 8, 711–724. [CrossRef] [PubMed]
6. Nation, R.L.; Li, J.; Cars, O.; Couet, W.; Dudley, M.N.; Kaye, K.S.; Mouton, J.W.; Paterson, D.L.; Tam, V.H.; Theuretzbacher, U.;

et al. Framework for Optimisation of the Clinical Use of Colistin and Polymyxin B: The Prato Polymyxin Consensus. Lancet Infect.
Dis. 2015, 15, 225–234. [CrossRef]

http://doi.org/10.1093/ofid/ofv050
http://www.ncbi.nlm.nih.gov/pubmed/26125030
http://doi.org/10.15620/cdc:82532
http://doi.org/10.1007/82_2016_492
http://doi.org/10.1016/j.jiph.2016.08.007
http://www.ncbi.nlm.nih.gov/pubmed/27616769
http://doi.org/10.2217/fmb.13.39
http://www.ncbi.nlm.nih.gov/pubmed/23701329
http://doi.org/10.1016/S1473-3099(14)70850-3


Pharmaceutics 2022, 14, 2323 17 of 18

7. Dixon, R.A.; Chopra, I. Leakage of Periplasmic Proteins from Escherichia Coli Mediated by Polymyxin B Nonapeptide. Antimicrob.
Agents Chemother. 1986, 29, 781–788. [CrossRef] [PubMed]

8. Li, J.; Nation, R.L.; Turnidge, J.D.; Milne, R.W.; Coulthard, K.; Rayner, C.R.; Paterson, D.L. Colistin: The Re-Emerging Antibiotic
for Multidrug-Resistant Gram-Negative Bacterial Infections. Lancet Infect. Dis. 2006, 6, 589–601. [CrossRef]

9. Falagas, M.E.; Kasiakou, S.K. Colistin: The Revival of Polymyxins for the Management of Multidrug-Resistant Gram-Negative
Bacterial Infections. Clin. Infect. Dis. 2005, 40, 1333–1341. [CrossRef]

10. Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded
by Plasmids or Chromosomes. Clin. Microbiol. Rev. 2017, 30, 557–596. [CrossRef] [PubMed]

11. Tripathi, V.N.; Stulberger, E.A.; Takacs, F.J. Colistimethate Overdosage. J. Urol. 1970, 104, 176–178. [CrossRef]
12. American Thoracic Society; Infectious Diseases Society of America. Guidelines for the Management of Adults with Hospital-

Acquired, Ventilator-Associated, and Healthcare-Associated Pneumonia. Am. J. Respir. Crit. Care Med. 2005, 171, 388–416.
[CrossRef] [PubMed]

13. Cai, Y.; Leck, H.; Tan, R.W.; Teo, J.Q.; Lim, T.-P.; Lee, W.; Chlebicki, M.P.; Kwa, A.L. Clinical Experience with High-Dose Polymyxin
B against Carbapenem-Resistant Gram-Negative Bacterial Infections-A Cohort Study. Antibiotics 2020, 9, 451. [CrossRef] [PubMed]

14. Valachis, A.; Samonis, G.; Kofteridis, D.P. The Role of Aerosolized Colistin in the Treatment of Ventilator-Associated Pneumonia:
A Systematic Review and Metaanalysis. Crit. Care Med. 2015, 43, 527–533. [CrossRef] [PubMed]

15. Haseeb, A.; Faidah, H.S.; Alghamdi, S.; Alotaibi, A.F.; Elrggal, M.E.; Mahrous, A.J.; Almarzoky Abuhussain, S.S.; Obaid, N.A.;
Algethamy, M.; AlQarni, A.; et al. Dose Optimization of Colistin: A Systematic Review. Antibiotics 2021, 10, 1454. [CrossRef]

16. Khawcharoenporn, T.; Apisarnthanarak, A.; Mundy, L.M. Intrathecal Colistin for Drug-Resistant Acinetobacter Baumannii
Central Nervous System Infection: A Case Series and Systematic Review. Clin. Microbiol. Infect. 2010, 16, 888–894. [CrossRef]
[PubMed]

