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Abstract: Durable response, inherent or acquired resistance, and dose-limiting toxicities continue to
represent major barriers in the treatment of patients with advanced clear-cell renal cell carcinoma
(ccRCC). The majority of ccRCC tumors are characterized by the loss of Von Hippel–Lindau tumor
suppressor gene function, a stable expression of hypoxia-inducible factors 1α and 2α (HIFs), an
altered expression of tumor-specific oncogenic microRNAs (miRNAs), a clear cytoplasm with dense
lipid content, and overexpression of thymidine phosphorylase. The aim of this manuscript was to
confirm that the downregulation of specific drug-resistant biomarkers deregulated in tumor cells by
a defined dose and schedule of methylselenocysteine (MSC) or seleno-L-methionine (SLM) sensitizes
tumor cells to mechanism-based drug combination. The inhibition of HIFs by selenium was necessary
for optimal therapeutic benefit. Durable responses were achieved only when MSC was combined
with sunitinib (a vascular endothelial growth factor receptor (VEGFR)-targeted biologic), topotecan
(a topoisomerase 1 poison and HIF synthesis inhibitor), and S-1 (a 5-fluorouracil prodrug). The
documented synergy was selenium dose- and schedule-dependent and associated with enhanced
prolyl hydroxylase-dependent HIF degradation, stabilization of tumor vasculature, downregulation
of 28 oncogenic miRNAs, as well as the upregulation of 12 tumor suppressor miRNAs. The preclinical
results generated provided the rationale for the development of phase 1/2 clinical trials of SLM in
sequential combination with axitinib in ccRCC patients refractory to standard therapies.

Keywords: methylselenocysteine; seleno-L-methionine; clear-cell renal cell carcinoma microRNAs;
hypoxia-inducible factor; antitumor activity

1. Introduction

Despite advances in the treatment of patients with advanced clear-cell renal cell carcinoma
(ccRCC) with anti-angiogenic agents, checkpoint inhibitors, and mammalian target of rapamycin
(mTOR) inhibitors alone and in combination, durable responses are seen in about 30% of treated ccRCC
patients [1–13]. A systematic review of the first line for metastatic renal carcinoma reported an average
progression-free survival of 8.4 months with a range of 6.5 to 12.3 months, and an average overall
survival of 24.4 months with a range of 18.5 to 32.9 months [14]. Based on the clinical data generated
in patients with advanced cancer, resistance and the associated dose-limiting toxicities remain major
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clinical challenges. There is an unmet clinical need to identify a new treatment modality that is
patient-centric, selective, and efficacious for metastatic ccRCC patients. Both primary and metastatic
ccRCC tumors are uniquely characterized by the expression of altered biomarkers associated with
increased angiogenesis, metastasis, and drug resistance, including deletion and/or mutation of the von
Hippel–Lindau (VHL) tumor suppressor gene in the majority of ccRCC tumors, resulting in the stable
expression of hypoxia-inducible factors 1α and 2α (HIFs), and vascular endothelial growth factor
(VEGF) [15–33]. Programmed death 1 (PD-1) is expressed in the membrane and cytoplasm of activated
T cells, B cells, and dendritic cells. Programmed death ligand 1 (PD-L1) is expressed in 21–75% of
ccRCC tumors, and allows cancer cells to evade immune response [34–47]. Although multiple signaling
and epigenetic pathways regulate the expression of PD-L1, interferons γ and α (INF-γ and INF-α) and
specific oncogenic micro RNAs (miRNAs) are also known to induce PD-L1 [48–53]. PD-L1 incidence
and intensity vary among different tumor types. The analysis of melanoma tumors revealed that
38% of them express both PD-L1 and tumor-infiltrating lymphocyte (TIL), while 41% are negative
for both, and 1% are PD-L1-positive, and 20% are TIL-positive [38,54,55]. PD-L1 was expressed in
69 out of 98 (70.9%) ccRCC tumors expressing mutant VHL. In all wild-type VHL tumors, 11.2%
express PD-L1 [16]. HIFs and PD-L1 are co-expressed in cancer cells. Under hypoxic conditions, HIFs
regulate the expression of PD-L1 by binding to the hypoxia response element in the PD-L1 proximal
promoter to activate its transcription [47,48,56]. PD-L1 expression in cancer cells may, therefore, be
regulated transcriptionally by HIF and post-transcriptionally by miRNAs. It is likely that the effective
downregulation of HIFs would lead to the downregulation of PD-L1, resulting in an increased tumor
response to subsequent treatment with anti-PD-1/PD-L1 therapies.

