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Molecular and functional properties of P2X
receptors—recent progress and persisting challenges

Karina Kaczmarek-Hájek & Éva Lörinczi &
Ralf Hausmann & Annette Nicke

Adenosine 5’-triphosphate (ATP) is an essential macromol-
ecule for all life forms and most likely evolved under the

P2X receptors in different species

Since 1994, seven mammalian P2X cDNAs (P2X1-P2X7)
have been cloned [19, 22, 23]. Subsequently, P2X receptors
were found to be also widely distributed among all vertebrate
animals [24]. However, low sequence homology has made it
difficult to determine potential homologues in invertebrate
species. Since the identification of the first invertebrate P2X
receptor in parasitic trematode Schistostoma mansoni [25],
P2X receptor family members have also been discovered in
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Abstract ATP-gated P2X receptors are trimeric ion channels
that assemble as homo- or heteromers from seven cloned
subunits. Transcripts and/or proteins of P2X subunits have
been found in most, if not all, mammalian tissues and are
being discovered in an increasing number of non-vertebrates.
Both the first crystal structure of a P2X receptor and the
generation of knockout (KO) mice for five of the seven cloned
subtypes greatly advanced our understanding of their molec-
ular and physiological function and their validation as drug
targets. This review summarizes the current understanding of
the structure and function of P2X receptors and gives an
update on recent developments in the search for P2X
subtype-selective ligands. It also provides an overview about
the current knowledge of the regulation and modulation of
P2X receptors on the cellular level and finally on their phys-
iological roles as inferred from studies on KO mice.
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Introduction

pre-biotic conditions prevalent on the primitive earth [1].
Research of the past 40 years has shown that ATP is not only
a principal energy source and component of nucleic acids
inside the cell but also plays a crucial role in intercellular
communication [2]. This possibly oldest transmitter is in-
volved in both fast and slow communication between cells
by activating ionotropic P2X (ligand-gated ion channel
receptors) or metabotropic P2Y (G-protein coupled recep-
tors) receptor families [3–5]. P2X receptors are present in
virtually all mammalian tissues and mediate a large variety
of responses from fast transmission at central synapses,
contraction of smooth muscle cells, platelet aggregation,
and macrophage activation to proliferation and cell death,
to only name a few [6]. After a short introduction of P2X
receptor phylogeny, we will summarize the current informa-
tion about their structure and function, synthesis and protein
interactions, and focus on the recent developments in P2X
receptor pharmacology. In addition, we will provide an
overview of some physiological P2X receptor functions that
are inferred from genetically modified mice and other in
vivo models. For more detailed information on P2X receptor
function in other systems, their distribution and signalling, a
variety of excellent and comprehensive reviews are avail-
able [7–21].



more primitive life forms such as the unicellular amoeba
Dictyostelium discoideum and the green algae Ostreococcus
tauri [24, 26, 27], which is the smallest known free-living
eukaryote [28, 29] (Fig. 1). Interestingly, D. discoideum P2X
receptors are localized in the membrane of the intracellular
contractile vacuole [27, 30]. These findings demonstrate that
P2X receptors must not only be considered in the context of the
plasma membrane but that at least phylogenetically older P2X
receptors may have an intracellular ion channel function [27].

Evidence is accumulating that P2X receptors arose at the
same time or even before the appearance of G-protein cou-
pled P1 (adenosine) or P2Y receptors [31]. However, de-
spite extensive bioinformatics efforts, no prokaryotic P2X
receptor has been identified so far [24, 32], suggesting that
structurally different ATP receptors evolved in bacteria and

that the P2X receptors were not derived from a prokaryotic
ancestor [31]. Considering the presence of the P2X channels
in the photosynthetic O. tauri and the significance of ATP-
mediated signalling in plant physiology [33, 34], it is also
astonishing that there is no evidence for P2X counterparts in
higher plants such as Arabidopsis thaliana. More sequenced
genomes and experimental data are necessary to completely
exclude the possibility of the existence of the P2X receptors
homologues in prokaryotes and higher plants. Functional
P2X receptors have been identified in unicellular choano-
flagellates (Monosiga brevicollis), which are the closest
known relatives of the animal kingdom [26, 35]. Despite
this fact, P2X-like protein sequences appear to be absent in
some commonly used model systems such as the yeast
Saccharomyces cerevisiae, the nematode Caenorhabditis

Fig. 1 Evolutionary relationship of P2X receptors and common model
organisms. Left panel: Unrooted neighbor-joining phylogeny of iden-
tified P2X protein sequences. The tree was constructed using the
MEGA program (http://www.megasoftware.net/). The scale bar indi-
cates the genetic distance in percent sequence divergence. Right panel:
A phylogenetic tree showing the relationship between organisms in
which P2X receptors are present and common model organisms in
which P2X receptors have not been identified (indicated by question
mark). The tree was created by hand and edited using the program
Dendroscope (http://ab.inf.uni-tuebingen.de/software/dendroscope/)
based on the information given in King et al. [35]. The following
P2X receptor sequences were used: D. discoideum (XP_645378.1,

XP_643830.2, XP_643831.1, XP_636768.1, XP_636957.2), M. brevi-
collis (EDQ92249.1), S. mansoni (CAH04147.1), H. dujardini
(ACL14328.1), B. microplus (ADO64254.1), A. californica
(AAR28669.1) , D. rer io (NP_945333.1 , NP_945334 .1 ,
NP_571698.1, NP_945337.2, AAH42317.1, AAI62598.1,
NP_945336.1, NP_945335.1), M. musculus (AAF68968.1,
AAK95327.2, AAH23089.1, AAC95601.1, AAK49936.1,
NP_035158.2 , NP_035157.2 , AAI62774.1) , H. sapiens
(NP_002549.1, NP_733782.1, NP_002550.2, NP_002551.2,
NP_002552 .2 , NP_005437 .2 , NP_002553 .3 ) , O. taur i
(CAL54489.1). We thank Steve Ennion for providing the sequence of
L. stagnalis and Henrik Krehenwinkel for phylogenetic analysis
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elegans, and the arthropods Anopheles gambiae, Apis melli-
fera, and Drosophila melanogaster [10, 24, 25, 36]. The
absence of genes coding for P2X receptors in these animal
groups is in contrast to the potent pharmacological actions
of nucleotides in these species, suggesting that novel recep-
tors are still to be discovered [31]. Indeed, a first arthropod
P2X receptor (BmP2X from the cattle tick Boophilus micro-
plus) has been described most recently [37]. The presence of
P2X receptors in other members of this group could be
anticipated, since functional P2X receptors have been iden-
tified in the tardigrade species Hypsibius dujardini [36]
which, together with arthropods and nematodes, belongs to
the common superphylum Ecdysozoa. These new findings
support the postulate that the P2X genes have not been lost
in an ancestor of the Ecdysozoa but rather disappeared
independently in nematodes and maybe some arthropods
before they diverged from Tardigrada [36].

Nevertheless, it is still not clear if other, not sequenced
members of nematodes and arthropods are also void of P2X
channels. Notably, P2X homologues have also been identified
in the CNS of Aplysia californica and Lymnaea stagnalis,
which are members of the superphylum Lophotrochozoa, a
sister clade to the Ecdysozoa [38, 39]. According to the
present state of knowledge, it seems that the development of
the seven mammalian P2X genes was a relatively recent
phenomenon and occurred after the branching between verte-
brates and invertebrates (Fig. 1) [36]. Taken together, further
identification of P2X receptors in various organisms, especial-
ly primitive ones, will be necessary to better understand the
evolutionary gaps mentioned above and eventually trace the
phylogenetic history of P2X receptors. Moreover, new
sequences from different P2X family members provide useful
information to decipher their structure–function relationships.

Molecular structure and function of P2X receptors

Primary structure and subunit topology

The seven cloned human and rat P2X subunits are between
379 (rat P2X6) and 595 (rat and human P2X7) amino acids
long and share 35–54% sequence identity. All have a com-
mon topology with two transmembrane (TM) domains, a
large extracellular ligand binding loop, and intracellular N
and C termini. The extracellular domain connecting the two
TMs constitutes the largest part of the polypeptide. An
important feature is the presence of ten Cys residues con-
served among all vertebrate receptors and bound in five
disulfide bridges [40, 68]. In addition, all rat subunits con-
tain three to six consensus sequences for N-linked glycosyl-
ation (see section “Synthesis and trafficking of P2X
receptors”). The N termini are similar in length (20–30
amino acids) and contain a consensus site for protein kinase

C (PKC) phosphorylation [41]. The C termini differ in
length between 26 (P2X6) and 239 (P2X7) amino acids
and exhibit only sequence relatedness for the first 25 amino
acid residues, indicating that they might serve subunit spe-
cific properties [21]. They contain several motifs involved
in trafficking and stabilization of the receptors in the plasma
membrane and specific protein interactions (for further
details, see sections “Synthesis and trafficking of P2X
receptors”and “Regulation and protein interactions of P2X
receptors”). The primary sequence of P2X receptors shares
no significant homology with other ligand-gated ion chan-
nels, ATP-binding proteins, or other known proteins.

Quaternary structure and subunit assembly

Early electrophysiological measurements in dorsal root gan-
glion (DRG) neurons predicted that there are at least three
ATP molecules needed to open a P2X channel [42]. Subse-
quent single-channel analysis of P2X2 receptors supported
this idea [43]. The first biochemical evidence for a trimeric
organization of P2X receptor channels came from cross-
linking studies and blue-native PAGE analysis of P2X1
and P2X3 receptors heterologously expressed in oocytes of
Xenopus laevis [44]. The trimeric architecture was con-
firmed by atomic force microscopy [45], electron microsco-
py and single particle analysis [46, 47], and finally, by
crystallization of the first P2X receptor, the P2X4 subtype
from zebrafish (zP2X4) [48]. Although P2X receptors share
the TM topology and trimeric quaternary structure with the
epithelial Na+ channels (ENaC)/DEG (epithelial sodium
channels/degenerin) superfamily of proteins they show no
significant amino acid sequence relationships or similarities
in the extracellular domain [48–50].

Heterologously expressed P2X receptors have been char-
acterized extensively in terms of their biophysical and phar-
macological properties (for a recent review, see [12]), and
there is good evidence for homomeric P2X1, P2X2, P2X3,
P2X4, and P2X7 receptors in native tissues [12]. However,
P2X receptor properties also often do not match with those
observed in native tissues, suggesting that P2X receptors
occur naturally as both homo- and hetero-oligomers [51].
Indeed, only the P2X7 subunit appears unable to form
heterotrimeric channels with other subunits [52, 53]. In
contrast, the P2X6 receptor is the only subunit virtually
unable to form homo-oligomers [45, 54]. In addition to
heteromerization, splice variants and the presence of more
than one functional P2X subtype in many cell types can
contribute to the diversity of P2X receptor signalling. For
P2X5 receptors, which occur in humans as a non-functional
splice variant, species-specific differences in heterologous
expression efficiency and functional properties such as ion
permeability are observed [55–62]. Regarding heteromeric
receptors, the best evidence and most comprehensive data
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exist for P2X2/3 receptors. For these, a subunit stoichiom-
etry of one P2X2 and two P2X3 subunits has been demon-
strated [63, 64], and their presence and importance in native
tissues has been shown in numerous studies, e. g., [8, 10, 65,
66] (see also section “P2X3”). Nevertheless, there is also
good evidence that, in acutely isolated cortical astrocytes,
heteromeric P2X1/5 receptors mediate the ATP-elicited cur-
rents, as these match the pharmacologic and kinetic proper-
ties of heterologously expressed P2X1/5 receptors [67].
Hardly any of the four other heteromeric subunit combina-
tions characterized in heterologous expression systems
(P2X1/2, P2X1/4, P2X2/6, P2X4/6) has been convincingly
verified in native tissues. For details on their functional and
pharmacological properties, see Coddou et al. and Nicke et
al. [12, 51].

Crystal structure of the P2X receptor

A major breakthrough in P2X receptor research was the
crystallization of the first P2X receptor by Kawate et al.
[48], which provided a fundamentally new ion channel
structure. Screening a variety of P2X receptor isoforms, a
zP2X4.1 receptor containing three point mutations (C51F/
N78C/N187R) and lacking the N and C termini (ΔP2X4-B,
PDB entry 3H9V) was found optimal for crystallization and
could be resolved at 3.1 Å. The homotrimeric receptor
resembles a chalice, with the large extracellular domain
protruding ~70 Å above the membrane plane and displays
a right-handed twist if seen from the cytoplasmic side. The
TM region has an hourglass shape formed by the six helices.
Due to weak electron densities in the inward facing thirds of
TM1 and TM2, these were less well resolved, resulting in
unclear side chain orientations in these regions. The zP2X4
structure has been compared with the shape of a dolphin, in
which the TM helices and the extracellular region form the
flukes and the upper body, respectively (Fig. 2). Attached to
the body domain, a head domain, a dorsal fin, and right and
left flippers have been defined. The body domain is struc-
turally rigid, characterized by a β-sandwich motif, with
extensive contacts between the sandwich-forming β-
sheets. The structure confirmed the existence of the five
proposed disulfide bridges [40, 68], three of which are
located in the head domain.

Ligand binding sites

ATP binding Unlike other ATP-binding proteins, P2X
receptors lack consensus sequences for ATP coordination
[20]. Before the P2X4 crystal structure became available,
extensive studies on P2X1, P2X2, P2X3, and P2X4 recep-
tors [15, 16, 69–74] employed mutagenesis-based
approaches to localize the agonist binding site (for recent
reviews, see Coddou et al. and Evans [12, 16]). These

studies led to the conclusion that the ATP binding pocket
is generally conserved within the P2X receptor family, and
positively charged amino acid residues coordinate the neg-
atively charged phosphate oxygens of ATP. In particular,
Lys68, Lys70, Arg292, and Lys 309 (P2X1 numbering)
were shown to be of importance for ATP potency [15, 71,
75]. In addition, conserved aromatic residues Phe185/
Thr186 (P2X1) and Asn290/Phe 291 (P2X1) of a conserved
NFR motif were shown to contribute to agonist action [76]
and proposed to be involved in the coordination of the
adenine ring [77, 78]. Studies using P2X2, P2X3, or P2X4
receptors revealed that conserved corresponding residues
are responsible for ATP binding in these P2X receptors
[69–74]. However, non-conserved amino acid residues con-
tribute to the heterogeneity in pharmacological properties
and play an equally important role to conserved residues in
defining P2X receptor function [16, 78–82].

In a disulfide cross-linking study, it was shown that coex-
pressed P2X1 K68C and F291C mutants form an intersu-
bunit cross-link in the absence but not in the presence of
ATP, indicating that the ATP binding site is located at the

Fig. 2 Homology model of the homomeric P2X2 receptor. The homo-
trimeric rP2X2 receptor structure is shown from the side, i.e., parallel
to the membrane plane. Two subunits are shown as pink or gray sticks;
one subunit is highlighted as ribbon representation with depiction of
α-helices, β-sheets, and coil regions. The dolphin-like shape of this
single subunit [48] (body, blue; fluke, green; head, pink; dorsal fin,
orange; right flipper, red; left flipper, yellow) is emphasized by an
overlay of a grey dolphin cartoon. The arrowhead indicates one of the
three possible ATP binding pockets. The rP2X2 receptor homology
model based on the X-ray structure of the zP2X4.1 receptor was
generated using the MOE2008.10 software. For further details, see
[93]. The figure was generated and kindly provided by Achim Kless,
Grünenthal GmbH, Global Drug Discovery
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interface of two adjacent subunits [83]. This is in line with
functional studies on binding site mutants in the P2X2/3
heteromer, which suggested that residues from different
subunits interact in agonist binding [64]. All these findings
are in good agreement with the position of the relevant
amino acids in the crystal structure of the zP2X4 receptor.
Based on this structure, it appears that the ATP binding
site is formed by deep intersubunit grooves, which are
45 Å away from the TM domains and surrounded by the
conserved residues implicated in ATP binding. These res-
idues are provided by the “body domain” and the “left
flipper” of one subunit and the “dorsal fin” of the neigh-
boring subunit (Fig. 2). The Cys-rich “head” domain of
the first subunit projects over this binding site [48]. For
recent reviews, see Coddou et al., Evans, and Browne et
al. [12, 16, 84].