17. Tsuji, B.T.; Pogue, J.M.; Zavascki, A.P.; Paul, M.; Daikos, G.L.; Forrest, A.; Giacobbe, D.R.; Viscoli, C.; Giamarellou, H.; Karaiskos,
I.; et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical
Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of
America (IDSA), International Society for Anti-Infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and
Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 2019, 39, 10–39. [CrossRef] [PubMed]

18. Mahmoudi, L.; Mohammadpour, A.H.; Niknam, R.; Ahmadi, A.; Mojtahedzdeh, M. Limited Sampling Strategy for Estimation of
Amikacin Optimal Sampling Time in Critically Ill Adults. Anaesth. Intensive Care 2014, 42, 228–233. [CrossRef] [PubMed]

19. Magis-Escurra, C.; Later-Nijland, H.M.J.; Alffenaar, J.W.C.; Broeders, J.; Burger, D.M.; van Crevel, R.; Boeree, M.J.; Donders, A.R.T.;
van Altena, R.; van der Werf, T.S.; et al. Population Pharmacokinetics and Limited Sampling Strategy for First-Line Tuberculosis
Drugs and Moxifloxacin. Int. J. Antimicrob. Agents 2014, 44, 229–234. [CrossRef] [PubMed]

20. Alsultan, A.; An, G.; Peloquin, C.A. Limited Sampling Strategy and Target Attainment Analysis for Levofloxacin in Patients with
Tuberculosis. Antimicrob. Agents Chemother. 2015, 59, 3800–3807. [CrossRef] [PubMed]

21. Chen, W.; Liu, H.; Wang, Q.; Wang, X.; Kong, X.; Wang, X.; Zhang, X.; Zhan, Q.; Li, P. Estimation of the Area under Concentration-
Time Curve of Polymyxin B Based on Limited Sampling Concentrations in Chinese Patients with Severe Pneumonia. Eur. J. Clin.
Pharmacol. 2021, 77, 95–105. [CrossRef] [PubMed]

22. Wang, P.; Zhang, Q.; Zhu, Z.; Feng, M.; Sun, T.; Yang, J.; Zhang, X. Population Pharmacokinetics and Limited Sampling Strategy for
Therapeutic Drug Monitoring of Polymyxin B in Chinese Patients with Multidrug-Resistant Gram-Negative Bacterial Infections.
Front. Pharmacol. 2020, 11, 829. [CrossRef] [PubMed]

23. Zhao, C.-Y.; Jiao, Z.; Mao, J.-J.; Qiu, X.-Y. External Evaluation of Published Population Pharmacokinetic Models of Tacrolimus in
Adult Renal Transplant Recipients. Br. J. Clin. Pharmacol. 2016, 81, 891–907. [CrossRef] [PubMed]

24. Li, Y.-Q.; Chen, K.-F.; Ding, J.-J.; Tan, H.-Y.; Yang, N.; Lin, Y.-Q.; Wu, C.-F.; Xie, Y.-L.; Yang, G.-P.; Liu, J.-J.; et al. External Evaluation
of Published Population Pharmacokinetic Models of Polymyxin B. Eur. J. Clin. Pharmacol. 2021, 77, 1909–1917. [CrossRef]

25. Hanafin, P.O.; Nation, R.L.; Scheetz, M.H.; Zavascki, A.P.; Sandri, A.M.; Kwa, A.L.; Cherng, B.P.Z.; Kubin, C.J.; Yin, M.T.; Wang, J.;
et al. Assessing the Predictive Performance of Population Pharmacokinetic Models for Intravenous Polymyxin B in Critically Ill
Patients. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 1525–1537. [CrossRef] [PubMed]

26. Wang, P.; Zhang, Q.; Qin, Z.; Xing, H.; Xu, M.; Pei, H.; Yang, J.; Zhang, X. A Simple and Robust Liquid Chromatography with
Tandem Mass Spectrometry Analytical Method for Therapeutic Drug Monitoring of Plasma and Cerebrospinal Fluid Polymyxin
B1 and B2. Ther. Drug Monit. 2020, 42, 716–723. [CrossRef]

27. Dalere, G.M.; Lum, B.L.; Cooney, G.F.; Wong-Chin, M. Comparison of Three Methods for Cyclosporine Area under the Curve
Monitoring Calculations. Ther. Drug Monit. 1995, 17, 305–307. [CrossRef]