Thymidine phosphorylase (TP), an angiogenic protein and an enzyme required for the activation
of several 5-fluorouracil (FU) prodrugs, is overexpressed by approximately 30–40% of cancers [57–63].
TP may function as an independent prognostic factor for increased tumor vascularity, and a target for
the activation of 5-FU prodrugs. Utilizing TP to activate 5-FU prodrugs may also reduce its angiogenic
activity, and may synergize with VEGF-targeting drugs. The reported overexpression of TP in ccRCC
provided the opportunity to evaluate 5-FU prodrugs, such as S-1, in combination with tyrosine kinase
inhibitors (TKIs) targeting VEGF/VEGF receptor (VEGFR).

Morphologically, ccRCC tumors are characterized by extensive lipid accumulation.
Hypoxia-inducible protein 2 (HIG-2) is highly expressed in tumors expressing HIF1α, but not
HIF2α [22,64]. Results generated indicate that HIG-2 is a direct target of HIF1α, but not HIF2α.
Carnitine palmitoyltransferase (CPT1A), a fatty-acid transporter in the mitochondria, was recently
reported to be a direct target of HIFs [65]. Clear-cell RCC cells transfected with VHL led to the
downregulation of CPT1A, resulting in fatty-acid transport into the mitochondria, and forcing the
formation of lipid droplets from fatty acids. Recent published reports indicated that ccRCC tumor cells
expressing mutant VHL and the stable expression of HIFs participate in lipid deposition. However,
HIF2α, but not HIF1α, controls the expression of perilipin 2, resulting in lipid storage [66]. In cells with
a co-expression of HIFs, miRNA-155, and miRNA-210, it is possible that HIG-2, CPT1A, and perilipin
2 may also be regulated by miRNAs through HIF-dependent or -independent pathways. Since both
HIFs are involved in the regulation of lipid droplets in ccRCC, agents that target HIF2α, but not HIF1α,
may express limited antitumor activity. Agents that target both HIFs may have greater therapeutic
impact and could avoid the need to regulate or target individual pathways regulated by HIFs.

2. Results

2.1. Hypoxia-Inducible Factors 1α and 2α (HIFs) and VHL Tumor Suppressor Gene

The molecular profiles of ccRCC tumors are summarized in Figure 1 and Table 1. HIFs are
transcriptional factors that regulate the expression of over 200 genes involved in angiogenesis, tumor
metastasis, and drug resistance. Unlike colorectal and head-and-neck tumors, ccRCC tumors feature
a high incidence and intensity of constitutively expressed HIFs, as well as lower levels of VEGF
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and prolyl hydroxylase 2 (PHD2), with no detectable prolyl hydroxylase 3 (PHD3), as assessed by
immunohistochemistry (Table 1).
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Figure 1. Hypoxia-inducible factors (HIFs, ‘+’ indicates presence and ‘−’ means absence), vascular
endothelial growth factor (VEGF), high-intensity thymidine phosphorylase (HTP), and programmed
death ligand 1 (PD-L1) biomarker expression in clear-cell renal cell carcinoma (ccRCC) tumors. The
data for HIFs and VEGF were generated by our laboratory [20,22], while others are from published
reports [13,63].

Our laboratory was the first to report that constitutively expressed HIF1α and HIF2α (Table 1,
Figure 2) are selenium targets (adopted from References [20,32]). The data in Figure 2 show that the
inhibition of constitutively expressed HIF1α and HIF2α in RC2 and 786.0 Clear-cell RCC cells, and
HIF1α in FaDu head and neck [32], A548 lung carcinoma cells, and HT29 colorectal tumor cells is
selenium dose-dependent and independent of the disease site/cell type. Unlike other HIF-targeting
agents, selenium inhibits HIF expression via PHD-dependent degradation [20,32].

Table 1. Molecular profile of tumor biopsies.