However, the crystal was obtained in the absence of ATP,
and therefore, its exact mode of binding is unknown. Like-
wise, the conformational changes governing channel open-
ing and desensitization remain elusive. The proposed
position of the ATP binding site was supported by cysteine
scanning mutagenesis and homology modelling using the
zP2X4 crystal structure as template for a P2X1 homology
model [85]. Its localization was further corroborated by a
functional study showing that the thiol-reactive ATP-
analogue NCS-ATP can be covalently attached to intro-
duced cysteine residues (N140C or L186C) located at two
adjacent subunits within the proposed ATP binding cavity in
the P2X2 receptor [86]. Interestingly, covalent attachment of
NCS-ATP to these introduced cysteines resulted in agonist-
bound states that differ in the ability to gate the channel,
suggesting the existence of at least two binding modes of
ATP and allowing speculations on the reaction scheme of
P2X ligand binding and opening [86].

Antagonist binding Although selective competitive P2X re-
ceptor antagonists, like NF449 or A-317491 are known,
studies dealing with the molecular action of these antago-
nists are infrequent. Instead, several studies of antagonist
binding are performed with the non-selective negatively
charged antagonists PPADS [16, 87–90] and suramin [75,
76, 90, 91]. As several reviews describing these data are
available [12, 16, 84], we will focus here on the recent
findings on the molecular action of the P2X1 receptor se-
lective antagonist NF449 and the P2X2 receptor antagonist
NF770 which were obtained by mutagenesis combined with
docking studies on homology models based on the zP2X4
receptor structure.

A study on the antagonistic action of NF449 and suramin
at the P2X1 receptor [92] identified a cluster of positively
charged residues (136KAKRK140) at the base of the Cys-rich
head domain that is responsible for the P2X1-selective
antagonism of NF449 and absent in P2X2 receptors.

However, these residues are not exclusive determinants of
the selective antagonism by NF449, since reciprocal muta-
tions in the P2X2 receptor only modestly increased the
NF449 sensitivity, suggesting a more complex interaction
with other non-conserved residues [92]. Nevertheless, this
study highlights the importance of the Cys-rich region for
normal channel function and ligand binding at human P2X1
receptors [92], as already proposed from studies on the
D. discoideum P2X receptor that lacks this region [27, 30].

Structure–activity relationship analysis of suramin deriv-
atives and in silico docking studies using a P2X2 receptor
homology model revealed that residues important for potent
antagonism such as Arg290 or Gly72 are also important in
ATP action at P2X2 receptors [93] (Fig. 3). Furthermore,
this study highlights the role of strong ionic interactions, for
example, between the acidic groups of suramin derivatives
and positively charged amino acid residues (Lys71, Lys246,
Lys279, and Arg290) in the ATP-binding site, as suggested

Fig. 3 Proposed binding of the antagonist NF770 to the P2X2 recep-
tor. The suramin derivative NF770 (7,7-(carbonylbis(imino-3,1-phe-
nylenecarbonylimino-3,1-(4-methylphenylene)carbonylimino))bis(1-
methoxy-naphthalene-3,6-disulfonic acid) tetrasodium salt)) is shown
within the rP2X2 receptor binding pocket. Selected residues of the
rP2X2 receptor binding site are shown as pink sticks, side chains of
Gly72, Arg290, Glu167 and Lys308 are shown as ball and stick or
space filling. NF770 is directed by a Gly72-sulfonate group (yellow/
brown sticks) interaction to orient spatially in a way that the methoxy
group oxygen (brown stick) comes into close apposition to Arg290.
This way, a hydrogen bond can form that is a key determinant of the
interaction of NF770 with the rP2X2 receptor. The close distance of
2.13 Å between the methoxy group and Arg290 (yellow bar) appears to
account for the strong binding. The rP2X2 receptor homology model
based on the X-ray structure of zP2X4.1 was generated by
MOE2008.10. The receptor model was kept rigid during the docking
computation, whereas the NF770 was allowed to remain flexible. For
further details, see Wolf et al. [93]. The figure was generated and
kindly provided by Achim Kless, Grünenthal GmbH, Global Drug
Discovery
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for the interaction with the phosphate oxygens of ATP [16,
64, 72, 84].

Thus, several additional and subtype-specific amino
acid residues have been identified that play an important
role for ligand selectivity and contribute to a comprehen-
sive mapping of the orthosteric ligand binding site. This
knowledge certainly will facilitate future ligand optimi-
zation by means of homology-model-based docking
computation.

P2X receptors are also modulated by a variety of com-
pounds including divalent cations, protons, lipids, steroids,
ethanol, and ivermectin. As these allosteric modulatory sites
of P2X receptors have been excellently reviewed recently
[11, 12], they are not further considered here.

Ion permeation pathway and channel opening

Several cysteine scanning mutagenesis studies suggested
that TM2 lines the central ion-conducting pore and includes
the channel gate at Thr336 (P2X2 numbering) and that TM1
is positioned peripheral to TM2 [94–98]. This spatial ar-
rangement of the two TM domains was confirmed by the
zP2X4 structure [48] and is quite similar to that found in the
ASIC1 channel [49]. The TM helices within a subunit are
oriented antiparallel to one another and are angled ~45°
from the membrane plane with the inner TM2 helices de-
fining most of the ion conducting pathway. They are sur-
rounded by the peripheral TM1 helices, which make most of
the contacts with the lipid bilayer [48, 49]. Along the three-
fold axis of symmetry of the P2X4 crystal structure, Kawate
et al. identified four cavities, three in the ectodomain (upper-,
central- and extracellular vestibules) and one located intra-
cellularly (intracellular vestibule).

Based on the X-ray structure, the ion channel gate is
presumably formed by residues Leu340 and Asn341
(corresponding to Ile332 and Asn333 in P2X2) on the extra-
cellular side and by Leu346 and Ala347 (corresponding to
Leu338 and Thr339 in P2X2) on the intracellular side of TM2.
The closest association of the TM2 helices is Ala344, repre-
senting the center of the gate [48]. However, the weak side-
chain density of the X-ray structure of the cytoplasmic termi-
nus of TM2 complicates the side chain localization within the
zP2X4 channel model. In subsequent studies, the pore and the
gate of the P2X2 receptor were independently mapped, and
potential opening movements were proposed [99–101]. Sys-
tematic mutagenesis of charged TM2 residues in combination
with single channel analysis revealed that the side chains of
Asn333, Thr336, and Ser340 (P2X2 numbering) are exposed
to the permeation pathway within the open channel. It was
proposed that the gate is formed by amino acid residues
Asn333 to Thr339 and that the TM2 helices undergo a rotation
and separation during channel opening [99]. Likewise, Keceli

and Kubo found that the TM2 residue Thr339 orients towards
the center of the permeation pathway. In addition, they pro-
vided evidence that residues Tyr43, Phe44, and Tyr47 in TM1
are oriented toward the pore-forming TM2 and interact with
Ile328, thus stabilizing the closed state of the channel. This
interaction is released in a voltage-dependent manner during
gating of the channel [100]. By substituted cysteine accessi-
bility analysis with the rapidly reversible Cd2+, Kracun et al.
identified residues Thr339, Val343, Asp349, and Leu353 of
TM2 lining deeper parts of the pore in the open state [101].
The different position of the P2X2 channel gate to that pro-
posed by Li et al. [102] may be due to the use of the Cd2+ as a
thiol modifying agent which allows to probe the rates of
modifications of introduced cysteines and which is also
smaller than the previously used thiol reactive methanethio-
sulfonate (MTS) compounds.

The question of how ions access the TM region of the
channel has also been addressed. The zP2X4 structure sug-
gests two pathways by which extracellular ions could enter
the extracellular vestibule that allows access to the TM ion
channel region [48]. First, three lateral fenestrations above
the TM domains might allow cations to access this region.
Second, ions might pass along the threefold axis of symme-
try through the conspicuous upper and central vestibule to
enter the extracellular vestibule and the TM channel region
[48]. By using homology models of the human P2X1, rat
P2X2, or human P2X4 receptor, residues that line the central
and the lateral pathway were substituted by cysteine resi-
dues, and their reactivity to thiol-reactive MTS reagents
during current recordings was investigated [85, 103, 104].
These studies concluded that ions enter the channels via the
lateral pathway. Chambers along the central pathway
were proposed to have a regulatory function [103], and
the equivalent spacing of the three lateral portals was
suggested to split the ion flow and thus minimize ion
diffusion [104].

As the zP2X4 structure was obtained in the absence of
ATP, it most likely represents the closed resting state of the
channel [48]. Without a structure of the open state, the
conformational changes involved in channel opening are
difficult to predict. The mutagenesis and modelling studies
suggest a dilation of the gate by a rotation [99] of the TM2
helices or by intrahelical movements resulting in less bend-
ing and a steeper position within the lipid bilayer [101].
Isoform specific amino acid differences in the region of the
gate may account for variations in the occlusion point [101].
The proposed rotation and sliding of the TM2 helices
against each other that leads to their separation is consistent
with the functional finding that P2X2 receptor channel
opening is prevented when Ile 328 (at the outer end of
TM2) is tethered by an engineered disulfide to Val48 in
TM1 [105].
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A more recent cysteine scanning mutagenesis study using
Ag+, Cd2+, and MTS reagents of different size suggests that
the internal region of TM2 must move a large distance
towards the central axis of the pore during opening, indicat-
ing that the pore-forming TM2 helices straighten from the
steeply angled orientation toward the normal of the bilayer
to open the channel [106]. According to the current view,
ligand binding may be transduced into channel opening
(resulting from TM movements) through the two structural-
ly rigid β-sheets of the body domain (‘connecting rods’) of
each subunit rising from the TM1 and TM2 [84]. The polar
residues Glu63 and Arg274 localized within β-sheets β1
and β12, respectively, were identified to form an intersubu-
nit salt-bridge that is likely to stabilize the closed state of the
P2X2 channel [107]. Disulfide-bridge formation between
the substituted cysteines E63C and R274C was reduced in
the presence of ATP, suggesting that ATP binding might
trigger relative movements of adjacent subunits at the level
of Glu63 and Arg274, allowing the TM helices to open the
channel [107]. Since these residues are not conserved in
other subunits, subtype-specific mechanisms might govern
channel opening.

Channel desensitization

Based on whole cell recordings of heterologously expressed
proteins, P2X receptors can be divided in rapidly desensitiz-
ing (P2X1 and P2X3) and slowly desensitizing (P2X2,
P2X4, P2X5, and P2X7) receptors [10, 19]. The extent of
desensitization of specific P2X receptors is of great physio-
logical relevance as it determines the time course of P2X
receptor signal transduction and regulates the responsive-
ness in the sustained presence of ATP. Desensitization rep-
resents the transition into a, most likely, agonist-bound
closed form. It is followed by the recovery process that
requires agonist unbinding and a conformational change
from the agonist-free desensitized to the resting state [20].
The fact that the presence of high-affinity binding sites for
ATP, α,β-meATP, and TNP-ATP appears to be associated
with fast desensitization, and slow recovery from desensiti-
zation is in agreement with studies showing that the P2X1
receptor needs to open before it can go into the desensitized
state, and that unbinding of the agonist from the ligand-
bound desensitized state is the rate-limiting step for recov-
ery from desensitization [20, 108, 109]. Consistent with
these data, unbinding of [32P]-ATP from P2X3 receptors
mirrored the rate of recovery from desensitization [20, 110].

The molecular mechanisms controlling desensitization
are not yet understood and apparently involve multiple
receptor segments (intracellular, TM, and extracellular
domains) and possibly also interactions with other proteins
or intracellular messengers [20, 37, 111]. Chimeras com-

posed of parts of desensitizing and non-desensitizing P2X
receptors indicate the involvement of the N-terminal-
and TM1 domains [109, 112, 113] and a short N-terminal
part of the ectodomain [114]. A recent study showed that
substitution of solely intracellular N- or C-terminal parts of
desensitizing P2X receptors by corresponding parts of non-
desensitizing receptors is sufficient to obtain at least partial
desensitizing or non-desensitizing receptors [37]. As shown
by analysis of P2X2 splice variants and subsequent muta-
genesis data, intracellular C-terminal parts next to TM2
contribute to the rate of desensitization [115, 116]. In the
hP2X4 receptor, two residues in the proximal end of the C
terminus, Lys373 and Tyr374, were found to accelerate
desensitization [117]. Furthermore, it was shown that the
positive charges of Lys365 and Lys369 within the C-
terminal domain of P2X2 receptors are responsible for the
interaction with membrane phosphoinositides and regulate
desensitization of P2X2 receptors [118]. The extent of C-
terminal controlled desensitization was suggested to influ-
ence the efficacy of the agonists [119]. Interestingly, the
study of Bavan et al. showed that the penultimate C-
terminal charge of the arginine residue of the BmP2X re-
ceptor is responsible for the slow desensitization kinetics but
not the current run-down during repetitive ATP applications,
indicating that run-down and desensitization are governed
by distinct mechanisms [37].

In addition to the above described contribution of the
intracellular C-terminal part, disruption of the putative con-
served PKC phosphorylation site (see also section on “Phos-
phorylation of P2X receptors”) in the N terminus (18TXK20)
by T18A or K20T mutations led to fast desensitization of
P2X2 receptors [41, 121]. In contrast, the K20C mutation
did not affect the P2X2 desensitization kinetics, indicating
that this is a structural rather than charge effect [105]. The
corresponding mutations in the P2X1 or P2X3 receptors result
in rudimentary functional or non-functional receptors, respec-
tively [41, 121, 122]. In support of the involvement of cyto-
solic components, inactivation properties of P2X2 receptors
have been shown to differ greatly between measurements in
excised patches and in whole cell mode [123].

In conclusion, these data suggest that desensitization is
determined mostly, but not exclusively by the N- and C-
terminal P2X receptor segments. Since the crystal structure
of the zP2X4 is lacking these intracellular termini, we can-
not infer their possible structural involvement in these
processes.

Pharmacological characteristics of P2X receptors

Agonists The primary agonist of all homomeric and hetero-
meric P2X receptors is ATP. Regardless of the species-
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dependent differences, the amount of ATP necessary to elicit
the half maximal response (EC50) varies between sub-
micromolar concentrations for P2X1, P2X3, and P2X5,
and low micromolar concentrations for P2X2, P2X4, and
P2X6 receptors [7, 124]. The P2X7 receptor requires excep-
tionally high agonist concentrations with an EC50 value for
ATP higher than 100 μM [79, 125]. Remarkably, at this
receptor, ATP is only a partial agonist. Extracellular Mg2+

ions diminish the agonist response at P2X7 receptors, an
observation that has been interpreted as ATP4- being the
active agonist. Further experiments are needed to define
whether this applies to other members of the family and to
clarify to which extent divalent cations act directly at the
receptor as negative modulators. In the absence of extracel-
lular Mg2+ and other divalent cations, hP2X7 receptors were
shown to have high and low affinity sites for free ATP4- with
apparent dissociation constants of 4 and 220 μM, respec-
tively [126]. In addition to ATP, most P2X receptors are
activated by diadenosine polyphosphates or related dinu-
cleotides and some nucleoside triphosphates such as CTP
and GTP [7, 12]. By contrast, the breakdown products of
ATP, ADP, AMP, adenosine, or UTP and UDP activate P2X
receptors either weakly or not, further corroborating the
importance of the interaction with the three phosphate
groups [12].

Early pharmacological studies have used the non-
hydrolyzable ATP analogue α,β-meATP to differentiate
between fast and slowly or non-desensitizing P2X receptors
in smooth muscle and sensory neurons [4]. After cloning
and heterologous expression of the seven subtypes, the
P2X1 and P2X3 receptors were found to be sensitive to
α,β-meATP (EC50≤1 μM), [17, 18, 66]. Heteromeric as-
semblies, which contain P2X1 or P2X3 subunits and hetero-
meric P2X4/6 receptors also show α,β-meATP-sensitivity
(EC50≤10 μM) [17, 66]. At P2X7 receptors, 2’-3’-O-(4-
benzoylbenzoyl)-adenosine 5’-triphosphate (BzATP) is a
more potent agonist than ATP (EC50 ~10 μM) [79, 125].
In addition, BzATP activates particularly P2X1, P2X2, and
P2X3 receptors with high potency [17, 127]. Furthermore
commonly used ATP derivatives are ATPγS, which acti-
vates all P2X receptors with exception of the P2X7 receptor,
and 2-MeS-ATP, which activates most P2 receptors but not
adenosine (P1) receptors [7, 12].