28. Abd Rahman, A.N.; Tett, S.E.; Staatz, C.E. How Accurate and Precise Are Limited Sampling Strategies in Estimating Exposure to
Mycophenolic Acid in People with Autoimmune Disease? Clin. Pharmacokinet. 2014, 53, 227–245. [CrossRef]

29. David, O.J.; Johnston, A. Limited Sampling Strategies for Estimating Cyclosporin Area under the Concentration–Time Curve:
Review of Current Algorithms. Ther. Drug Monit. 2001, 23, 100–114. [CrossRef]

30. Sheiner, L.B.; Beal, S.L. Some Suggestions for Measuring Predictive Performance. J. Pharmacokinet. Biopharm. 1981, 9, 503–512.
[CrossRef]

31. Ting, L.S.L.; Villeneuve, E.; Ensom, M.H.H. Beyond Cyclosporine: A Systematic Review of Limited Sampling Strategies for Other
Immunosuppressants. Ther. Drug Monit. 2006, 28, 419–430. [CrossRef]

http://doi.org/10.1128/AAC.29.5.781
http://www.ncbi.nlm.nih.gov/pubmed/3015004
http://doi.org/10.1016/S1473-3099(06)70580-1
http://doi.org/10.1086/429323
http://doi.org/10.1128/CMR.00064-16
http://www.ncbi.nlm.nih.gov/pubmed/28275006
http://doi.org/10.1016/S0022-5347(17)61694-X
http://doi.org/10.1164/rccm.200405-644ST
http://www.ncbi.nlm.nih.gov/pubmed/15699079
http://doi.org/10.3390/antibiotics9080451
http://www.ncbi.nlm.nih.gov/pubmed/32726974
http://doi.org/10.1097/CCM.0000000000000771
http://www.ncbi.nlm.nih.gov/pubmed/25493971
http://doi.org/10.3390/antibiotics10121454
http://doi.org/10.1111/j.1469-0691.2009.03019.x
http://www.ncbi.nlm.nih.gov/pubmed/19686281
http://doi.org/10.1002/phar.2209
http://www.ncbi.nlm.nih.gov/pubmed/30710469
http://doi.org/10.1177/0310057X1404200210
http://www.ncbi.nlm.nih.gov/pubmed/24580389
http://doi.org/10.1016/j.ijantimicag.2014.04.019
http://www.ncbi.nlm.nih.gov/pubmed/24985091
http://doi.org/10.1128/AAC.00341-15
http://www.ncbi.nlm.nih.gov/pubmed/25870068
http://doi.org/10.1007/s00228-020-02986-x
http://www.ncbi.nlm.nih.gov/pubmed/32875388
http://doi.org/10.3389/fphar.2020.00829
http://www.ncbi.nlm.nih.gov/pubmed/32581795
http://doi.org/10.1111/bcp.12830
http://www.ncbi.nlm.nih.gov/pubmed/26574188
http://doi.org/10.1007/s00228-021-03193-y
http://doi.org/10.1002/psp4.12720
http://www.ncbi.nlm.nih.gov/pubmed/34811968
http://doi.org/10.1097/FTD.0000000000000754
http://doi.org/10.1097/00007691-199506000-00015
http://doi.org/10.1007/s40262-013-0124-z
http://doi.org/10.1097/00007691-200104000-00003
http://doi.org/10.1007/BF01060893
http://doi.org/10.1097/01.ftd.0000211810.19935.44


Pharmaceutics 2022, 14, 2323 18 of 18

32. Sobiak, J.; Resztak, M.; Chrzanowska, M.; Zachwieja, J.; Ostalska-Nowicka, D. The Evaluation of Multiple Linear Regression-Based
Limited Sampling Strategies for Mycophenolic Acid in Children with Nephrotic Syndrome. Molecules 2021, 26, 3723. [CrossRef]

33. Bland, J.M.; Altman, D.G. Statistical Methods for Assessing Agreement between Two Methods of Clinical Measurement. Lancet
1986, 1, 307–310. [CrossRef]