Incidence of HIF-α and PHDs Protein Expression in Primary Human ccRCC, Head & neck (H/N) and Colorectal Cancer
(CRC) Tumor Biopsies:

Tumors HIF-1α HIF-2α HIF-1α and/or HIF-2α PHD2 PHD3
ccRCC 45% (40/88) 78% (69/88) 92% (81/88) 35% (31/88) 0% (0/88)
H/N 23% (40/173) 16% (23/146) 38% (46/122) 86% (180/210) 21% (32/153)
CRC 13% (8/62) 15% (10/65) 26% (17/64) 90% (55/61) 50% (31/62)

VEGF(A)
Tumors Incidence of Positions Average Immunoscope
ccRCC 54% (48/88) 2.3 (weak)
H/N 79% (136/173) 4.24 (moderate)
CRC 97% (60/62) 5.68 (strong)
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Figure 2. Constitutively expressed HIFs are selenium targets [20,32]. Effects of methylseleninic
acid (MSA), the active moiety of methylselenocysteine (MSC) or seleno-L-methionine (SLM), on the
expression levels of constitutively expressed HIFs in RC2 and 786.0 renal cell carcinoma, and on HIF1α
head and neck in FaDU, lung carcinoma, A549, and colorectal carcinoma cell lines. RC2 and 786.0 cells
(adopted from Reference [20]) were exposed to 10 µM MSA for 24 h, while other cells—FaDu (adopted
from Reference [32]), A549, and HT29—were exposed to 0.5% O2 for 24 h and treated with different
MSA concentrations. Cells were lysed rapidly on ice and analyzed for HIF expression by Western
blot [20,32].

2.2. Tumor Vasculature

To accommodate survival, growth, and metastasis, tumor cells promote the formation and
development of new blood vessels [36,39]. Tumor-associated blood vessels within the tumor
microenvironment are unstable and leaky, and they could represent a barrier to the delivery of effective
therapies to tumor cells [67,68]. Thus, for the development of efficacious therapy, treatment should
include drugs targeting biomarkers that induce the normalization of tumor-associated vasculature.
Our laboratory was the first to report that the stabilization of tumor vasculature by MSC is dose- and
schedule-dependent. We previously reported that the therapeutic dose and schedule of MSC/SLM
exert dual effects. Firstly, anti-angiogenic effects were achieved via the inhibition of new vessel
formation and a reduction in microvessel density. Secondly, tumor vascular maturation was achieved
through an increase in pericyte recruitment. Collectively, these effects were associated with an increase
in drug delivery and distribution to tumor cells. As shown in Figure 3, in vivo treatment with
therapeutic doses of MSC resulted in a selective increase in vascular maturation index in tumors, but
not in normal liver mouse tissues. The data generated demonstrate that tumor cells and their associated
vasculature can be successfully and selectively modulated in vivo by a therapeutic, non-toxic dose and
schedule of MSC. These results are consistent with the data generated by Jain et al., demonstrating
normalization of the tumor microenvironment by Avastin, an anti-angiogenic agent [69].
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Figure 3. MSC selectively stabilizes tumor vasculature [68,70]. Effects of MSC treatment on the
stabilization of tumor vasculature. Xenografts bearing FaDU tumors were treated orally with 10 mg/kg
MSC daily for seven days, at which point the vascular maturation in tumor and normal liver tissues
was assessed histologically [68,70].

2.3. Oncogenic miRNA-155 and miRNA-210

Non-coding miRNAs are small molecules involved in the post-transcriptional regulation of genes,
and are often associated with increased angiogenesis and drug resistance. Micro RNAs function as
either tumor suppressors or promoters, and they act by targeting the 3’ untranslated region (3’-UTR)
of targeted genes [71,72]. Micro RNAs reduce the gene expression of mRNAs by inhibiting translation
or via degradation of the transcript. Oncogenic miRNA-155 and miRNA-210 are highly overexpressed
in ccRCC tumors expressing HIF1α, HIF2α, VEGF, and PD-L1 [73–81].

To identify a possible link between HIF-α protein expression levels and tumor-associated miRNAs,
three primary ccRCC biopsies and two ccRCC cell lines expressing a similar incidence and distribution
of HIF-α were analyzed using a microarray for miRNA expression. Microarray analysis using an
Exiqon microarray chip of RC2 cells treated with methylselenic acid (MSA), an inhibitor of HIF1α,
revealed that 28 miRNAs were downregulated and 12 miRNAs were upregulated (Figure 4A).
Although several miRNAs were altered, selected miRNAs which were upregulated and downregulated
by MSA treatment are shown in Figure 4B. These results suggest that these miRNAs are likely regulated
by HIF1α and can be effectively modulated by therapeutic doses of selenium.
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Figure 4. Oncogenic and tumor-suppressor micro RNAs (miRNAs) expressed in ccRCC are selenium
targets. Effects of MSA on the expression levels of oncogenic and tumor-suppressor miRNAs altered in
RC2 cells expressing HIF1α: (A) microarray analysis of miRNAs regulated by the treatment of RC2
cells with 10.0 µM MSA for 24 h, and (B) selected miRNAs shortlisted for further analysis.