A further peculiarity exists for the P2X7 receptor: For the
mouse P2X7 receptor, it was shown that it can be activated
by low concentrations of extracellular NAD. This process
involves ADP-ribosylation of the P2X7 Arg125 by ecto-
ADP-ribosyltransferase and results in constitutive channel
activation [128, 129].

Antagonists Research in the P2X field has for a long time
been hampered by the unavailability of truly selective antag-
onists [66]. P2X receptors have attracted widespread interest

as therapeutic targets, e.g., for chronic inflammatory dis-
eases and pain. In particular, P2X3 and P2X7 receptor
antagonists have been developed and demonstrated antino-
ciceptive or antiinflammatory effects in animal models of
these diseases [17, 130]. In basic research, a variety of more
or less selective compounds and their derivatives have been
used, including dyes (e.g., phenol red, reactive red, reactive
blue II, trypan blue, Evans blue, and brilliant blue), the
antitrypanocidal drug suramin, the photoreactive agent
ANAPP3, the cross-linking reagent DIDS, and the
pyridoxal-5-phosphate analogue PPADS [7, 12, 17, 66,
127, 131]. In addition, trinitrophenyl-substituted nucleoti-
des, especially TNP-ATP, are potent antagonists at P2X1,
P2X3, and heteromeric P2X2/3 receptors [132]. A consid-
erable additional problem are species-dependent differences
in the action of both agonists and antagonists at P2X recep-
tors (reviewed in Gever et al. and Donnelly-Roberts et al.
[66, 79]). For example, the isoquinoline compounds KN-62
and KN-04 antagonize mouse [133] and human [134] P2X7
receptors but are inactive at the rat isoform [135].

Since the available P2X receptor antagonists have
been extensively reviewed [7, 12, 17, 66, 127], we will
focus here on more recently described and novel com-
pounds that give new insights in ligand binding of P2X
receptors and/or have proven to be useful tools in animal
models of diseases or even progressed into clinical stud-
ies in man.

The potential of suramin as a lead structure for develop-
ment of selective and/or potent P2X receptor antagonists has
been shown in several studies [93, 136–138]. Its derivative
NF449 is currently the most potent and highly selective
P2X1 receptor antagonist (EC50<1 nM) [137, 139]. Togeth-
er with suramin related compounds, such as NF770, which
is a potent but less selective P2X2 receptor antagonist, it
helped to understand competitive action of suramin and the
basis of their subtype specificity [92, 93] (see section “Li-
gand binding sites”). Evaluation and optimization of anthra-
quinone derivatives related to reactive blue 2 yielded the
first potent and selective P2X2 receptor antagonist PSB-
1011 [140].

The first selective and highly potent dual inhibitor of
P2X3 and P2X2/3 receptors, A-317491, showed strong
antinociceptive effects in vivo in rodent models of chronic
inflammatory and neuropathic pain [141], thus providing an
important proof of concept. It was not pursued as a drug
candidate due to its poor distribution into the central ner-
vous system [66, 142]. Selective dual inhibition of P2X3
and P2X2/3 receptors has also been achieved by the nano-
molar potent and orally bioavailable diaminopyrimidine
derivatives RO-3, RO-4 (recently redesignated AF-353),
and RO-51 developed at Roche [17, 142–144]. In particular,
AF-353 (previously known as RO-4) was shown to bear a
favorable pharmacokinetic profile and excellent antagonist
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potency and selectivity for P2X3 and P2X2/3 receptors
[142]. Furthermore, it was able to attenuate bone cancer
pain behavior in rats [145]. RO-85, an orally bioavailable
drug-like P2X3 receptor antagonist, is selective for the
P2X3 receptor over the P2X2/3 and other P2X receptor
subtypes [146]. Three additional P2X3 and P2X2/3 selec-
tive diaminopyrimidine derivatives (compounds A, B, and
C) with nanomolar potency were recently published by
GlaxoSmithKline [147]. Compound B was shown to exhibit
significant effects in the CFA model of chronic inflamma-
tory pain [147]. AF-219 is another P2X3 receptor antagonist
and the lead compound of Afferent Pharmaceuticals. It has
successfully completed two phase-I clinical studies and
progressed into phase II clinical testing (personal commu-
nication and see release at www.afferentpharma.com,
accessed Aug. 22nd, 2011).

5-BDBD (5-(3-Bromophenyl)-1,3-dihydro-2 H-benzo-
furo-[3,2-e]-1,4-diazepin-2-one) was developed by Bayer
Healthcare as a P2X4 receptor antagonist for treatment of
arteriosclerosis and restenosis [148]. However, its impact is
still unclear.

The strong evidence for P2X7 receptor involvement in
pain and inflammation boosted interest in the pharmacology
of this receptor, and selective P2X7 receptor antagonists
have been frequently discovered in the past few years [17,
149]. Selectivity and in vitro activity at heterologously
expressed human (and partly rat) P2X7 receptors has been
shown for A-804598 and further compounds from Abbott
[150–152], AZ11645373 [153]; several compounds from
GlaxoSmithKline [154–156]; and compounds from Pfizer
[157]. The newly developed nanomolar potent P2X7
receptor-selective antagonists GSK314181A (and further
GSK compounds), A-740003, A-438079, and A-839977
have in addition been shown to have in vivo analgesic
effects in rodent models of inflammatory pain [158–164].
The AstraZeneca compound AZD9056 was the first P2X7
receptor antagonist that entered clinical trials and was well
tolerated in phase I studies [165]. Unexpectedly, it failed to
show significant efficacy in the treatment of rheumatoid
arthritis in a phase IIb clinical study, suggesting that the
P2X7 receptor is not a therapeutically useful target in rheu-
matoid arthritis [166]. It is currently in clinical testing for
the treatment of osteoarthritis, chronic obstructive pulmo-
nary disease, and inflammatory bowel disease [165]. Like-
wise, CE-224535, a P2X7 receptor antagonist from Pfizer
was reported to have no effect in phase II studies for the
treatment of rheumatoid arthritis and is now studied for
treatment of other conditions, such as pain and Alzheimer´
s disease [167]. Furthermore, the P2X7 receptor antagonist
GSK1482160 from GlaxoSmithKline has recently finished
phase I clinical testing (ClinicalTrials.gov identifier:
NCT00849134). The P2X7 receptor antagonist EVT-401
from Evotec is under development in the companion animal

market for the treatment of inflammatory conditions (http://
www.evotec.com, accessed 22 Aug 2011).

Also, currently approved drugs have been identified that
act on P2X receptors. For instance, aminoglycoside anti-
biotics have been shown to block P2X2 receptor channels
[168]. Several antidepressants, in particular, paroxetine,
were shown to inhibit ATP-evoked rat and human P2X4
receptor-mediated responses [169]. Furthermore, intrathe-
cally injected paroxetine produced significant antiallodynic
effects in a rat model of neuropathic pain. In contrast, the
tricyclic antidepressant amitriptyline exhibited only weak or
no P2X4 inhibitory activity [169, 170]. However, a recent
study indicates that the antidepressants act indirectly by
interfering with P2X4 receptor trafficking [171] rather than
directly blocking the receptors. Lately, the approved H1

antihistaminic clemastine was shown to act as a positive
modulator of the P2X7 receptor [172].

Synthesis and trafficking of P2X receptors

Cellular activity depends on the interaction between mem-
brane receptors and intracellular signalling pathways and is
critically regulated by the spatial and temporal distribution
of the membrane receptors. For example, the control of
receptor function by protein biogenesis, trafficking, and
redistribution represents a central process in synaptic
plasticity.

P2X receptor synthesis The appearance of functional ion
channels in the plasma membrane follows a complex series
of events, including specific oligomerization of protein sub-
units as well as post-translational folding and modification.
Like other membrane proteins, P2X receptors are synthe-
sized and core glycosylated in the rough ER and, upon
complex glycosylation in the Golgi apparatus, are trafficked
to the plasma membrane in a constitutive or regulated path-
way of vesicle exocytosis [173]. In both cases, specific
vesicle docking to target membranes is achieved by distinct
members of the SNARE (soluble N-ethylmaleimide-sensi-
tive factor (NSF) attachment protein receptors) protein fam-
ily. This process is counterbalanced by a clathrin-mediated
endocytosis of receptors to the endosome where they are
further sorted into vesicles, depending on their final desti-
nation (degradation or recycling). P2X polypeptides assem-
ble quickly into trimers since monomeric subunits or
intermediate dimeric assembly states were never observed
with metabolically labelled P2X1 protein expressed in
oocytes [44]. Besides formation of disulfide bonds [40,
68], post-translational modification by N-linked glycosyla-
tion is important for delivery of functional channels to the
plasma membrane. The seven rat P2X subunits contain three
to six consensus sequences for N-linked glycosylation in
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their extracellular domain. Systematic mutagenesis studies
at the P2X1 [174], P2X2 [175], P2X3 [176], and P2X7
receptors [177] suggest that a minimum number of two N-
glycans is essential for efficient plasma membrane targeting.
The glycosylation site equivalent to Asn 170 in P2X3 is the
best conserved among the P2X subtypes and appears to play
also a critical role for receptor function [71, 77, 176, 177],
which might be explained by its close location to the pro-
posed ATP binding site.

P2X receptor trafficking AYXXXK motif in the C terminus
is common to all P2X subunits. It is located downstream of
the second TM domain, except for the P2X7 subunit where
a cysteine-rich domain of 18 amino acids lies between the
second TM domain and this motif [178]. The YXXXK
motif regulates the surface expression of P2X receptors,
and accordingly, its mutation significantly limits the traf-
ficking of homomeric P2X receptors. Trafficking of mutant
subunits is rescued by heteromerization with wild-type sub-
units. The YXXXK motif is proposed to stabilize membrane
inserted P2X receptors, rather than affect ER exit [178].
Unstable mutants are rapidly internalized and directed to
the lysosomal pathway for destruction. The expression and
plasma membrane transport of P2X receptors is highly
regulated by cell activity and maturation. However, the
trafficking mechanisms for individual P2X receptors are
poorly understood, and hardly any interacting proteins con-
trolling these processes have been identified so far.

P2X1 receptors P2X1 receptors show fast desensitization
and long recovery periods until full reactivation is possible.
The desensitization and recovery appears to be determined
by two mechanisms: first, intrinsic receptor properties lead-
ing to fast conformational changes upon ATP binding and
slow unbinding of ATP allowing a delayed return to the
resting state. In addition, agonist-induced internalization and
redistribution of receptors between plasma membrane and
intracellular compartments has been described for heterolo-
gously expressed GFP-tagged P2X1 receptors [179, 180]
and native P2X1 receptors in smooth muscle [181]. A recent
fluorescence recovery after photo-bleaching (FRAP) study
suggests that both a constitutive brefeldin A-sensitive and
an agonist-induced dynasore-sensitive trafficking pathway
contribute to the recycling of P2X1 receptors [182].

P2X2 receptors Agonist-induced receptor clustering associ-
ated with increased current responses and dendritic morphol-
ogy changes, but no net internalization or externalization has
been demonstrated for GFP-tagged P2X2 receptor expressed
in embryonic hippocampal neurons [183]. Interestingly, this
effect was not seen if the PKC consensus site of P2X2 was
disrupted by a T18A mutation. Supporting evidence for
agonist-induced clustering of P2X2 receptors is provided in

a recent study on spinal cord neurons [184]. Here, a
proportion of P2X2 receptors appear to directly interact
with and stabilize GABAA receptors, which in turn help
their trafficking to extrasynaptic localizations in the
plasma membrane.

P2X3 receptors Expression of P2X2 and the fast desensitiz-
ing P2X3 receptors is upregulated in DRG neurons from rats
with peripheral inflammation [185], resulting in increased
ATP-responses and sensitization of the neurons to ATP. An
increase in plasma membrane trafficking of P2X3 receptors
was found to be responsible for this effect [186]. Upon
electrical stimulation to mimic the injurious state, CaMKII
is likewise upregulated and has been shown to promote
trafficking of P2X3 receptor in the plasma membrane
[187]. A recent study on transfected HEK cells and primary
cultures of DRG neurons found that the P2X3 receptor
undergoes rapid constitutive endocytosis and is predomi-
nantly localized in intracellular compartments labelled by
the late endosome/lysosome marker lamp1. Upon agonist
application, the level of functional receptors in the plasma
membrane is rapidly upregulated [188]. In trigeminal neu-
rons, the trafficking to the plasma membrane and activity of
P2X3 receptors was shown to be regulated by calcitonin-
gene-related peptide and nerve growth factor via PKA and
PKC, respectively [189].

P2X4 receptors Trafficking processes have been best charac-
terized for the P2X4 receptor. Upregulation of P2X4 receptors
in spinal microglia, as a result of peripheral nerve injury, has
been shown to be an important determinant of neuropathic
pain [190, 191]. If heterologously expressed in neurons, this
receptor undergoes rapid constitutive- and agonist-induced
internalization into early endosomes and lysosomes from
where they are subsequently reinserted into the plasma mem-
brane [192]. Internalization of the P2X4 receptor is clathrin-
and dynamin-dependent and determined by a non-canonical
endocytic motif (YXXGL) downstream of the conserved
YXXXK motif and a canonical YXXV motif. This YXXGL
motif was shown to interact with adapter protein 2 (AP2), and
mutation of this endocytic motif or the Tyr binding pocket in
the μ2 subunit of the AP2 clathrin adaptor protein complex
resulted in accumulation of functional P2X4 receptors in the
membrane [193]. An intact endocytosis motif also appears to
be required for the enhancement of P2X4 receptor currents by
protein kinase A, suggesting that the endocytotic pathway is
regulated by phosphorylation [194]. Similarly, impairment of
P2X4-endocytosis by the positive modulator ivermectin has
been suggested as one mechanism underlying enhancement of
P2X4 receptor responses [195]. However, this mechanism is
controversially discussed [196].

In addition to the non-canonical endocytic motif, a N-
terminal dileucine-type motif appears to contribute to
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lysosomal targeting of P2X4 receptors [197]. Native P2X4
receptors in microglia, macrophages, and endothelial cells are
localized primarily in lysosomes where their N-glycans pro-
tect them from degradation. Stimulation of lysosome exocy-
tosis by ionomycin-induced rise in intracellular Ca2+

concentration or methylamine-induced rise in lysosomal pH
enhanced P2X4 expression and responses at the plasma mem-
brane. This suggests that the lysosomal pool of P2X4 recep-
tors can be mobilized to upregulate P2X4 responsiveness of
these cells [197]. Likewise, lysosome-localized P2X4 recep-
tors were inserted into the plasma membrane in lipopolysac-
caride (LPS)-activated C8-B4 microglia, a cell line of
cerebellar origin. Interestingly, this lysosomal secretion was
reduced by clinically relevant concentrations of antidepres-
sants, providing a possible explanation for their effectiveness
in neuropathic pain models [171]. In contrast, activation of
human alveolar or rodent macrophages by IFN-γ plus LPS or
TNF-α resulted in decreased P2X4 responses while induction
of lysosomal secretion (pH increase of intracellular vesicles by
chloroquin) or phagocytosis (ingestion of zymosan particles)
increased the appearance of functional P2X4 receptors in the
plasma membrane [198]. Also in bone-marrow-derived mac-
rophages, large amounts of P2X4 receptors were predomi-
nantly localized intracellularly, and treatment with the
endocytosis inhibitor dynasore did not enhance surface ex-
pression, suggesting a much less dynamic trafficking than in
microglia [52].

The predominant intracellular localization of some P2X
receptors, in particular, the P2X4 subtype, makes it tempting
to speculate about intracellular functions of P2X receptors in
certain cell types. In simple eukaryotes, for example, P2X
receptors localized in intracellular membranes were shown
to be involved in osmoregulation [27] even though playing
only a minor role [30]. It remains to be determined whether
mammalian P2X receptors can also fulfil specific intracel-
lular roles [52, 199].