34. Barraclough, K.A.; Isbel, N.M.; Franklin, M.E.; Lee, K.J.; Taylor, P.J.; Campbell, S.B.; Petchey, W.G.; Staatz, C.E. Evaluation of
Limited Sampling Strategies for Mycophenolic Acid after Mycophenolate Mofetil Intake in Adult Kidney Transplant Recipients.
Ther. Drug Monit. 2010, 32, 723–733. [CrossRef] [PubMed]

35. Sarem, S.; Nekka, F.; Ahmed, I.S.; Litalien, C.; Li, J. Impact of Sampling Time Deviations on the Prediction of the Area under the
Curve Using Regression Limited Sampling Strategies: Impact of Sampling Time Deviations on Area Under Curve Prediction.
Biopharm. Drug Dispos. 2015, 36, 417–428. [CrossRef]

36. Zelenitsky, S.A.; Ariano, R.E.; Zhanel, G.G. Pharmacodynamics of Empirical Antibiotic Monotherapies for an Intensive Care Unit
(ICU) Population Based on Canadian Surveillance Data. J. Antimicrob. Chemother. 2011, 66, 343–349. [CrossRef] [PubMed]

37. Sandri, A.M.; Landersdorfer, C.B.; Jacob, J.; Boniatti, M.M.; Dalarosa, M.G.; Falci, D.R.; Behle, T.F.; Bordinhão, R.C.; Wang, J.;
Forrest, A.; et al. Population Pharmacokinetics of Intravenous Polymyxin B in Critically Ill Patients: Implications for Selection of
Dosage Regimens. Clin. Infect. Dis. 2013, 57, 524–531. [CrossRef] [PubMed]

38. Avedissian, S.N.; Miglis, C.; Kubin, C.J.; Rhodes, N.J.; Yin, M.T.; Cremers, S.; Prickett, M.; Scheetz, M.H. Polymyxin B Pharmacoki-
netics in Adult Cystic Fibrosis Patients. Pharmacotherapy 2018, 38, 730–738. [CrossRef]

39. Miglis, C.; Rhodes, N.J.; Avedissian, S.N.; Kubin, C.J.; Yin, M.T.; Nelson, B.C.; Pai, M.P.; Scheetz, M.H. Population Pharmacokinetics
of Polymyxin B in Acutely Ill Adult Patients. Antimicrob. Agents Chemother. 2018, 62, e01475-17. [CrossRef] [PubMed]

40. Li, Y.; Deng, Y.; Zhu, Z.-Y.; Liu, Y.-P.; Xu, P.; Li, X.; Xie, Y.-L.; Yao, H.-C.; Yang, L.; Zhang, B.-K.; et al. Population Pharmacokinetics
of Polymyxin B and Dosage Optimization in Renal Transplant Patients. Front. Pharmacol. 2021, 12, 727170. [CrossRef]

41. Ye, Q.; Wang, Q.; Chen, Z.; Chen, W.; Zhan, Q.; Wang, C. Effectiveness, Nephrotoxicity, and Therapeutic Drug Monitoring of
Polymyxin B in Nosocomial Pneumonia among Critically Ill Patients. Clin. Respir. J. 2022, 16, 402–412. [CrossRef]

42. Wang, P.; Zhang, Q.; Zhu, Z.; Pei, H.; Feng, M.; Sun, T.; Yang, J.; Zhang, X. Comparing the Population Pharmacokinetics of and
Acute Kidney Injury Due to Polymyxin B in Chinese Patients with or without Renal Insufficiency. Antimicrob. Agents Chemother.
2021, 65, e01900-20. [CrossRef] [PubMed]

43. Ting, L.S.L.; Partovi, N.; Levy, R.D.; Ignaszewski, A.P.; Ensom, M.H.H. Performance of Limited Sampling Strategies for Predicting
Mycophenolic Acid Area under the Curve in Thoracic Transplant Recipients. J. Heart Lung Transplant. 2008, 27, 325–328. [CrossRef]
[PubMed]

44. Wang, P.; Zhang, Q.; Feng, M.; Sun, T.; Yang, J.; Zhang, X. Population Pharmacokinetics of Polymyxin B in Obese Patients for
Resistant Gram-Negative Infections. Front. Pharmacol. 2021, 12, 754844. [CrossRef]