The data in Figure 5 indicate that the miRNAs that were significantly altered by MSA treatment
of RC2 cells expressing HIF1α and of 786.0 cells expressing HIF2α were also altered in primary
ccRCC biopsies.
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Figure 5. Selected miRNAs expressed in primary ccRCC biopsies are also expressed in ccRCC cell
lines and can be modulated by selenium. Modulation of miRNAs expressed in ccRCC patient tumor
biopsies, and in RC2 and 786.0 cells lines treated with MSA. Quantitative RT-PCR analysis of selective
hypoxia-regulated microRNA in human RCC patient tumors (n = 3), and in RC2 and 786.0 cells treated
with MSA. MicroRNAs downregulated in human tumors (miR let7b and miR328) (left panel) found
to be upregulated with MSA treatment in RC2 and 786.0 cells. MicroRNAs which were upregulated
(right panel: miR106b, miR155, and miR210; left panel: miR185) in RCC patients were found to be
downregulated with MSA treatment in RC2 and 786.0 cells. Log fold changes are shown compared to
matched normal kidney tissues for patients and untreated RC2 and 786.0 cells.
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Two miRNAs, Let-7b, and -328, which were upregulated, and miRNA-106b, -155, and -210, which
were downregulated by MSA treatment of RC2 and 786.0 cells, were randomly selected to perform
qRT-PCR analysis along with four primary ccRCC tumor biopsies and their paired normal kidney cells.

The results presented in Figure 5 confirmed the microarray data that these selected miRNAs
which were altered in RC2 and 786.0 cells were similarly altered in the patient biopsies, and their
expressions could be modulated in vitro and in vivo by selenium. Collectively, the data generated
demonstrate that a defined dose and schedule of selenium can effectively modulate the expression
levels of specific oncogenic and tumor-suppressor miRNAs altered in ccRCC tumor cells.

2.4. Selenium: A Selective Modulator of Anticancer Therapies

2.4.1. Nude Mice Bearing HIF1α

The data in Figure 6A demonstrate the antitumor activity of MSC in sequential combination
with two representative cytotoxic drugs, irinotecan (an approved drug for the treatment of colorectal
cancer) and docetaxel (used in head-and-neck cancers among others), and radiation therapy. Oral
daily administration of 10 mg/kg/day MSC for seven days prior to and concurrent with the
administration of cytotoxic or radiation therapies beginning on day seven was associated with
enhanced therapeutic efficacy.
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Figure 6. Antitumor activity of MSC in combination with irinotecan and docetaxel in nude mice
bearing human head-and-neck cancer cells, FaDU and A253 (A), and radiation-treated A549 lung
carcinoma (B). MSC was administered orally daily for seven days and concurrently with anticancer
therapies administered on day seven [82].

The data in Figure 6B demonstrate the antitumor activity of MSC in sequential combination with
radiation therapy of mice bearing A549 lung carcinoma tumors expressing HIF. Collectively, MSC
was found to significantly enhance the therapeutic efficacy of chemotherapy and radiation in different
human cancer xenografts from different disease sites. The results generated suggest that the action of
selenium in tumor cells expressing HIFs is a universal phenomenon, irrespective of the cancer type or
disease site.

2.4.2. Nude Mice Bearing Tumor Xenografts That Constitutively Expressed HIF2α

Figure 7A,B depict tumor growth inhibition by MSC, SLM, axitinib, sunitinib, and topotecan. The
dose and schedule of MSC and SLM that inhibited HIF exhibited limited but similar tumor growth
inhibition. Sunitinib exerted greater antitumor activity than Avastin, axitinib, and topotecan [83]. The
order of antitumor activity is sunitinib > Avastin ≥ axitinib > topotecan > MSC or SLM. The data in
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Figure 7C depict the antitumor activity of tyrosine kinase inhibitors (TKIs) that target VEGF/VEGFR,
and topotecan alone and in combination with either MSC or SLM. The combination of topotecan and
sunitinib in sequential combination with MSC or SLM had the most therapeutic efficacy and achieved
long-term and durable responses not observed with these drugs administered individually. The data
in Figure 7D indicate that MSC and SLM similarly potentiate the antitumor activity of axitinib, a
Food and Drug Administration (FDA)-approved VEGFR-targeting agent for the treatment of relapsed
ccRCC patients. The data in Figure 7E confirm that HIFs are a critical therapeutic target of MSC.
MSC potentiates the antitumor activity of topotecan, a topoisomerase 1 poison which targets HIF
synthesis, as well as that of Avastin, axitinib, and sunitinib, which target VEGF/VEGFR. In comparison,
the antitumor activity of irinotecan, a topoisomerase 1 poison with no demonstrable effects on HIF
protein expression, was not potentiated by MSC. In this model, S-1 exhibited significant antitumor
activity, perhaps due to overexpression of TP. Collectively, the data in Figure 7E indicate that optimal
therapeutic benefit was obtained with MSC in sequential combination with topotecan and sunitinib.
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3. Discussion