P2X5 and P2X6 receptors Recombinant rodent and zebrafish
P2X5 receptors show low current responses despite good
expression on the protein level. In contrast, chick and bullfrog
P2X5 receptors show good functional expression [57,
200–202]. The reason for this is not clear. The human P2X5
receptor is non-functional due to the deletion of exon 10 but
gives good responses if the missing sequence is included, as in
some individuals that carry a polymorphism in which the
critical intronic splice site is preserved [55].

Heterologous expression of functional rat P2X6 receptors
has been reported in only a low percentage of HEK cells
[200, 203] and not at all or only at the detection limit in
Xenopus oocytes [204, 205]. The mouse and human iso-
forms of P2X6 also do not express well [206]. Biochemical
analysis revealed that the majority of heterologously
expressed P2X6 subunits failed to form trimers and were

retained in the ER [45, 53, 54]. Homotrimeric assembly and
trafficking to the plasma membrane could be enhanced by
mutation or deletion of an uncharged region in the P2X6 N
terminus [207]. Differential glycosylation of P2X6 subunits
in HEK cells has also been proposed to account for incon-
sistencies in the functional expression of this subtype [203].

P2X7 receptors Together with P2X4 receptors, P2X7 recep-
tors are predominantly expressed in endothelial and epithelial
cells, and cells of the immune system where the level of
functional P2X7 receptors in the plasma membrane is also
tightly regulated. In monocytes and lymphocytes, for exam-
ple, they are localized intracellularly and appear to be
recruited to the plasma membrane during differentiation of
monocytes into macrophages [208–210]. In macrophages and
microglia, they appear predominantly at the cell surface [52].
Two basic amino acid residues (Arg578, Lys579 [211]) within
an LPS-binding motif (residues 573–590 [212]) have been
shown to be critical for efficient surface localization, presum-
ably by stabilizing the receptor in the plasma membrane.
Likewise, truncations or mutations (residues C572G,
R574G, F581G) in an overlapping region between residues
551 and 581 [213] in the P2X7 C terminus abolished surface
expression, and it was suggested that they contain an ER
retention/retrieval motif. In agreement with the importance
of this region, the I568N polymorphism in this domain [214]
causes deficits in surface expression. In rat submandibular
gland, a fraction of P2X7 receptors was found in lipid rafts
[215]. Also in alveolar epithelial cells, P2X7 receptors were
found to co-localize with caveolin-1, and deletion or suppres-
sion of this protein resulted in a strong reduction of P2X7
immunoreactivity [216]. A study on transfected HEK cells
and macrophages [217] found that palmitoylation is involved
in the correct targeting of P2X7 receptors into lipid rafts and
correlates with its plasma membrane expression. While more
distal groups of cysteine residues (Cys477, Cys479, Cys482/
Cys498, Cys499, Cys506/Cys572, Cys573) are essential, jux-
tamembrane cysteine residues (Cys371, Cys373, Cys374)
also appear to be involved in palmitoylation. Interestingly,
the essential residues include Cys572 and Cys573, which are
located in the above-mentioned regions [211–213].
Palmitoylation-deficient mutants were retained in the ER,
and it was concluded that palmitoylation is required for
P2X7 receptor maturation. Agonist-induced down regulation
of P2X7 receptors was shown in RAW macrophage-like cells
[218].

Regulation and protein interactions of P2X receptors

Apart from yet unidentified subunit combinations or splice
variants, transient or permanent physical interactions with
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associated proteins can account for diversity in P2X receptor
properties. Transiently associated proteins include proteins
involved in protein synthesis and maturation, such as
enzymes involved in glycosylation and chaperones, as well
as proteins that participate in the trafficking and stabilization
of the receptor at specific membranes, such as adaptor,
anchoring, and scaffolding proteins (see section “Synthesis
and trafficking of P2X receptors”). In addition, the functions
of a mature receptor can be modified by intracellular signal-
ling molecules, by enzymes, such as kinases, and by cross-
talk with other receptors or membrane proteins.

Phosphorylation of P2X receptors

In addition to several N-linked glycosylation sites, P2X
receptors contain a conserved putative PKC phosphoryla-
tion site (Thr-X-Arg/Lys). Disruption of this N-terminal
PKC site in the P2X1 receptors alters the time course of
desensitization, suggesting that desensitization is regulated
by phosphorylation [122]. Indeed, basal P2X1 receptor
phosphorylation was demonstrated by [32P]orthophosphate
labelling in HEK293 cells expressing this receptor. Howev-
er, the effect on desensitization was found to be indirect and
rather involves phosphorylation of an accessory protein
[219]. Potentiation of P2X1 receptor-mediated responses
by the PKC activator phorbol 12-myristate 13-acetate
(PMA) or stimulation of coexpressed mGluR1α receptors
was abolished after disruption of the N-terminal phosphor-
ylation motif or by mutations within the C-terminal region
between His355-Tyr370, indicating regulatory roles of both
the N-terminal and C-terminal domains [220].

In Xenopus oocyte-expressed P2X2 receptors, the phos-
phorylation motif likewise controls the desensitization kinetics
and phosphorylation of Thr18 was demonstrated with a phos-
phothreonine–proline-specific antibody [41]. In contrast, direct
phosphorylation of P2X2 receptors expressed in Xenopus
oocytes or HEK293 cells could neither be detected by
immuno-blotting nor by in vitro and in vivo phosphorylation
assays in another study [121]. Nevertheless, the role of the
18ThrProLys20 motif for desensitization kinetics was con-
firmed. Three studies on P2X3 receptors have shown that the
PKC activator PMA increases P2X3 receptor-mediated current
amplitudes, but, in contrast to the findings with P2X1 recep-
tors, no phosphorylation was detected [121, 221, 222]. Inter-
estingly, a PKC consensus site in the P2X3 ectodomain was
shown to be regulated by ecto-PKC, resulting in changes of the
αβ-meATP-induced current responses [223, 224].

A cAMP-dependent protein kinase A-mediated regula-
tion of the P2X4 receptor function via C-terminal motifs
was also shown [194]. For P2X7 receptors, it was reported
that receptor activation results in dephosphorylation of
Tyr343 within the second TM domain, suggesting its basal
phosphorylation [225].

Clustering of P2X receptors and interactions with ion
channels

Several studies provide functional evidence for interactions
between homotrimeric P2X2 receptors. Properties such as
mean open times, open channel noise [226], potentiation by
Zn2+, and pH, as well as the EC50 value for ATP appear to
depend on receptor density [227]. Also, the ability to form
large pores and inward rectification properties were shown
to depend on the P2X2 expression level [228] and to be
influenced by mutation of amino acid residue Ile328 in the
second TM domain. A physical interaction between P2X2
receptors can be inferred from biochemical experiments that
show an increased tendency of this receptor to form higher-
order complexes [54]. Functional and physical interactions
between P2X7 and P2X4 [229–231] and recently also P2X2
and P2X4 receptors [232] have been observed, although
heterotrimerization between these subunits was excluded
[52, 232, 233]. Together, these data suggest that some P2X
trimers can interact with each other either directly or via
clustering molecules. Whether these interactions have phys-
iological relevance or represent overexpression artifacts
remains to be determined. Interestingly, P2X4 and P2X7
could be coprecipitated with the extracellular matrix com-
ponent biglycan and soluble biglycan-induced clustering of
P2X4 and P2X7 receptors with Toll-like receptor (TLR) 2/4
was found to underlie the activation of the inflammasome
by this component [234].

Awealth of functional and biochemical evidence exists for
interactions between P2X receptors and various members of
the Cys-loop superfamily of ligand-gated ion channels.
Functional interactions resulting in cross-inhibition have been
described in native and/or recombinant systems between
P2X receptors and γ-aminobutyric acid receptors [235–
238], nicotinic acetylcholine receptors [239–244], and 5-
hydroxytryptamine receptors [245, 246]. There is evidence
that the P2X2 receptor, via its C terminus, physically interacts
with GABAARs and GABACRs [235, 238] and that co-
transfection of P2X2 subunits modulates their targeting in
transfected hippocampal neurons and spinal cord neurons
[184]. Similarly, two (Tyr374, Val375) and three (Gln386-
Thr388) amino acid residues in the P2X3 and P2X4 C termini,
respectively, enable an inhibitory cross-talk with GABAA

receptors in DRG [247] and hypothalamic neurons and thus
regulate synaptic transmission [248]. A detailed analysis of
the interaction between P2X2 receptors and the α4β2 nAChR
by FRET combined with total internal reflection fluorescence
microscopy indicates that both channels are closely associated
(approximately 80 Å apart), suggesting that they form func-
tional dimers of two receptor complexes [249].

Coexpression of P2X subunits with ENaC resulted in
mutual regulation of channel trafficking in Xenopus oocytes
[250]. More recently, a close interaction between P2X
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receptors and another member of the amiloride-sensitive
Na+ channel family, the acid-sensing ion channel (ASIC),
was reported in sensory neurons [251]. According to this
study, the electrically quiet P2X5 receptor forms a molecular
complex with ASIC3 and increases its pH sensitivity, there-
by forming a coincidence detector for low pH and ATP in
muscle ischemia. Finally, a functional Ca2+-dependent in-
teraction between P2X receptors and N-methyl-D-aspartate
(NMDA) receptors has been described in hippocampal py-
ramidal neurons and appears to play a role in the modulation
of synaptic plasticity [252, 253].

Much attention was raised by the finding that the P2X7
receptor and the hemichannel pannexin-1 could be co-
purified from transfected HEK cells and that a functional
interaction of both proteins was shown in different cell
types. Based on these data, it was concluded that
pannexin-1 constitutes the "P2X7 pore" and is required for
processing of caspase-1 and subsequent release of mature
IL-1β [254]. Other studies, however, could not confirm this
finding [255–258], and the pore-forming mechanism
remains to be elusive (see section “Non-specific pore
formation”).

Interactions of P2X receptors with other proteins

Due to their particular longer C termini that can be used as
baits in "pull-down" assays, most interactions have been
determined for P2X2 and P2X7 receptors. Using the C
terminus of the P2X2 receptor as a bait in GST-pull-down
or yeast two-hybrid assays, βIII tubulin, myelin basic pro-
tein [259], heat-shock protein 90 (HSP90), vacuolar-type
H+-adenosine triphosphatase, NSF, tubulin 1α, vesicle amin
transport protein 1 (VAT1), glutamic acid decarboxylase
synapsin IIb, glutamine synthetase, visinin-like protein 1
(VILIP1) [260], as well as Fe65 and Fe65-like adaptor
proteins were identified as associated proteins [261]. βIII
tubulin was found to bind to a prolin-rich segment (371–
412) in the P2X2 C terminus.

Fe65 is a brain-enriched multidomain adaptor protein
containing one WW protein interaction domain and two
phosphotyrosine binding/interacting domains (PTB/PID). It
has been shown to interact with amyloid precursor proteins
and to be involved in brain development [262]. Interaction
with the P2X2 receptor appears through the WW domain
and the alternatively spliced P2X2b that lacks a C-terminal
segment of 69 amino acid residues was not able to interact
with Fe65. Co-localization of the P2X2 receptor with Fe65
at postsynaptic specializations of excitatory synapses in the
hippocampus was shown by immunogold labeling, and both
proteins could be co-precipitated from rat brain extracts.
Functional analysis showed that pore dilation of the P2X2
receptor (see section “Non-specific pore formation”) was
inhibited upon co-expression of Fe65 [261].

VILIP-1 is a member of the neuronal EF-hand Ca2+-
sensor protein family. It has been shown to interact also
with a nicotinic ion channel and plays a role in regulating
cAMP levels, cell signalling, and membrane trafficking
[263]. P2X2 receptors and VILIP1 were co-localized in
deep cerebellar nuclei, and the dentate gyrus and both pro-
teins could be co-immunoprecipitated from brain extracts.
Co-expression of VILIP1 lowered the ATP sensitivity of
P2X2 receptors and increased its membrane expression, peak
responses, and diffusion in the plasma membrane. Further
analysis indicated that a constitutive interaction via the
P2X2 juxtamembrane region of the C terminus exists and is
increased in an activation- and Ca2+-dependent manner, which
could constitute a molecular feedback mechanism [260].

The multiple P2X7 receptor functions appear to be par-
ticularly dependent on its C terminus and associated pro-
teins but only comparatively limited information on its
interaction with other proteins is available. In rat but not in
human P2X7 receptors, a Ca2+-dependent facilitation of
P2X7 receptor responses was identified, and calmodulin
could be co-immunoprecipitated with agonist-stimulated
P2X7 receptors. By mutagenesis, a novel calmodulin bind-
ing motif was identified [264, 265].

Upon immunoprecipitation of P2X7 receptors overex-
pressed in HEK cells, 11 proteins were co-isolated including
cytoskeletal proteins (supervillin, β-actin, and α-actinin),
chaperones (HSP70, HSC71, and HSP90), the integrin β2
subunit, the extracellular matrix protein laminin α3, the
scaffolding protein MAGuK, and the signalling molecules
PI4K and receptor phospho-tyrosine phosphatase β
(RPTPβ) [225]. The interaction with HSP 90 was further
characterized [266]. Using a HEK cell library in a yeast two-
hybrid assay, the epithelial membrane protein 2 and related
proteins were found to directly interact with the P2X7
receptor C terminus [267].

In a more recent immunopurification study, two non-
muscle myosins, NMMHC-IIA and myosin VA, were iso-
lated from monocytic THP-1 cells and P2X7-transfected
HEK cells, respectively. In line with the above study, an
interaction with protein-tyrosine phosphatase, β-actin, and
heat-shock proteins was also found, and in addition, the
ubiquitin ligaseRo52, InsP6 and PP-IP5 kinase 1, myosin
regulatory light chain, nucleoprotein TRP, tubulin, and nu-
cleoside diphosphate kinase B were identified [268]. P2X7
receptors were shown to co-localize with NMMHC-IIA in
HEK cells and functional characterizations by flow cytom-
etry suggest that agonist-induced dissociation of the receptor
is required for pore formation while the intact complex is
required for phagocytosis in transfected HEK cells, human
monocytes, and mice macrophages [269].

For P2X4 and P2X6 receptors, an interaction with the
endothelial cell-specific adhesion molecule VE-cadherin
was found in human endothelial cells [270].
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In a recent co-purification study, a close interaction of the
P2X1 receptor with the actin cytoskeleton was found and
shown to occur via the P2X1-amino-terminus. The interac-
tion was suggested to contribute to a localized signalling
environment in lipid rafts [271].

In addition to the above-described protein interactions,
for which in many cases evidence for a physical interaction
was provided, P2X receptors have also been shown to
functionally interact with a range of other proteins including
G-protein-coupled receptors. For further details, please refer
to Koeles et al. [272].

Investigation of the tissue-specific subunit composition of
native P2X receptors and their protein–protein interactions has
partly been hampered by the lack of P2X antibodies that are
specific and suitable for immunoprecipitation. Such studies
appear highly important in view of the entirely unknown
composition of P2X receptor complexes in neuronal mem-
branes where neither their subunit composition nor their en-
richment at synaptic sites has been analyzed in detail.

P2X receptor signalling

Ion flux

P2X receptors are essentially non-selective cation channels
permeable to small monovalent and divalent cations. P2X
receptor activation generally leads to a change in membrane
potential initiating subsequent cellular events. For instance,
P2X receptor-mediated changes of the membrane potential
in neurons presynaptically modulate neurotransmitter re-
lease [273–277] or postsynaptically result in fast excitatory
signalling [18, 278]. The involvement of P2X receptor-
mediated currents in signalling processes of virtually all
cells, tissues, and organs is extensively reviewed elsewhere
[3, 18, 21, 279]. Nevertheless, beside the direct change of
the membrane potential, a major physiological mechanism
by which activated P2X receptors control cellular functions
is elevation in intracellular calcium concentration ([Ca2+]i)
both directly by Ca2+ permeation and indirectly by facilita-
tion of voltage-gated Ca2+ channels [111, 280, 281]. The
fractional Ca2+ currents of recombinant P2X receptor sub-
types were systematically analyzed by Egan and Khakh and
vary between 2.7% and 12.4% (P2X1, 12.4%; P2X2, 5.7%;
P2X3, 2.7%; P2X4, 11.0%; P2X5, 4.5%; P2X7, 4.6%;
P2X2/3, 3.5%; P2X2/6, 7.7%; P2X4/6, 11.3%), which for
some receptors is larger than the Ca2+ permeability of
acetylcholine-, serotonin-, or glutamate-gated channels
[282]. In contrast to the highly Ca2+-permeable NMDA
receptors, however, P2X receptors can mediate Ca2+ influx
at resting or low membrane potentials when NMDA recep-
tors are not active. The increase in [Ca2+]i activates a broad
range of second messenger systems and signalling cascades

and can trigger manifold short- and long-term cellular
events. For instance, P2X receptors participate in synaptic
transmission in the hippocampus by providing a compo-
nent of the excitatory input to CA1 pyramidal neurons, in
which the activation of P2X receptors generates calcium
influx that does not require cell depolarization [253].
Inhibition of P2X receptors on these CA1 pyramidal
neurons facilitates the induction of long-term potentiation
(LTP), indicating that P2X receptors act via calcium influx
as a dynamic low-frequency filter within the hippocampus
[252, 253].