45. Kubin, C.J.; Nelson, B.C.; Miglis, C.; Scheetz, M.H.; Rhodes, N.J.; Avedissian, S.N.; Cremers, S.; Yin, M.T. Population Pharmacoki-
netics of Intravenous Polymyxin B from Clinical Samples. Antimicrob. Agents Chemother. 2018, 62, e01493-17. [CrossRef]

46. Hee, K.H.; Leaw, Y.K.J.; Ong, J.L.; Lee, L.S. Development and Validation of Liquid Chromatography Tandem Mass Spectrometry
Method Quantitative Determination of Polymyxin B1, Polymyxin B2, Polymyxin B3 and Isoleucine-Polymyxin B1 in Human
Plasma and Its Application in Clinical Studies. J. Pharm. Biomed. Anal. 2017, 140, 91–97. [CrossRef]

47. He, J.; Gao, S.; Hu, M.; Chow, D.S.-L.; Tam, V.H. A Validated Ultra-Performance Liquid Chromatography-Tandem Mass
Spectrometry Method for the Quantification of Polymyxin B in Mouse Serum and Epithelial Lining Fluid: Application to
Pharmacokinetic Studies. J. Antimicrob. Chemother. 2013, 68, 1104–1110. [CrossRef] [PubMed]

48. Jia, Y.; Peng, B.; Li, L.; Wang, J.; Wang, X.; Qi, G.; Rong, R.; Wang, L.; Qiu, J.; Xu, M.; et al. Estimation of Mycophenolic
Acid Area under the Curve with Limited-Sampling Strategy in Chinese Renal Transplant Recipients Receiving Enteric-Coated
Mycophenolate Sodium. Ther. Drug Monit. 2017, 39, 29–36. [CrossRef]

http://doi.org/10.3390/molecules26123723
http://doi.org/10.1016/S0140-6736(86)90837-8
http://doi.org/10.1097/FTD.0b013e3181fc8fbb
http://www.ncbi.nlm.nih.gov/pubmed/21068647
http://doi.org/10.1002/bdd.1951
http://doi.org/10.1093/jac/dkq348
http://www.ncbi.nlm.nih.gov/pubmed/20926397
http://doi.org/10.1093/cid/cit334
http://www.ncbi.nlm.nih.gov/pubmed/23697744
http://doi.org/10.1002/phar.2129
http://doi.org/10.1128/AAC.01475-17
http://www.ncbi.nlm.nih.gov/pubmed/29311071
http://doi.org/10.3389/fphar.2021.727170
http://doi.org/10.1111/crj.13493
http://doi.org/10.1128/AAC.01900-20
http://www.ncbi.nlm.nih.gov/pubmed/33168613
http://doi.org/10.1016/j.healun.2007.12.009
http://www.ncbi.nlm.nih.gov/pubmed/18342756
http://doi.org/10.3389/fphar.2021.754844
http://doi.org/10.1128/AAC.01493-17
http://doi.org/10.1016/j.jpba.2017.03.018
http://doi.org/10.1093/jac/dks536
http://www.ncbi.nlm.nih.gov/pubmed/23341128
http://doi.org/10.1097/FTD.0000000000000360

	Introduction 
	Materials and Methods 
	Patients 
	PMB Administration and Sample Collection 
	Quantification of PMB Concentration in Plasma 
	Development of LSSs in Our Center 
	Validation of the Predictive Performance of LSSs Developed in Our Center 
	Validation of the Predictive Performance of LSSs in Other Study Centers 
	Prediction of the Performance of LSSs at Infusion Time and Sampling Time Error in Real-World Clinical Practice 
	PopPK Model Analysis 
	Infusion Time Error 
	Sampling Time Error 


	Results 
	Patients and Data Collection 
	Development and Validation of LSSs in Our Center 
	Validation of the Predictive Performance of LSSs in the Published Literature 
	Predictive Performance of LSSs at Infusion Time and Sampling Time Error in Real-World Clinical Practice 
	PopPK Model 
	Infusion Time Error 
	Sampling Time Error 


	Discussion 
	Conclusions 
	References