Clear-cell RCCs and their associated microenvironment express a unique molecular and
morphological profile including a variety of tumor-suppressor and oncogenic miRNAs. However,
miRNA-155 and miRNA210 are extensively characterized and overexpressed in multiple tumor
types [75–78]. Although VHL may be regulated by multiple biomarkers expressed in tumor cells and
their adjacent microenvironment, miRNA-155 and -210 emerged as key modulators of VHL function,
and may offer an alternative mechanism for stable expression of HIFs in ccRCC tumors [17,77]. Loss of
VHL in ccRCC tumors may mimic the upregulation of HIFs by hypoxia. In recognition of the critical
role of VHL in the pathogenesis of ccRCC tumors, efforts are underway to develop anti-VHL chemical
agents [84,85]. Similarly, recognizing that HIFs are upregulated by hypoxia-dependent and -independent
pathways and that they are critical therapeutic targets, a number of HIF inhibitors are presently under
preclinical and clinical development. A recent phase 1 clinical trial of PT2385, a synthetic small-molecule
HIF2α antagonist, demonstrated clinical activity in previously treated ccRCC patients [86].

Tumor microarray analysis demonstrated that HIF1α and HIF2α are individually and jointly
co-expressed in a majority of primary and metastatic ccRCC biopsies [20]. In addition, it was reported
that, although HIF1α and HIF2α are structurally similar, they functionally regulate different target
genes in different cell types [25]. Furthermore, under hypoxia, the expression of VEGF is regulated
by HIF1α, but not by HIF2α [33]. It is possible that the inhibition of one HIF isoform may induce the
activation of the other in support of tumor growth. The data to date suggest that optimal therapeutic
benefit may require targeting both HIF1α and HIF2α.

HIFs and PD-L1 are co-expressed in cancer cells. Under hypoxic conditions, HIFs regulate
the expression of PD-L1 by binding to the hypoxia response element in the PD-L1 proximal
promoter to activate its transcription [42,47]. PD-L1 expression in cancer cells may, therefore, be
regulated transcriptionally by HIF and post-transcriptionally by miRNAs. It is likely that effective
downregulation of HIFs would lead to the downregulation of PD-L1, resulting in an increased tumor
response to subsequent treatment with anti-PD-1/PD-L1 therapies.

Micro RNA-155 and miRNA-210, amongst others, were reported to modulate the tumor
microenvironment [74,75], regulate glucose metabolism [87], and target transcription factor E2F2
in ccRCC tumor cells [88]. Neal et al. reported that the VHL/HIF axis regulates the expression of
several types of miRNAs in ccRCC tumors, including miRNA155 and miRNA-210 [53]. Increasing
evidence suggests that oncogenic miRNA-155 and miRNA-210 are regulators of immune response
biomarkers, including forkhead box P3 (FoxP3) regulatory T cell, myeloid-derived suppressor cell
(MDSC) T-cells, and immune checkpoint PD-1/PD-L1 [56,80,81,89,90]. Despite the progress made in
our understanding of the biology and therapeutic potential of miRNAs, their clinical use as a prognostic
and as a predictor of therapeutic outcome is yet to be determined. Efforts to develop miRNA inhibitors
fall short of clinical expectations [91–93]. The limited clinical benefits were attributed, in part, to their
limited bioavailability, instability, and dose-limiting toxicities, in addition to an inability to demonstrate
in vivo modulation of expression of intended targets. Our laboratory was the first to demonstrate that
specific types, doses, and a schedule of MSC in ccRCC xenograft models can selectively modulate
specific types of miRNAs.