Non-specific pore formation

It is generally assumed that ionic selectivity is an invariant
property of specific ion channels. Several examples exist,
however, of channels that have dynamic selectivity filters.
These include proton-gated channels, cardiac sodium chan-
nels, and some Kv channels [283]. More recently, the
TRPV1 receptor has been shown to dilate into larger pores
that are permeable to the large fluorescent dye YO-PRO-1
[284]. The physiological significance of these permeability
changes remains elusive.

For the slowly desensitizing P2X2, P2X2/3, P2X4, and
P2X7 receptors, the development of an additional perme-
ability state which allows the passage of the large cation N-
methyl-D-glucamine (NMDG) and fluorescence dyes such
as the cationic propidium dye YO-PRO-1, and ethidium has
also been observed upon repeated applications or in the
continuous presence (~30 s) of agonist [283, 285, 286]. This
permeability change can also be monitored by a change in
the reversal potential if experiments are performed in extra-
cellular NMDG, an organic cation that generally does not
efficiently permeate ion channels but does so during ATP-
activated channel dilation [283, 285–287]. The two perme-
ability states are referred to as I1 (permeability to small
cations) and I2 (permeability to larger cations) [283, 287].
In the P2X4 receptor, they could be separated by exchange
of the conserved residue Gly347 in TM2: Mutation into a
tyrosine residue resulted in channels that lacked the large
permeability I2 state while mutation into a positively
charged residue strongly reduced the I1 current [283]. In
the P2X2 receptor, mutation of residues Asn333, Thr336,
Leu338, and Gly342 (analogous to Gly347 in P2X4) in
TM2 into alanine residues appeared to favor opening of
the I2 permeability state [285]. In a systematic alanine
scanning mutagenesis study, a total of ten residues in the
two TM domains (Phe31, Arg34, Gln37, Lys53, Ile328,
Ile332, Ser340, Gly342, Trp350, Leu352) were identified
to perturb transition from the I1 to the NMDG permeable I2
state [288]. Of these, Ile328 had also been shown in a
previous study to be critical for expression level-dependent
changes of the P2X2 receptor permeation properties [228].
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Taking the orientation of the previously defined selectivity
filter (Thr336, Thr339, and Ser340) [282] and the constraint
that Val48 and Ile328 are close to each other [63, 289] as a
basis, the I2 state-specific hits were mapped onto helical
wheel representations. In agreement with an effect on pro-
tein–protein interactions in the TM region, the residues were
found at the interface of neighboring TM1 and TM2
domains of adjacent subunits [288], and it was proposed
that the permeation pathway could dilate by helix tilting,
rotation, or bending as assumed for other channels [290].

An additional mutagenesis study showed that the pore dila-
tion occurs only in rat but not mouse P2X2 receptors and is
dependent on specific residues in the C-terminal domain, sug-
gesting that changes in the permeation pathway during opening
to the I2 state require conformational changes in the C terminus
[287]. Interestingly and in support of this finding, the I2 state
appears to be inhibited by interaction of the P2X2 receptor C
terminus with the beta-amyloid precursor protein-binding pro-
tein Fe65 [261]. In addition, channel activity and pore dilation
appear to be regulated by the interaction of membrane-bound
phosphoinositides with the proximal region of the P2X2 recep-
tor C-terminal domain [118]. Cytosolic gating motions in the
N- and C-terminal domains were also shown and further ana-
lyzed by FRET studies with fluorescent proteins and FlAsh-
labelled receptors. These studies also revealed that the pore
dilation is not dependent on pannexin-1, which was proposed
to be involved in pore dilation of P2X7 receptors [255, 291].
Together, all these data suggest that, at least in the P2X2
receptor, the pore dilation is an intrinsic property of the receptor.
Most recently, it was shown that colchicine inhibits pore dila-
tion but not ATP-gated currents of P2X2 and P2X7 receptors in
oocytes and macrophages [292].

The P2X7 receptor shows a permeability increase with
similar kinetics as the P2X2 and P2X4 receptors [285, 286].
In addition, the sustained agonist application leads to cell
lysis and apoptosis [293, 294]. These features have not been
observed with P2X2 and P2X4 subtypes and require the C
terminus while YO-PRO-1 uptake in P2X7 receptors is
strongly reduced but not abolished if the C terminus is
removed [125, 213]. It remains to be answered whether
the dilation of the P2X7 ion channel [285] reflects a prop-
erty common to the P2X2 and P2X4 receptors. Based on
patch-clamp measurements in the cell-attached configura-
tion, it has been suggested that P2X7 receptor-associated
pore formation might require ancillary proteins (e.g., either
hemi-channels, or the maitotoxin-associated pore [295])
whose activation is dependent on the production of diffus-
ible second messengers such as Ca2+ or MAP kinases [296,
297]. A study on P2X7-transfected HEK cells showed that
NMDG permeability measured by reversal potential shifts
and YO-PRO-1 uptake measured by fluorescence intensity
could be differentiated: NMDG permeability but not YO-
PRO-1 uptake was inhibited by both normal sodium

concentration in the extracellular medium or deletion of a
cys-rich 18-amino acid segment in the juxtamembrane C-
terminal region of the receptor [298]. From these data, it was
concluded that the NMDG permeability is an intrinsic chan-
nel property while YO-PRO-1 uptake requires a distinct
permeation pathway. In addition, another study found that
both a cationic and an anionic dye permeation pathway were
opened by P2X7 receptor activation [299]. Since blockade
of pannexin hemichannels inhibited P2X7 receptor-
associated dye uptake in HEK cells and macrophages while
its overexpression resulted in increased dye uptake and both
proteins were co-purified from transfected HEK cells, pan-
nexin was suggested to interact with the P2X7 receptor and
to be the cause of pore formation [254]. However, more
recent data do not confirm this hypothesis [255–258]. In
support of an NMDG pore that is intrinsic to the P2X7
channel are two studies by Yan et al. who carefully investi-
gated the complex biphasic current responses observed upon
prolonged activation of P2X7 receptor which consist of a
fast current increase in the millisecond range and a slowly
increasing high-amplitude current that peaked after tens of
seconds and had been associated with the presence of two
ATP binding sites of different affinity [126]. Yan et al.
showed that this slow current component temporally coin-
cided with the shift in reversal potential in NMDG-
containing extracellular solutions, and an immediate NMDG
permeability was observed when residue Thr 15 in the P2X7
N terminus was mutated to residues with larger side chains
(Glu, Lys, or Trp) [257]. Based on the activation and deac-
tivation kinetics at different agonist concentrations and on
the sensitization properties of the P2X7 receptor, a gating
model was proposed in which occupancy of ATP binding
sites controls channel conductance [258]. Involvement of
the N-terminus in generation of an NMDG-permeable pore
is further suggested by the properties of a P2X7 N-terminal
splice variant, which also shows immediate NMDG perme-
ability [300]. In conclusion, although the processes of pore
dilation are still very poorly understood, the above data
suggest that NMDG permeability increases in P2X2,
P2X4, and P2X7 receptors are based on a common molec-
ular mechanism intrinsic to the ion channels. Whether this
dilated I2 state is also responsible for dye uptake remains a
matter of debate [301].

Inconsistent with an intrinsic channel property, however, is
the fact that neither for P2X2 and P2X4 receptors nor for
P2X7 receptors permeability states corresponding to the dilat-
ed channels have been observed in single channel recordings
[172, 287, 302], and in P2X2 receptors, pore formation prop-
erties varied between experiments [287]. This could in part be
due to the fact that optimal conditions for production of the I2
state (very low extracellular Ca2+ and concentrations of ATP
>10 μM) [283, 285] might not have been systematically
explored.
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Interestingly, a G496A polymorphism in the human
P2X7 receptor [303] has been identified that produced loss
of function in flow cytometry assays (ethidium uptake,
apoptosis, Ba2+ influx) but revealed no differences in the
electrophysiological properties of the heterologously
expressed channel [304]. Likewise, conflicting data were
found for the L451P polymorphism in the mouse P2X7
receptor which showed reduced pore formation and cell
death if native thymocyte or T cell preparations were inves-
tigated by flow cytometry [305, 306], but no difference to
wild-type (wt) when heterologusly expressed variants were
analyzed in fluorometry imaging assays [79] or in patch
clamp experiments (own unpublished data). These data sup-
port the involvement of cell-specific and C terminus-
dependent mechanisms in the formation of dye-permeable
pores.

P2X7-specific signalling

A range of downstream cellular events have been identified
upon P2X7 receptor activation. These include release of
cytokines, cytoskeletal rearrangements, and plasma mem-
brane protein shedding and cell death via necrosis and
apoptosis as well as trophic effects, cell proliferation, and
differentiation (e.g., [293, 307–309]). The cellular mecha-
nisms underlying these various effects are dependent on the
cell background and are very incompletely understood.
Interactions with multiple intracellular signalling pathways
have been shown. These include activation of phospholi-
pases A2 and D and coupling to protein kinases PKC, Src,
JNK (stress-activated protein kinase) and the ERK and
p38MAP kinases, as well as the rho-associated protein
kinase (ROCK). For a comprehensive picture of P2X7
signalling in microglia, refer to Kettenmann et al. [310].
For additional information, refer to Erb et al., Duan et al.,
and Lenertz et al. [311–313]. Only two of the above-
mentioned effects are briefly mentioned in the following.

Secretion of IL-1β and other cytokines The cytokine IL-1β
is released by macrophages and other immune cells and
represents an important mediator of inflammation. It is
transcribed as the inactive precursor pro-IL-1β in response
to inflammatory stimuli (e.g., LPS that acts via TLR and
NFkB activation). Processing of pro-IL-1β into IL-1β
involves the protease caspase-1, which in turn is proteolyt-
ically generated from procaspase-1 in a process that
involves different multimeric "inflammasome complexes"
that oligomerize and activate caspase-1 in response to a
second specific stimulus [314, 315]. These can be the toxins
nigericin and maitotoxin or high ATP concentrations in case
of the NALP3 inflammasome [316]. Early studies had al-
ready shown that ATP is an efficient stimulator of IL-1β
maturation and release [317–320] and that K+ efflux appears

to be involved in this process [320]. By generation of the
P2X7−/− mouse [321–323], it was confirmed that the IL-1β
release (and release of other IL-1 family members) is a
consequence of P2X7 receptor activation. For a detailed
review, see Ferrari et al. [324].

However, the molecular mechanisms that lead from K+

depletion to NALP3 inflammasome activation and IL-1β
release and how pannexin is involved in this process remain
unclear [301, 325]. P2X7-mediated microvesicle shedding
[326, 327] has been suggested to play a role in interleukin
release.

Effects on extracellular and intracellular membranes A
variety of changes in the plasma membrane composition
and morphology have been observed upon P2X7 receptor
activation [327]. These include the redistribution of phos-
phatidylserine to the extracellular leaflet of the plasma mem-
brane (PS-flip), plasma membrane protein shedding
(CD26L, CD23, CD 27) by matrix metallo proteases, and
plasma membrane blebbing and microvesicle release. The
so-called PS-flip represents an indicator of apoptotic cell
death but has also been involved in physiological pro-
cesses such as maturation and differentiation. In addition,
P2X7 receptors have effects on intracellular organelles
and membranes. For example, regulation of phagosome
fusion with lysosomes has been shown to be involved in
bacterial killing (for details on P2X7 regulation of extra-
cellular and intracellular membrane responses refer to Qu
and Dubiak [327]).

Physiological functions of P2X receptors inferred
from genetically modified animals and other in vivo
models

P2X receptor isoforms have been found to be widely but
specifically distributed among different tissues in the verte-
brate body. Expression patterns of P2X receptors have ini-
tially been evaluated at the mRNA level using Northern
blot, RT-PCR, and in situ hybridization analysis [23, 61,
205, 328–330]. Following the development of P2X receptor
subtype-specific antibodies, many of these findings have
been verified at the protein level by Western blotting and
immunohistochemistry [331–337]. It has to be mentioned,
however, that reliability of some of these antibodies have
been questioned [338, 339]. In addition, the lack of subtype-
selective and metabolically stable agonists as well as truly
potent and specific antagonists for some P2X subtypes has
made the molecular identification of individual P2X recep-
tor subtypes in native tissue preparations and determination
of their function a challenging task. Thus, the identities and
in vivo roles of many P2X receptors are still not completely
understood or speculative. Dramatic progress has been made
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by the use of knockout and transgenic animals. The follow-
ing part of this review will provide an overview of the P2X
receptor distribution and their physiological roles deter-
mined using both genetically engineered animal models
and transient knockdown approaches (Table 1).

P2X1

The P2X1 receptor sequence was originally cloned from a rat
vas deferens cDNA library [23] and subsequently isolated
from human urinary bladder and platelets as well as mouse
urinary bladder and vas deferens [340–343]. This receptor is
most highly expressed in smooth muscle cells of various
organs, including urinary bladder, vas deferens, and arteries
[331, 336, 344–346]. Significant P2X1 receptor levels are also
found in megakaryocytes and blood platelets [342, 347, 348].
P2X1 mRNA has been detected in apoptotic thymocytes but,
surprisingly, not in peripheral T cells [349]. The precise local-
ization of P2X1 receptors in the CNS remains unsettled as the

P2X1 receptor antibodies were shown to exhibit similar
immunostaining patterns in the CNS of wt and P2X1
knockout mice [338]. However, contribution of P2X1
subunits to functional responses in cortical astrocytes was
reported [67, 350], and P2X1 receptor expression, detected
by immunostaining, was shown to be downregulated in the
hippocampus by TNP-ATP treatment [351]. Peritoneal mouse
macrophages were shown to express functional P2X1 recep-
tors absent in P2X1−/− mice [352]. In addition, human lung
mast cells were shown to express functional P2X1 receptors
[330].