Clear-cell RCC tumors are highly vascular with clear, large cytoplasms expressing perilipin 2,
hypoxia-inducible lipid-droplet protein 2, which represses fatty-acid metabolism, and is a target
gene of HIF1α [22,64,65]. Molecularly, the majority of ccRCC tumors express high incidence and
intensity of HIF1α, HIF2α, and oncogenic miRNA-155 and -210, which target genes involved in
ccRCC tumorigenesis, including VEGF and PD-L. The tumor microenvironment associated with
ccRCC is leaky and unstable, expressing the common biomarkers that regulate tumor cell growth and
metastasis commonly seen in many cancers. Thus, ccRCC tumors provide the opportunity to test the
hypothesis and rationale for a mechanism-based treatment combination with selenium that may offer
the potential for the development of novel treatment in patients with ccRCC and other cancers with
similar expression of Se targets.
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Resistance and dose-limiting toxicities continue to represent major clinical challenges for
both cytotoxic chemotherapy and biological targeted therapies. In general, in vivo resistance is
regulated by multiple molecular and immunological biomarkers expressed in tumor cells and their
surrounding microenvironment. These two tumor compartments are functionally interactive. The
tumor microenvironment could promote tumor growth while impeding optimal drug delivery and
the distribution of effective tumor drug concentrations. Thus, the tumor microenvironment may be
considered as the gatekeeper, while tumor cells are the ultimate targets. In order to achieve durable
antitumor activity, treatment should include a combination of drugs that enable targeting both the
tumor microenvironment and the tumor cells.

In ccRCC, HIFs, miRNA-155, and miRNA-210 are commonly co-expressed and were reported
earlier to regulate the expression of gene targets implicated in enhanced angiogenesis, tumor metastasis,
and resistance. While considerable efforts are underway to develop miRNA- and HIF-based strategies,
in vivo toxicity, tumor instability, and limited drug delivery in effective concentrations continue to
plague efforts to have a more clinically effective outcome [93]. In addition, an increased activation of
5-FU prodrugs by TP should result in increased antitumor activity [94–96].

During the last several years, our laboratory determined that SLM, an FDA-approved drug
for clinical trials, and MSC (under development) exert several effects that are not shared by other
selenium compounds and HIF-targeting compounds that are currently under preclinical and clinical
evaluation [20,23,70,83–90]. We were the first to demonstrate [97,98], in several tumor xenograft
models, that (1) therapeutic and nontoxic doses and a schedule of organic selenium compounds,
SLM and MSC, potently enhance constitutively expressed HIF1α and HIF2α degradation; (2) SLM
and MSC downregulate VEGF, which is regulated by HIF1α, but not by HIF2α; (3) SLM and MSC
stabilize tumor vasculature resulting in the selective enhancement of drug delivery to tumor cells,
consistent with results reported by Jain [69]; (4) SLM and MSC modulate the expression of a number of
tumor-suppressor and oncogenic miRNAs altered in ccRCC tumors; (5) SLM and MSC offer selective
protection against toxicity induced by toxic and often lethal doses of cytotoxic drugs in preclinical
models [83]; and (6) treatment with MSC and SLM was associated with significant enhancement
of the efficacy and selectivity of anticancer therapies in head-and-neck, colorectal, and renal cancer
xenografts. The antitumor activity of VEFG/VEGFR-targeted therapies alone and in combination with
topotecan and S-1 can be further enhanced by MSC in mice bearing VHL-deficient 786.0 ccRCC tumors
expressing HIF2α, VEGF, miRNA-155, and miRNA-210. Taken together, non-toxic doses of selenium
may offer the potential for the development of novel therapeutic modality. Chart 1 is an outline of the
approach used in the translational development of selenium in combination with anticancer drugs
in preclinical models to phase 1 and 2 clinical trials. The data generated in several xenograft models
provided the rationale for the development of a phase 1 clinical trial in ccRCC patients. The aim was
to confirm that the SLM dose used to yield blood selenium concentrations similar to those determined
therapeutically, synergistic with anticancer drugs in the preclinical model, could be achieved clinically
without toxicity. The optimal SLM dose defined in the phase 1 trial [99] was used to design a phase 2
trial of SLM in sequential combination with axitinib, aimed at assessing the efficacy and modulation of
relevant molecular correlates.
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Based on the preclinical results generated, a mechanism-based combination therapy is proposed,
as outlined in Chart 2. In order to achieve optimal therapeutic benefit with the proposed
mechanism-based drug combination, the dose, schedule, and sequence of MSC and SLM are critical
parameters. Pretreatment with selenium prior to and concurrent with the administration of anticancer
therapy is necessary for the optimal modulation of relevant selenium biomarkers in tumor cells
and for the optimal stabilization of tumor vasculature. To maintain the optimal and sustained
inhibition of HIFs and associated gene targets, it is recommended that topotecan be administered
in combination with MSC or SLM. Since therapeutic doses and the schedule of selenium partially
downregulate the expression levels of VEGF in tumor cells expressing HIF1α but not HIF2α [20,23],
we propose, therefore, adding TKI inhibitors to the combination regimen in order for maximum
downregulation of VEGF/VEGFR. This proposed mechanism-based combination was evaluated in
786.0 xenografts and was determined to be highly selective and therapeutically effective. The dose and
schedule of the SLM/MSC used were selected based on their molecularly effective dose instead of
the maximum tolerated dose. Furthermore, since the expression level of PD-L1 is regulated by HIFs
and miRNAs, it is reasonable to expect that SLM/MSC will also modulate the therapeutic efficacy of
checkpoint inhibitors. Proof of principle in ccRCC could provide the basis for the verification of this
mechanism-based treatment combination in other tumors expressing these molecular targets similarly
affected by SLM/MSC.
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(MSC) targets hypoxia-inducible factors (HIFs) and micro RNAs (miRNAs). Topotecan targets
HIF synthesis, while tyrosine kinase inhibitors (TKIs) target vascular endothelial growth factor
(VEGF)/VEGF receptor (VEGFR) and 5-fluorouracil (5-FU) prodrugs are the substrate for activation by
thymidine phosphorylase.