The P2X1 encoding gene consists of 12 exons and is
located close to the P2X5 gene on chromosome 10 in the rat,
chromosome 17 in the human, and chromosome 11 in the
mouse genome [340, 341, 343]. In most cases, the distribu-
tion profiles described for P2X1 receptors correlate with
phenotypic data from P2X1 loss- and gain-of-function
mouse models. P2X1-deficient mice were generated through
the targeted replacement of a fragment encoding a part of

Table 1 Major physiological functions of different P2X receptor subtypes determined using knockout (KO), P2X2/P2X3 double knockout (DKO),
and transgenic mice (TG) mice

Subtype Phenotype (mouse model) Physiological function Reference

P2X1 Male infertility (KO) Smooth muscle contraction [344]

Impaired kidney function (KO) Renal autoregulation [355–357]

Reduced arterial thrombosis (KO)/prothrombotic phenotype (TG) Platelet activation [361, 362]

P2X2 Impaired synaptic facilitation (KO) Regulation of transmitter release
in hippocampus

[275]

Reduced inflammatory pain (KO, DKO) Nociceptive signalling [65]

Impaired peristalsis in small intestine (KO) Intestinal neurotransmission [394]

Attenuated ventilatory response to hypoxia (KO, DKO) Carotid body function [396]

Urinary bladder hyporeflexia (KO, DKO) Sensory neurotransmission [65]

Impaired taste sensing (DKO) Gustatory signalling [433–435]

Abnormal skeletal neuromuscular junctions (KO) Endplate formation [399]

P2X3 Impaired hippocampal LTD (KO) Regulation of synaptic plasticity [426]

Reduced pain responses (KO, DKO) Nociceptive signalling [65, 416, 417]

Impaired peristalsis in small intestine (KO) Intestinal neurotransmission [423]

Urinary bladder hyporeflexia (KO, DKO) Sensory neurotransmission [65, 416]

Impaired temperature sensitivity (KO) Thermal sensation [417, 425]

Impaired taste sensing (DKO) Gustatory signalling [433–435]

P2X4 Decreased hippocampal LTP (KO) Regulation of synaptic plasticity [455]

Reduced inflammatory and neuropathic pain (KO) Modulation of chronic pain (regulation
of BDNF and PGE2 release from activated
microglia/macrophages)

[191, 460, 461]

Higher blood pressure, lack of vascular remodelling,
decreased flow-induced release of NO (KO)

Regulation of vascular tone [456]

Improved heart function (TG) Control of contractility of the cardiomyocytes [468–472, 474]

P2X7 Abolished IL-1β release, diminished inflammatory responses (KO) Pro-inflammatory cytokine release [322, 323]

Reduced inflammatory and neuropathic pain (KO) Immune cells activation [321]

Skeletal abnormalities (KO) Bone metabolism [552, 553]

Reduced fluid secretion in salivary gland and pancreas (KO) Regulation of exocrine gland secretion [556, 557]
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exon 1 (including the initiation codon ATG) by a lacZ/Neo
cassette [344] (Fig. 4). In line with an important function in
the vas deferens, these knockout mice revealed a drastic (up
to 90%) reduction in male fertility. This was associated with
a low sperm count in the ejaculate caused by the lack of
P2X1 receptor-mediated vas deferens contraction [344].
Consistent data have been reported in guinea pig, rat, and
human by functional and pharmacological analysis of iso-
lated vas deferens preparations [6, 353, 354].

Renal P2X1 receptor-mediated pressure-induced afferent
arteriolar autoregulatory responses were studied in P2X1−/−
mice using the in vitro blood perfused juxtamedullary neph-
ron technique [355–357]. It was suggested that P2X1 recep-
tors expressed on afferent arteriolar smooth muscle cells
contribute to the modulation of the tubuloglomerular feed-
back mechanism (TGF). Accordingly, macula densa cells of
the juxtaglomerular apparatus respond to the increase in
luminal tubular fluid NaCl concentration through release

Fig. 4 Summary of published
P2X receptor−/− mice and the
targeting strategies used for
their generation. Location of
TM encoding exons are only
shown for the P2X7 receptor,
but, due to the strong
conservation of exon-intron
boundaries in P2X receptor
encoding genes, can be trans-
ferred to the other subtypes.
The figure also illustrates alter-
native exons (1´and 13b/c)
identified in the rodent P2X7
gene [300, 525] and explains
how the P2X7K splice variant
derived from exon 1´ can es-
cape the gene deletion strategy
used in one of the available
P2X7−/−mouse lines. Note that
all cassettes indicated with lacZ
represent actually lacZ-NeoR

cassettes

392 Purinergic Signalling (2012) 8:375–417



of ATP that, via the P2X1-mediated vasoconstriction of
afferent arterioles, leads to changes in the glomerular filtra-
tion rate [331, 355–358]. These in vitro findings were con-
firmed in vivo by data from whole kidney blood flow
experiments that show pharmacologically the importance
of the P2X1 receptor activation for whole kidney autoregu-
lation [359]. However, a recent study indicates that the
direct activation of P2 purinergic receptors by ATP is not a
major cause of TGF-induced vasoconstriction in vivo [360].
Therefore, additional studies are required to fully under-
stand the involvement of P2X1 receptors in renal
hemodynamics.

Analysis of the P2X1 knockout mice further indicated an
involvement of P2X1 receptors in platelet function and
thrombus formation [361]. Mice lacking the P2X1 receptor
display reduced arterial thrombosis under conditions of high
shear stress and exhibit reduced platelet aggregation in low
collagen concentrations. About 20% of the analyzed
P2X1−/− mice showed also markedly prolonged bleeding
times [361]. Involvement of the P2X1 receptor in platelet
function was also shown in a P2X1 transgenic mouse model
in which human P2X1 cDNA was overexpressed under the
control of the megakaryocyte-specific murine glycoprotein
IIb (GPIIb) promoter [362]. This resulted in a mild
prothrombotic phenotype. Accordingly, transgenic platelets
displayed enhanced secretion and aggregation in vitro, in
response to low doses of collagen, convulxin, and the
thromboxane A2 mimetic U46619 or shear stress [362].
These observations are consistent with in vivo results
obtained in a model of pulmonary thromboembolism, which
demonstrated increased lethal thrombosis in hP2X1 trans-
genic mice compared with wt animals [362]. The involvement
of P2X1 receptors in platelet activation during hemostasis or
thrombosis make it an important therapeutic target. For more
detailed information concerning P2X1 receptor function in
platelet, see Hu et al. and Mahaut-Smith et al. [363, 364].

P2X2

The P2X2 cDNAwas initially cloned from a rat pheochromo-
cytoma PC12 cell line [22]. The P2X2 receptor is one of, if not
the, most widely distributed subtype of the P2X receptor
family. Its abundant expression has been found in both the
central and the peripheral nervous systems [278, 365]. Partic-
ularly high expression levels were described in the olfactory
bulb, cerebral cortex, basal ganglia, diencephalon, mesenceph-
alon, cerebellum, medulla oblongata, and dorsal horn area of
the spinal cord [200, 335, 337, 366–369]. Moreover, a signif-
icant P2X2 expression with importance for sensory neurotrans-
mission has been described in both sensory and autonomic
ganglion neurons of the peripheral nervous system [65, 200,
368, 370–378]. In addition, multiple non-neuronal tissues,
such as adrenal medulla (chromaffin cells), urothelium,

vasculature smooth muscle, skeletal muscle (during develop-
ment and regeneration), cardiac muscle, and interstitial cells of
the vas deferens, have been shown to express significant
amounts of the P2X2 receptor subunit [22, 336, 337, 345,
379–385].

The P2X2 gene comprises 11 exons and lies together
with the P2X4 and P2X7 genes on chromosome 12 in the
rat and human and on chromosome 5 in the mouse genome.
Multiple alternatively spliced transcripts of the P2X2 recep-
tor have been detected [115, 368, 386–393]. The described
variants arise from C-terminal alternative-splicing events.
The functional, but fast desensitizing P2X2b (or P2X2-2)
receptor isoform, in which exon 11 is partially deleted,
appears to be conserved between human and rodents. Other
identified splice variants include P2X2c, P2X2d, P2X2e,
P2X2f, and P2X2g in rat [115, 368, 386, 387, 389],
P2X2e in mouse [391, 392], P2X2-3 in guinea pig [388,
390], and P2X2c and P2X2d in human [393]. Some of these
appear to be non-functional. It seems likely that various
P2X2 receptor isoforms co-assemble with other P2X sub-
units to form heteromeric channels with modified properties
[391].

Mice lacking the P2X2 subunit were generated by tar-
geted deletion of a region spanning from exon 2 to exon 11
and its replacement with a floxed sequence encoding a
neomycin resistance gene [65, 275] (Fig. 4). Despite the
wide distribution of the P2X2 receptor, P2X2 knockout
mice displayed only small differences in body weight com-
pared with wt animals and were visibly and histopatholog-
ically normal for up to 1 year of age. Likewise, urinalysis,
blood chemistries, and peripheral blood cell counts did not
show significant differences between P2X2+/+ and P2X2−/−
mice [65].

Analysis of P2X2 knockout mice revealed impaired peri-
stalsis in the small intestine, most likely due to the absence
of P2X2 receptor-mediated synaptic transmission in the
myenteric plexus [394] but not in the mouse colon [395],
indicating that the P2X2 subunit is not required for propul-
sive motility in the mouse colon. Also, an involvement in
ATP-evoked synaptic facilitation of hippocampal interneur-
ons [275] was reported, and a pivotal role of P2X2 subunit
containing receptors in normal carotid body function and in
ventilatory response to hypoxia was demonstrated in
P2X2−/− mice. The mice showed reduced responses of the
carotid sinus nerve to hypoxia and markedly attenuated
ventilatory responses to hypoxia [396].

An involvement of P2X2-subunit-containing receptors in
sensory transmission has early been proposed [397] and was
confirmed in P2X2−/− mice. In agreement with the co-
expression of P2X2 and P2X3 subunits on DRG neurons,
functional analysis of wt and P2X2−/− mice revealed the
contribution of P2X2 subunits to ATP-induced sustained but
not transient (fast desensitizing) responses of DRG and
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nodose ganglia neurons. Sympathetic neurons of the supe-
rior cervical ganglion from P2X2−/− mice exhibited no
response to αβ-me-ATP, indicating an exclusive expression
of P2X2 subunits in the form of homomeric P2X2 receptors
[65], which is in good agreement with former pharmacolog-
ical studies of cultured autonomic ganglia neurons [376,
398]. In the formalin-induced model of chemical nocicep-
tion, P2X2 subunit deficiency leads to significant attenua-
tion in the persistent but not acute phase of the formalin
response [65]. Also, urinary bladder hyporeflexia and de-
creased activities of pelvic afferent nerves in response to
bladder distension were observed in these mice [65].

Further experiments with P2X2 knockout mice have
demonstrated a role for P2X2 receptor-dependent signalling
in the development and maintenance of skeletal neuromus-
cular junctions [399]. The involvement of P2X2 receptor in
the late stages of endplate formation is consistent with the
expression pattern of the P2X2 subunit during skeletal mus-
cle development and muscle fiber regeneration [382–384].

P2X3

The P2X3 sequence was originally cloned from a rat DRG
cDNA library [400, 401] and subsequently also from a
human heart cDNA library [88] and mouse genomic library
[402]. In rodents, predominant and developmentally regu-
lated P2X3 receptor expression has been demonstrated on
small- to medium-diameter sensory neurons within DRG as
well as nodose and trigeminal ganglia by Northern-blot
analysis, in situ hybridization or immunohistochemistry
[373, 374, 380, 400, 401, 403–408]. This very restricted
pattern of P2X3 subunit distribution has been associated
with P2X3-mediated nociceptive sensory nerve responses
to ATP released from inflamed or damaged tissues [187,
333, 409]. The P2X3 subunit has also been detected in the
spinal cord within the superficial laminae of the dorsal horn
[373, 385, 404, 405]. In addition, P2X3 receptor expression
has been found in both the urothelium and suburothelium of
rat urinary bladder [410]. In humans, the P2X3 receptor has
so far been reported in heart and spinal cord at the mRNA
level and in dorsal root ganglia, intestine (myenteric plexus
neurons), urinary bladder (urothelium and suburothelium),
and dental pulp at the protein level [88, 410–415].

The gene encoding the P2X3 subunit contains 12 (human
and mouse) to 13 (rat and zebrafish) exons and was mapped
to chromosome 3 in rat, chromosome 2 in mouse, and
chromosome 11 in human [88, 402].

An important role of the P2X3 channel in nociceptive
signalling was confirmed using two independently engi-
neered P2X3 knockout mouse lines. One line was generated
by targeted replacement of the fragment, containing
the ATG translational start site and exon 1, with a floxed
neomycin-resistance gene [416]. In a second strain, a fragment

ranging from exon 2 to exon 7 was replaced by an IRES-
LacZ-MC1-Neo cassette [417] (Fig. 4). Both mice strains
display significantly attenuated responses in the acute and
persistent phases of the formalin-induced pain test [416,
417]. Likewise, pain caused by intraplantar injection of ATP
is also greatly diminished in the P2X3−/− mice [416]. A
significant role of P2X3 receptors in pain responses with
reduction of agonist-induced mechanical hyperalgesia and
tactile allodynia as well as reduced pain responses in neuro-
pathic or inflammatory pain models is in agreement with
studies using P2X3 siRNA [418, 419], antisense oligonucleo-
tides [420], or pharmacological P2X3 receptor inhibition
[141] in rats.

Deletion of the P2X3 gene in mice also had a significant
effect on sensory function in the urinary bladder as
evidenced by marked bladder hyporeflexia, resulting in
greatly reduced voiding frequency and substantial increase
in bladder capacity [65, 416]. Further studies demonstrated
attenuated responses of pelvic afferents to bladder disten-
sion and intravesical injection of P2X agonists (ATP or α,β-
meATP) in P2X3−/− mice [421]. It was concluded that
bladder filling and subsequent distension induces release
of ATP from the urothelium, which, via P2X3 receptors,
triggers the mechanosensory signal transduction and excita-
tion of afferent nerve fibers [421, 422]. Similar to the P2X2
null mutation, P2X3 deficiency also resulted in impaired
peristalsis in the small intestine [423] but not in the mouse
colon [395]. In addition, P2X3−/− mice exhibited a blunted
response of gastric vagal afferents to fluid distension of
oesophagus and stomach [424].

In line with an important function in sensory systems,
both P2X3−/− models also showed an enhanced thermosen-
sory phenotype [417, 425] and were unable to differentiate
the intensity of non-noxious ‘warming’ stimuli [417]. How-
ever, it should be noted that thermal hyperresponsiveness
observed in P2X3 null mice could not be reproduced by
subcutaneous administration of A317491, a P2X3-selective
antagonist [425]. Therefore, it has been suggested that long-
term absence of P2X3 receptor is necessary to develop such
a thermosensory phenotype or that compensatory changes
contribute, at least in part, for the P2X3−/− phenotype
[425]. Finally, analysis of synaptic plasticity in P2X3−/−
mice has indicated that P2X3 receptor might be involved in
the induction of long-term depression (LTD) at hippocampal
synapses [426].

Besides the mouse models mentioned before, analyses of
P2X3 receptor function has been performed in the zebrafish
model system. Three groups reported the identification of
orthologues of the mammalian P2X3 subunit in zebrafish
[120, 427, 428]. The zebrafish orthologue, zP2rx3a (zP2X3,
also termed zP2rx3.1), is located on chromosome 14, where-
as zP2rx3b (or zP2rx3.2) is located on chromosome 1 [429].
Similarly to mammals, the expression of the zP2X3 receptor
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has been mainly detected on sensory neurons. Very high
levels were found in neurons of the trigeminal ganglia but
also in the Rohon-Beard cells of the dorsal spinal cord [428,
429]. A non-neuronal expression of zP2X3 receptor has
been found within lateral cranial ectodermal cells in zebra-
fish embryos [430, 431]. In order to characterize the func-
tion of zP2X3 receptor during development, morpholino
oligonucleotide-mediated knockdown of this channel was
performed [430]. These studies revealed that the zP2X3
subunit is required for normal craniofacial development
and sensory neurogenesis because its loss in embryos led
to craniofacial defects, such as malformation of pharyngeal
skeleton and disrupted epibranchial ganglia formation. The
specificity of this phenotype was confirmed by additional
morpholino oligonucleotides, which target another sequence
of the zP2RX3 gene and by partial rescue of the mutant
phenotype by co-injection of rP2X3 RNA [430].

P2X2 and P2X3 subunits are co-localized in many neu-
rons, particularly within dorsal root ganglia, nodose ganglia,
nucleus tractus solitarius, and taste buds [373, 380]. Double
knockout P2X2/P2X3Dbl−/− mice were generated by breed-
ing the compound heterozygous offsprings obtained upon
crossing of P2X3−/− (lacking the ATG translational start
site and exon 1 [416]) with P2X2+/− mice [65]. Surprising-
ly, about 90% of these P2X2/P2X3Dbl−/− mice died in the
early postnatal period with various abnormalities including:
distended bladders, enlarged hearts, pronounced atrophy or
hypocellularity of lymphohematopoietic organs, and lack of
lymphoid follicles in the spleen and mesenteric lymph node
[65]. Bacterial bronchial pneumonia was identified as the
leading cause of mortality. Those P2X2/P2X3Dbl−/− mice
that survived into adulthood (approximately 10%) were
found to be normal in appearance and weight. In contrast
to P2X2−/−, but similarly to P2X3−/− mice, the survived
double mutant mice had reduced pain behavior in both
phases of the formalin test [65] and provided evidence that
the P2X2 and P2X3 subunits are the predominant P2X
family members on mouse sensory neurons, since their
deletion led to loss of virtually all ATP-activated currents
in DRG and nodose ganglia.

Consistent with findings in P2X2 and P2X3 single
knockout mice, P2X2/P2X3Dbl−/− mice developed urinary
bladder hyporeflexia, decreased pelvic afferent fiber ac-
tivity in response to bladder filling [65], and reduction in
pelvic afferent response to colorectal distension [432].
Further studies highlighted a crucial role of the P2X2
subunit in ventilatory response to hypoxia, since this is
significantly decreased in both P2X2−/− and P2X2/
P2X3Dbl−/− mice but not in mice deficient in only the
P2X3 receptor [396].

Finally, studies on P2X2/P2X3 Dbl−/− mice showed that
ATP serves as a primary neurotransmitter in taste buds
[433]. P2X2/P2X3Dbl−/− mice displayed a loss of peripheral

gustatory nerve responses to salt, sweet, sour, bitter, and
umami [433, 434]. Despite this profound taste deficit, avoid-
ance of caffeine, and citric acid was comparable to that
observed in wild-type controls, suggesting involvement of
either non-gustatory or non-purinergic mechanisms for these
taste stimuli [433, 435]. In contrast to double mutant mice,
single P2X2−/− or P2X3−/− animals exhibited only moder-
ate changes in taste-mediated behavior, suggesting that
homomeric P2X2 or homomeric P2X3 receptors suffice
for normal taste function [433].

Collectively, all these findings demonstrate that homo-
meric P2X2, homomeric P2X3, and heteromeric P2X2/3
receptors are crucial players in sensory neurotransmission.

P2X4

The first P2X4 receptor cDNAs were cloned from hippo-
campus, whole brain, and superior cervical ganglia cDNA
libraries [87, 436, 437]. Additional P2X4 sequences were
cloned from various species and tissues [328, 438–443]
including X. laevis oocytes and zebrafish [57, 444]. A char-
acteristic feature of the P2X4 subunit is its widespread
distribution that overlaps to a large extent with the localiza-
tion pattern of the P2X6 subunit [200]. An extensive and
abundant P2X4 receptor expression has been demonstrated
in several regions of the central and peripheral nervous
systems [87, 335, 369, 374, 436, 437, 439, 445] as well as
all vital and reproductive organs, skeletal and smooth mus-
cle, epithelial and endothelial cells, and various others [87,
381, 436–438, 441, 442, 445–452]. The gene encoding the
human P2X4 receptor comprises 12 exons and is located
about 24 kilobases downstream of the P2X7 receptor gene.
This close chromosomal localization suggests that P2X4
and P2X7 genes evolved by gene duplication. Multiple
splice variants, often with distinct patterns of expression,
have been found for the P2X4 receptor [441, 443, 453]. A
putative minimal promoter of the human P2X4 gene was
identified and shown to be regulated by the hematopoietic
transcription factor GATA-2 [454].

The physiological role of P2X4 receptors has been
assessed using a variety of approaches, including knock-
down with either antisense oligonucleotides or small inter-
ference RNA as well as three P2X4−/− mouse lines (Fig. 4).
In the first knockout strategy, a lacZ/Neo cassette was used
to replace a region encompassing the first P2X4 exon (in-
cluding the ATG start codon) and a short part of the first
intron [455]. In a second KO model, the P2X4 genomic
fragment containing exons 3, 4, and 5 was replaced with a
loxP-flanked neomycin resistance cassette [456]. In the third
P2X4 knockout mouse line, a short fragment within exon 2
was replaced by an IRES-lacZ/Neo cassette [457].

Numerous studies have shown the involvement of the
P2X4 receptor in the pathogenesis of chronic neuropathic
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and inflammatory pain. P2X4 expression is increased in
microglia of the dorsal horn following spinal nerve ligation,
a model of neuropathic pain [190], and intrathecal adminis-
tration of P2X4 antisense oligodeoxynucleotides into rats
significantly attenuated both spinal cord-induced tactile hy-
persensitivity as well as the increase in P2X4 receptor levels
[190]. Likewise, tactile allodynia was reversed by spinal
administration of TNP-ATP [190]. The increase of P2X4
receptor expression was essentially restricted to hyperactive
microglia within the spinal dorsal horn and injection of
ATP-stimulated microglia into normal rats resulted in
P2X4-dependent tactile allodynia. In agreement with these
data, spinal cord injury or formalin injection into the hind-
paw of rats resulted in an increase in P2X4 receptor expres-
sion on microglial cells [458, 459]. P2X4−/− mice lines
[455, 460, 461] showed a marked decrease in tactile allody-
nia caused by nerve injury and a significant reduction in
peripheral inflammation-induced pain while behavioral
responses to acute thermal, mechanical, and chemically
induced pain appeared normal. It was demonstrated in two
P2X4−/− lines that P2X4 receptors control the release of
BDNF from activated microglia, which is promoting allo-
dynia [191, 460]. Further analysis demonstrated that the
reduction of inflammatory pain behavior in P2X4-deficient
mice was due to impaired synthesis of prostaglandin E2
(PGE2), a central mediator of inflammation involved in pain
hypersensitivity [461]. Accordingly, wild-type, but not
P2X4−/−macrophages, exhibited elevated levels of PGE2
after ATP-mediated activation of the P2X4 receptor. For
further information, see Jakobsson [462].

In both KO lines [460, 461], no differences to wt animals
were observed in the formalin test of injury-induced pain,
when standard amounts of formalin were used. However,
injection of a lower amount of formalin into a mouse paw
revealed that the second phase of the formalin test, which is
attributed to chronic inflammatory response, was markedly
attenuated in P2X4-deficient mice [461]. In contrast, the first
phase of the formalin test, representing acute nociception in
response to primary afferent activity, was unaffected in P2X4
null mice. This finding indicates that P2X4 channels are not
involved in acute nociception but most likely play a role in
chronic inflammatory pain that is determined by both periph-
eral and central sensitization. Also, a third P2X4−/− model
[457] revealed the presence of functionally active P2X4 recep-
tors in native peritoneal macrophages. Downregulation of the
P2X4 receptor by knockdown approaches [463, 464] as well
as its deletion [456] have also resulted in abnormal endothelial
cell responses to changes in blood flow, including a lack of
flow-induced Ca2+ influx and diminished production of the
endogenous nitrovasodilator, nitric oxide (NO). Accordingly,
P2X4−/− animals exhibited an elevated blood pressure, a lack
of vascular remodelling, and decreased flow-induced release
of NO, suggesting a crucial role of P2X4 channel in

endothelial cell-mediated control of the vascular tone. In-
volvement of the P2X4 receptor in control of Ca2+ entry
in vascular endothelial cells exposed to shear stress was
shown [465]. A P2X4- or P2X6- mediated Ca2+ influx
in response to extracellular Zn2+ and ATP has later been
shown to restore Cl− secretion across cystic fibrosis
airway epithelia, suggesting P2X4 and/or P2X6 recep-
tors as a potential therapeutic targets for the treatment
of cystic fibrosis [466, 467].

P2X4 receptors have been immunohistochemically iden-
tified in perisynaptic locations on hippocampal CA1 and
cerebellar Purkinje cells [335], and analysis of P2X4−/−
mice revealed a significant decrease in LTP at Schaffer
collateral synapses. Moreover, ivermectin had no effect on
P2X4−/− animals, whereas it enhanced LTP in wild-type
controls, thus indicating involvement of P2X4 receptor-
mediated Ca2+ influx in regulation of hippocampal synaptic
plasticity [455].

The role of the P2X4 receptor in the heart was studied in
a transgenic mouse model overexpressing the human P2X4
subunit under the control of the cardiac-specific α-myosin
heavy chain promoter [468, 469]. Although no apparent
histopathological abnormalities were observed under nor-
mal physiological conditions, the hP2X4 transgenic mice
exhibited increased contractility of the cardiomyocytes and
greater global contraction performance in intact heart as
compared with wt mice [468]. Therefore, it was hypothe-
sized that P2X4 receptor activation may be beneficial in
pathophysiological conditions, such as cardiomyopathy
and ischemic heart disease. In order to test this possibility,
binary P2X4 receptor (P2X4)/calsequestrin (CSQ) transgen-
ic mice were generated by crossing hP2X4 transgenic mice
with a CSQ transgenic mouse model of cardiomyopathy
[470]. Interestingly, overexpression of the P2X4 receptor
in the P2X4/CSQ mutant mice resulted in significant delay
of heart failure progression and a more than twofold in-
crease in life expectancy [470–472]. Similarly, chronic in
vivo administration of the P2 receptor agonist MRS-2339
was found to not only reduce cardiac hypertrophy and
prolong survival of the CSQ single transgenic mice but also
to improve cardiac function in dogs with tachycardia-
induced cardiomyopathy, thus emphasizing an important
role of cardiac P2X channels in heart physiology [471,
473]. Further evidence for a rescue effect of overexpressed
hP2X4 receptors in ischemic heart failure was provided in
an analysis of hP2X4 receptor overexpressing transgenic
mice after myocardial infarction [474], suggesting that the
P2X4 channel represents a therapeutic target for the treat-
ment of heart failure resulting from ischemia.

In zebrafish, two P2X4 genes, designated zP2rx4a
(zP2rx4.1, chromosome 21) and zP2rx4b (zP2rx4.2, chro-
mosome 8), have been identified, and the zP2rx4b transcript
has been localized in the embryonic nervous system,
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including dorsal and ventral neurons of spinal cord and the
trigeminal nerve [429]. While no information is available
concerning the expression pattern of the zP2rx4a receptor,
its successful crystallization has greatly furthered our under-
standing of the molecular structure of the P2X channel
family [48].

P2X5

A cDNA clone encoding the P2X5 receptor was originally
isolated from rat celiac cervical ganglia and shortly after-
wards also from a rat heart cDNA library [200, 201].
Corresponding sequences were later obtained from human
brain, chicken embryo skeletal muscle (initially named
cP2X8), brain and heart cDNA libraries, a mouse BAC
library, bullfrog tadpole skin, and zebrafish [56, 57, 59–61,
124, 202, 429, 475].

The gene encoding the P2X5 subunit consist of 12
(chicken, human) to 13 (mouse, rat) exons and shares its
chromosomal localization with the P2X1 gene (see section
“P2X1”) [56].

The murine P2X5 channel appears to be widely distrib-
uted in the central and enteric nervous systems [476, 477].
In addition, it has been detected in cardiac and skeletal
muscle, adrenal gland, kidney, and testis [56, 61, 201,
478]. In humans, P2X5 receptor expression has been found
to be predominant in the immune and central nervous sys-
tems [60]. In contrast to other vertebrate species, two alter-
native splice variants of the P2X5 receptor have been
reported in humans, P2X5a, that lacks exon 10, and
P2X5b, missing exons 3 and 10 [19, 60]. The P2X5a tran-
script results from a single nucleotide polymorphism (SNP)
at the 3’ splice site of exon 10 and thus encodes a truncated,
non-functional P2X5 protein lacking a portion of both the
putative ATP binding site and TM2 [55, 479]. The allele
encoding this non-functional P2X5 isoform is the most
prevalent variant in different human populations [479].

Interestingly, several reports have linked P2X5 receptor
expression with differentiation and turnover of various cell
types, such as skeletal muscle cells, osteoblasts, and epithe-
lial cells from different tissues (nasal mucosa, skin, vagina,
gut, bladder, ureter, thymus) [381, 383, 447, 480–485].
Ryten et al. provided evidence that ATP-mediated activation
of P2X5 receptors suppresses proliferation and promotes
differentiation of skeletal muscle progenitor cells (known
as satellite cells) into muscle fibers [485]. Therefore, the
P2X5 channel has been postulated to play a role in skeletal
muscle development or regeneration [485, 486]. Consistent
with this, developmentally regulated expression of the P2X5
receptor has been reported in rat and chick skeletal muscle
[383, 484]. In addition, relatively high P2X5 receptor ex-
pression has been found in different cancer tissues, includ-
ing basal and squamous cell carcinomas as well as prostate

cancers, indicating that activation of P2X5 receptor may
also regulate growth and differentiation of cancer cells
[487–489].

P2X5 knockout or transgenic animals have not been de-
scribed so far. However, data from siRNA-mediated knock-
down of P2X5 receptors in human bronchial epithelial cells
and the fact that most humans express the non-functional
P2X5 isoform indicate that at least, in humans, it does not
fulfil an essential physiological function [465, 479].

In zebrafish, two paralogous P2X5 genes have been
reported. zP2rx5.1 was mapped on chromosome 5, and
zP2rx5.2 (also known as zP2rx514 or zP2rx8) is located
on chromosome 15 [57, 429, 490]. The zP2rx5.1 receptor is
the only zP2X receptor for which mRNA has been detected
in embryonic skeletal muscle, whereas zP2rx5.2 mRNA,
like other zP2X receptor mRNAs, was found in the nervous
system [429, 490, 491]. Using morpholino-mediated
zP2rx5.1 gene knockdown, it was demonstrated that the
zP2rx5.1 receptor is necessary for the muscle responsive-
ness to ATP but is not essential for myogenesis during
zebrafish embryonic development [490].

P2X6

The P2X6 receptor sequence was first cloned from the rat
superior cervical ganglia and shortly afterwards from a rat
brain cDNA library [200, 205]. Subsequently, human and
murine P2X6 receptor counterparts (originally designated as
P2XM) have been identified in a search for novel p53-
regulated genes [206, 492]. Interestingly, no P2X6 ortholog
has so far been found in zebrafish or any other non-
mammalian species [490].

Northern blot analyses have demonstrated a predominant
expression of murine and human P2X6 transcripts in skele-
tal muscle [206, 492]. Further studies have shown that
expression of the P2X6 receptor in chick, rat, and mouse
skeletal muscle, similarly to the P2X5 receptor, is regulated
during embryonic development [382, 383, 484]. In addition,
widespread distribution of rat P2X6 receptors, overlapping
to a large extent with the expression pattern of P2X4 and
P2X2 subunits, has been reported in both the central and the
peripheral nervous systems [200, 335, 493, 494]. Further-
more, the P2X6 subunit has been found, often together with
the P2X4 subunit, in epithelial cells of various organs (renal
tubule, bronchi, thymus, umbilical vein) but also in gland
cells of the uterus and granulosa cells of the ovary [200,
270, 336, 381]. It is well established that the P2X6 subunit
is unable to homo-oligomerize effectively, and the frequent
co-localization of P2X6 with P2X4 or P2X2 subunits sug-
gests the formation of heteromeric P2X2/6 and P2X4/6
channels [45, 203, 204, 495].

The P2X6 gene comprises 12 exons and lies on chromo-
some 16 in mouse, chromosome 11 in rat, and chromosome
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22 in humans [492]. Four alternatively spliced transcripts,
partially showing different expression patterns, have been
described for the human P2X6 receptor [465, 492, 496]. In
the first splice form, designated AL1, a portion of exon 1,
encoding a part of the TM1, is eliminated. The second splice
variant, AL2, lacks exon 10, whereas the third splice form,
AL3, misses exons 10–11, resulting in truncated P2X6
proteins lacking the TM2 [492, 496]. A fourth splice variant
of the P2X6 receptor, lacking exon 4, has later been found
together with the full-length transcript in human CF and
non-CF airway epithelial cell lines [465]. Interestingly, ab-
errant splicing patterns or even no P2X6 mRNA expression
have been demonstrated in various soft tissues sarcomas,
suggesting a role for P2X6 receptor in tumorigenesis [496].

An alternatively spliced P2X6 variant has also been iden-
tified in mouse. This splicing product misses exon 8 and most
probably gives rise to a non-functional protein, which lacks a
portion of the extracellular loop, the entire TM2, and the
intracellular domain [382, 497]. Although both the full-
length P2X6 transcript and the alternatively spliced form are
present during mouse postnatal development and in adult
brain, the expression level of the full-length form is much
higher. In contrast, the splice variant appears to be the pre-
dominant form expressed during neuronal differentiation of
P19 embryonal carcinoma cells [497]. The functional signif-
icance of this alternative splice product in mice is not clear, but
it might regulate P2X6 receptor activity during the process of
neuronal differentiation [497].