4. Conclusions and Future Perspectives

The aim of this paper was to determine that the levels of specific biomarkers altered in the majority
of ccRCC tumors, such as HIFs, oncogenic miRNA-155 and miRNA-210, and VEGF, can be selectively
downregulated by therapeutic nontoxic doses and a schedule of MSC and SLM. In addition, the aim
was also to confirm that downregulation of these biomarkers would translate into therapeutic synergy
with anticancer therapies. The results in several xenograft models and with multiple cytotoxic and
biologic agents demonstrated that the dose- and time-dependent downregulation of constitutively
expressed HIFs, miRNA-155 and -210, and VEGF-A by selenium was associated with enhanced
therapeutic efficacy and selectivity of anticancer therapies. Preclinical data generated provided the
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rationale for the development of a phase 1 clinical trial in ccRCC patients treated with escalating doses
of SLM in sequential combination with a fixed dose of axitinib [99,100]. Unlike the 200 µg/day SLM
dose used in prevention clinical trials, the SLM doses used in combination therapy were 10 mg/kg in
nude mice, and 8000 µg/day in ccRCC patients, which was the dose recommended for the ongoing
phase 2 clinical trial for efficacy assessment and for the monitoring of the effects of SLM on relevant
biomarkers. The plasma selenium concentrations achieved clinically with the recommended SLM
dose were comparable with those achieved with SLM doses determined therapeutically synergistic
with anticancer drugs in preclinical models. The mechanism-based drug combination proposed
in Chart 2 warrants expanded preclinical investigation and clinical verification. Proof of concept
that enhanced therapeutic efficacy and selectivity of axitinib in refractory ccRCC patients are SLM
dose- and schedule-dependent will be highly innovative and significant. Furthermore, the ability
of selenium to downregulate specific biomarkers associated with drug resistance may provide the
opportunity for the clinical development of SLM in sequential combination with other clinically
available targeted therapies.

5. Material and Methods

5.1. Cell Culture and Drug Treatments

Clear-cell RCC cell lines 786.0 and RC2 were cultured in Rosewell Memorial Park Institute
(RMPI-1640) medium with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (PenStrep,
Sigma-Aldrich, St. Louis, MO, USA) at 37 ◦C in an incubator with 5% CO2. Cells were routinely tested
for mycoplasma contamination. Cells were seeded in T75 and/or T150 flasks, and were allowed to
grow overnight. Cells were treated with MSA for 24 to 48 h, and were processed to isolate total RNA.
Untreated control cells were maintained without treatment.

5.2. Animals

Female athymic nude mice (Envigo, nu/nu, 20–25 g body weight), 8–12 weeks of age, were
used for the tumor xenograft experiment as previously described [97]. All studies were carried out
as approved by the Institutional Roswell Park Comprehensive Cancer Center Animal Care and Use
Committee (207M, 2009).

Tumor Xenografts

Clear-cell RCC 786.0 cells were cultured in RMPI-1640 and transplanted into nude mice to establish
xenografts. Tumors were harvested, and ~50 mg of non-necrotic tumor tissue was transplanted into
nude mice and randomized to groups of 5–10 mice each. Treatment with drugs alone or in combination
was started when tumors reached ~200 mg, and the tumor volume and response were measured
as described previously [97]. Drug toxicity was evaluated by measuring the weight loss of the
mice biweekly.