Since neither P2X6 knockout nor transgenic animals
have been generated so far, the in vivo function of the
P2X6 receptor remains poorly understood. Nevertheless, in
human airway epithelial cells, siRNA-mediated knockdown
of P2X6 subunits resulted in significant inhibition of zinc-
induced Ca2+ entry [465]. As mentioned previously, the
same phenotype has been obtained with P2X4-specific
siRNA, thus indicating that both subunits may coassemble
and function as heteromeric P2X4/P2X6 receptors [465].
Moreover, the re-appearance of P2X6 expression in regen-
erating muscle fibers from both Duchenne muscular dystro-
phy patients and dystrophin-deficient mice (mdx) was
observed, and an involvement of P2X6 receptors in the
regeneration of dystrophic muscles has been suggested
[382]. In addition, marked upregulation of the P2X6 subunit
in myocardial tissue from chronic heart failure patients was
reported, indicating that P2X6 receptors may contribute to
the progression of this disease [498]. A role for P2X6
subunits in the differentiation of mesenchymal stem cells
has recently been proposed [499].

P2X7

The cDNA encoding the P2X7 receptor (originally termed
P2Z) was first cloned from a rat brain cDNA library and

subsequently from different tissues of various species, in-
cluding human monocytes, mouse microglial cells, X. laevis
stomach, and more recently, guinea pig brain [125, 133,
294, 500, 501]. The P2X7 channel is mainly expressed on
cells of hematopoietic origin (monocytes, macrophages,
lymphocytes, dendritic cells, mast cells) as well as on dif-
ferent types of glial cells present in the central (microglia,
astrocytes, oligodendrocytes, ependymal cells) and the pe-
ripheral (Schwann cells, satellite cells, enteric glial cells)
nervous systems [125, 332, 369, 449, 502–509]. In addition,
it is widely distributed on various epithelial and endothelial
cells [381, 510–513]. Although P2X7 mRNA has been
detected in neurons and several groups have reported
P2X7 antibody staining in neurons [514–520], the presence
of P2X7 protein and its function in neurons remains a matter
of controversial debate. This is partly due to the poor selec-
tivity of the used antibodies and lack of selective ligands
[312, 339, 521]. Experiments on P2X7−/− mouse lines
suggest that the antibodies detect an unspecific or “P2X7-
like” protein in neurons that could be clearly differentiated
from the P2X7 protein by molecular size comparison. The
currently identified rodent splice variants or potential rodent
orthologues of the identified human splice variants cannot
account for these observations.

The gene encoding the P2X7 receptor consists of 13
exons and lies in tandem with the P2X4 gene on human
and rat chromosome 12 and murine chromosome 5 [522]. In
humans, nine different splice variants, P2X7B-J, have been
identified so far [308, 523, 524]. Four of these, P2X7B,
P2X7E, P2X7G, and P2X7I, contain a retained intron 10
with a premature stop codon leading to C-terminally trun-
cated P2X7 forms. P2X7G and P2X7H contain an alterna-
tive exon N3 with a new start codon that leads to the
translation of non-functional P2X7 proteins lacking TM1
[523]. In addition, removal of one or more of the 13 P2X7A
exons occurs in some variants [523]. The P2X7J variant is
truncated downstream of exon 7 (encoding part of the ex-
tracellular loop) and non-functional on its own [524]. In
heterooligomeric complexes with P2X7A, it displays dom-
inant negative properties [524] and has been reported to
inhibit P2X7A-induced apoptosis, thus contributing to un-
controlled growth of cancer cells. In contrast, hetero-
oligomerization of P2X7B with P2X7A has been demon-
strated to potentiate P2X7 receptor responses and exert
trophic effects [308]. In rodents, three different splice var-
iants have been identified [300, 525]. The fully functional
P2X7K variant is derived from an alternative exon 1’,
within intron 1 of the rodent P2X7 gene and contains an
alternative N terminus and TM1 (Fig. 4). The P2X7K chan-
nel shows higher agonist sensitivity, slower deactivation
kinetics, and increased pore formation activity [300]. More
recently, two novel splice variants in mouse were reported
that utilize alternative exons 13b or 13c and encode different
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C-terminally truncated P2X7 isoforms. The expression pat-
tern of both splice products, but especially P2X713b, has
been shown to overlap to a large extent with P2X7A. More-
over, both isoforms exhibited relatively small current
responses and poor plasma membrane delivery. The
P2X713b isoform was shown to form heteromeric com-
plexes with P2X7A and downregulate its function [525].

Besides alternatively spliced forms, over 650 SNPs have
been reported in the human P2X7 gene [526]. Some of these
were found to confer loss- or gain-of-function phenotypes,
and several of these P2X7 genetic variants have been asso-
ciated with higher susceptibility to diseases, including infec-
tions with intracellular pathogens (e.g., tuberculosis,
toxoplasmosis), chronic lymphocytic leukemia, diabetes,
and mood disorders [527–538]. However, these genetic
associations could not always be replicated across different
populations [539–543].

The physiological function of P2X7 receptors has been
investigated in three independently generated P2X7−/−
mouse models [323, 339, 544, 545]. In the mouse line
established by Glaxo, the P2X7 gene was disrupted by
targeted insertion of a lacZ/Neo reporter cassette into exon
1, 2 bp downstream of the ATG start codon (Fig. 4) [339,
544, 546]. Later analysis, however, demonstrated that this
knockout strategy does not result in complete inactivation of
the P2X7 gene since translation of the P2X7K splice variant
is not prevented (Fig. 4) [300]. This is in agreement with the
observation that T cells from Glaxo P2X7 KO mice exhibit
fully functional P2X7 responses [546]. In the mouse line
produced by Pfizer, a portion of exon 13, encoding Cys506
to Pro532, has been deleted and replaced with a neomycin
resistance cassette (Fig. 4) [323]. Also about this mouse
model, concerns have been raised because a C-terminally
deleted P2X7 receptor could theoretically still be expressed.
Expression of a “P2X7-like” protein has been reported in
the brain of these mice and could represent either an un-
known P2X7 splice variant or a novel protein, with a similar
antibody epitope [547, 548]. In addition, the possibility that
the recently described C-terminally truncated variants of the
P2X7 receptor (P2X713b, P2X713c) escape the inactivation
strategy cannot be excluded either [525].

Despite the described limitations, the existing P2X7 re-
ceptor knockout mouse models greatly contributed to our
understanding of the physiological function of the P2X7
receptor. The Pfizer P2X7-deficient mice have established
an important role for P2X7 receptor-mediated signalling in
cytokine production and inflammation [322, 323]. It was
demonstrated that LPS-activated macrophages from
P2X7−/−mice failed to process pro-IL-1β and consequently
did not release mature IL-1β in response to ATP treatment
[323]. The same effect was found with ATP-challenged and
LPS-primed leukocytes derived from P2X7−/− blood sam-
ples [322]. Using a monoclonal antibody-induced arthritis

model, it was further demonstrated that P2X7-deficient mice
exhibited diminished inflammatory responses and reduced
cartilage destruction [322].

In agreement with an important role in inflammation,
analysis of the P2X7 KO mice developed by Glaxo [321]
showed a complete elimination of hypersensitivity to both
inflammatory (intraplantar injection of Freund’s complete
adjuvant) and neuropathic (partial ligation of the sciatic
nerve) chronic pain states and a marked reduction in mature
IL-1β production. A similar effect was also observed for
LPS-activated microglia in the dorsal horn of rats [549]. The
relevance of P2X7 receptors in the development of neuro-
pathic pain was supported by experiments demonstrating an
increase in P2X7 receptor expression in injured nerves from
patients suffering from neuropathic pain [321]. Importantly,
administration of P2X7-specific antagonists was shown to
mimic the knockout phenotype in rodents and thus further
established the P2X7 receptor as a therapeutic target [152,
158, 160–162].

In contrast to the above findings, it was recently shown
that the P2X7 receptor does not play a role in bone cancer
pain. In fact, the Pfizer P2X7 KO mice used in this study
exhibited a more severe pain phenotype. This unexpected
result can be explained by the different nociceptive mecha-
nism in bone cancer pain that, in contrast to inflammatory or
neuropathic pain, does not involve immune cell activation.
The results thus underline the important role of microglia
activation in neuropathic pain [550, 551].

The Pfizer P2X7−/− mice also developed skeletal abnor-
malities and revealed the involvement of P2X7 receptors in
periosteal bone formation and trabecular bone remodeling
[552]. Further studies demonstrated a reduction of sensitiv-
ity to mechanical loading in these mice, suggesting a role for
P2X7 channels in bone mechanotransduction [553]. Regu-
lation of osteoclast homeostasis by P2X7 receptors has also
been demonstrated in vitro. For instance, blocking of the
P2X7 receptor with either oxidized ATP or monoclonal
antibodies in cultured human osteoclasts resulted in marked
inhibition of the mononuclear preosteoclast fusion and their
differentiation into multinucleated osteoclasts [554]. In con-
trast, no bone phenotype has been observed in the Glaxo
P2X7 KO animals, suggesting that, in bone tissue, the
P2X7K isoform may compensate for the lack of the
P2X7A receptor [555].

Analysis of the Pfizer P2X7−/− mice further demonstrat-
ed that elimination of P2X7 receptors, in males but not in
females, leads to reduced fluid secretion in salivary gland
and pancreas but increased secretion in lacrimal glands
[556, 557]. Hence, it has been suggested that P2X7 channel
might also play a role in the regulation of exocrine gland
secretion.

Several studies suggest that P2X7-mediated signalling con-
tributes to neurodegenerative processes observed in CNS
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diseases, including multiple sclerosis, Alzheimer’s, and Par-
kinson’s diseases [558–561]. Upregulation of P2X7 receptor
expression has frequently been reported in animal models and
patients suffering from neurodegenerative conditions [560,
562–564]. An increased expression of P2X7 receptors, altered
calcium-signalling, and increased susceptibility to apoptosis
was reported in neurons from a mice model of Huntington’s
disease [565]. Inhibition of P2X7 receptors in rats was shown
to reduce neuronal degeneration and improve recovery after
spinal cord injury [566]. Analysis of Glaxo P2X7−/− mice in
an induced model of multiple sclerosis demonstrated a mark-
edly reduced incident of disease and highlighted a role for
astroglial P2X7 receptors in disease progression [561]. Fur-
thermore, antagonist-mediated P2X7 receptor inhibition
resulted in suppression of symptoms associated with the dis-
ease [560]. Contrary to these findings, Pfizer P2X7−/− mice
were reported to be more susceptible to the disease and
exhibited enhanced inflammation in CNS when compared
with wild-type controls [567]. Also, in studies on the role of
P2X7 receptors in Parkinson’s disease, conflicting results
have been obtained [559, 568]. Further studies are needed to
validate the existing findings and to confirm the potential of
the P2X7 receptor as a therapeutic target for the treatment of
neurodegenerative diseases.

Genetic studies showed an association between the
Q460R P2X7 polymorphism with mood disorders. [527,
534, 535]. A possible link to P2X7 receptor function is
provided by the implication of pro-inflammatory cytokines,
including IL-1β in the etiopathogenesis of “sickness behav-
ior” in mice and depression in humans [569–572]. To further
test a role of P2X receptors in mood disorders, P2X7−/−
mice were assayed in different behavioral models of depres-
sion [545, 573]. Using a novel mouse line generated at
Lexicon Genetics Inc. (Fig. 4), an anti-depressant-like phe-
notype was found [545], and in the Pfizer−/− mouse line, an
impaired adaptive coping response to repeated stress was
observed [573].

It was also reported that P2X7 receptors, by affecting
neurotransmitters release, modulate synaptic activity and
neuron-glia signalling in the brain. P2X7 receptors on mu-
rine cortical astrocytes were shown to contribute to the
release of excitatory amino acids, such as glutamate and
aspartate [574], and in hippocampal slices from P2X7−/−
mice, the ATP-induced efflux of GABA and glutamate was
found to be attenuated in comparison to wild-type animals
[575]. A more recent study showed induction of IL-1β
mRNA expression in the hippocampus after a spatial mem-
ory task in wt but not P2X7−/− mice [576]. Another study
on P2X7-/- mice suggested the involvement of P2X7 recep-
tors in sleep via release of cytokines and other sleep regu-
latory substances [577].

P2X7 receptor-mediated signalling has also been postu-
lated to play a role in cancer physiology. Although

unusually high levels of P2X7 receptor have been found in
diverse tumors and the P2X7 receptor has been proposed as
a novel cancer biomarker, its link to cancer remains unclear
[488, 509, 578–583]. Nevertheless, some recent studies
have demonstrated a positive correlation between P2X7
receptor expression/activation and tumor metastasis [269,
584], and activation of P2X7 receptors was shown to pro-
mote invasiveness of aggressive human breast cancer cells
[584]. In agreement with this finding, both short hairpin
RNA-mediated silencing of P2X7 mRNA or block of
P2X7 receptors with antibodies resulted in attenuated me-
tastasis of murine lymphoid neoplasm P388D1 cells [585].

An ortholog of the P2X7 gene has been identified on
zebrafish chromosome 8 [429] and two transcript variants,
containing 14 and 16 exons, respectively, have been depos-
ited at the Ensembl database. A widespread distribution of
the zP2X7 receptor in non-nervous tissues of zebrafish
embryo has been reported [429].

Despite such a broad utility of used genetic technologies,
the interspecies differences have to be taken into account
when translating phenotypic data from animals to humans
[80, 526]. Importantly, marked differences in P2X7 receptor
function exist between rodents and human and moreover even
between different mouse strains [125, 133, 526]. For instance,
the naturally occurring allelic polymorphism P451L located in
the P2X7 cytoplasmic domain has been shown to significantly
impair function of the channel [305]. It has been reported that
human, rat, and the BALB/c and 129/Sv mouse strains carry
the high-activity variant P451, whereas the C57BL/6 and
DBA/2 mouse strains have the low-activity allele L451
[305, 546]. This finding is essential for the interpretation of
phenotypic changes observed for example in lymphocytes
from P2X7 KO mice [546]. For more detailed information
about pharmacological differences between various mamma-
lian P2X7 receptors, see also the section “Pharmacological
characteristics of P2X receptors” and refer to Donnelly-
Roberts et al. [79].

Concluding remarks

Following the postulation of a class of ATP-gated ion chan-
nels about 20 years ago [3], P2X receptors have repeatedly
amazed us as a surprisingly unusual class of ligand-gated
ion channels. Cloning of the first subtypes and subsequent
biochemical and functional analysis of heterologously
expressed wt and mutant receptors has revealed a complete-
ly novel ion channel structure with various unexpected
properties. The long-awaited first crystal structure of a
P2X receptor confirmed many of the predictions based on
mutagenesis studies and started a new era in which muta-
tions can be planned and results can be explained based on
this structure or subtype-specific homology models. Despite
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this great progress, the movements during channel opening
and desensitization are still unclear, and additional crystal
structures in the ligand-bound and open states as well as
studies investigating the receptor dynamics, such as voltage
clamp fluorometry, would greatly help to understand these
processes. In particular, the molecular mechanisms underly-
ing subtype-specific molecular functions such as pore dila-
tion and plasma membrane morphology changes remain
absolutely enigmatic, and the elucidation of these and other
receptor functions that most likely involve interactions with
additional and so far mostly unidentified proteins might
constitute even more challenging tasks.

Also, the phylogenetic origin of this channel family
remains a mystery. Another exciting discovery was that
P2X-receptors in evolutionary old organisms serve intracellu-
lar functions raising the intriguing and so far hardly addressed
possibility of intracellular functions in vertebrates. After many
basic principles of P2X receptor function and consequences of
their activation have been worked out on the cellular level, the
generation of genetically modified animal models now opens
opportunities for in vivo studies. For five of the seven P2X
receptor subtypes, KO mice have been generated and have
confirmed the involvement of these receptors in pathological
conditions such as neuropathic pain, inflammation, and
thrombosis, to only name a few. P2X transgenic animal mod-
els are currently being created. Thus, multiple tools are now
emerging that help to decipher the physiological functions of
these receptors and their validation as drug targets. Both the
advances in understanding the molecular structure and func-
tion of these receptors as well as the increasing availability of
animal models will greatly accelerate the processes of drug
development. However, species differences in the physiology
and pharmacology of these receptors as well as the presence of
receptor isoforms must be considered and might turn out to be
of particular relevance for this puzzling receptor class.
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