5.3. Drugs

MSC and SLM (Sigma-Aldrich, St. Louis, MO, USA) were given at 0.2 mg/kg for 35 days
starting seven days prior to the start of drug treatment. Axitinib (AdooQ Bioscience, Irvine, CA,
USA), sunitinib (LC laboratories, Woburn, MA, USA), and topotecan (Selleckchem, Houston, TX, USA)
were administered orally at 25 mg/kg, 80 mg/kg, or 2 mg/kg five days per week for four weeks,
either as a single drug or in combination. Avastin (Genentech, South San Francisco, CA, USA), was
given at 5 mg/kg via intraperitoneal injection for five days/week for four weeks either by itself or in
combination with selenium.
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5.4. Total RNA Isolation from ccRCC Cells Treated with and without MSA

Cells were treated with MSA for 24–48 h and processed for isolation of total RNA using Trizol
reagent as per the instructions of the manufacturer (Invitrogen, Liverpool, NY, USA). RNA quantity
and quality was measured using Nanodrop (Thermo-Fisher Scientific, Liverpool, NY, USA), and then
used for microRNA microarray analysis and quantitative PCR analysis of microRNA.

5.5. Total RNA from ccRCC Patient Tumors and Their Matched Normal Tissues

Total RNA of de-identified ccRCC patient tumors and their matched normal kidneys were
obtained from the RPCI Pathology core facility. RNA samples were isolated using Trizol reagent
(Thermo-Fisher Scientific, Liverpool, NY, USA) from the non-necrotic tissues selected by the pathologist,
and purity was determined before use for detecting microRNA expression by qRT-PCR.

5.6. Reverse Transcription (RT) and miRNA qPCR

Complementary DNA (cDNA) was prepared using the following quantities of each reagent and
RNA: 4 µL (20 ng) of RNA, 9 µL of H2O, 1 µL of Spike-In, 4 µL of reverse transcription (RT) buffer,
and 2 µL of enzyme in a total volume of 20 µL. Immediately after the RT reaction was finished, a 1:80
dilution was made on the cDNA, and ROX was added. The reaction mix for qRT-PCR was prepared
using 400 µL of SYBR® Green Master Mix (Thermo-Fisher Scientific, Liverpool, NY, USA) and 320 µL
of cDNA (from the above diluted RT reaction). Then, 9 µL of this mix was added to a 384-well plate
pre-loaded with specific miR primers in triplicate using an electronic multichannel pipette. Plates were
sealed with optical tape and shaken on a plate shaker for 30 s, before being centrifuged for one minute
and run on the ABI7900 qPCR machine (Applied Biosystem, Foster City, CA, USA). Quantitative PCR
machine cycling conditions and parameters were set exactly the same for every plate.

Normalization of Exiqon miRNA Panels (http://www.exiqon.com/mirna-pcr-panels) Excerpt
from Exiqon Manual: Inter-Plate Calibrator (IPC). Since each assay was present only once on each
plate, replicates were performed using separate plates. This raises the issue of run-to-run differences.
To allow for simple inter-plate calibration, we designed a calibration assay with an accompanying
template (annotated as UniSp3 or IPC in the plate layout files). Three wells were assigned for inter-plate
calibration to provide triplicate values with the possibility for outlier removal. In each of these wells,
both the primers and the DNA template were present, giving high reproducibility. The inter-plate
calibrator requires only the addition of the SYBR® Green master mix in order to give a signal and can,
therefore, be used for quality control of each plate run.

GenEx Software (ver 6.1, Thermo-Fisher Scientific, Liverpool, NY, USA: http://www.exiqon.com/
qpcr-software.

Plates were imported into the GenEx software (ver 6.1, Thermo-Fisher Scientific, Liverpool, NY,
USA) and the IPCs (in triplicate on each plate) were used to normalize the plates helping to eliminate
run-to-run variation when comparing multiple plates. All Ct values above 38 were set to 38 as the
maximum value (this is arbitrary and may even be left blank to denoted non-amplification). All
miRNAs were listed in an excel file regardless of whether or not they were expressed in the samples,
with normalized Ct values for each sample. Data were represented as individual triplicate runs and as
averages of triplicates (with outliers excluded). Expressions of miRNA were normalized to untreated
controls, and fold changes with the selenium treatment were determined. In ccRCC patient tumors,
microRNA expression was normalized to normal tissue and fold changes were determined.
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Abbreviations

ccRCC Clear-cell renal cell carcinoma
HIF Hypoxia-inducible factor
HIG-2 Hypoxia-inducible protein 2
IFN Interferon
MSC Se-methylselenocysteine
PD-1 Programmed death 1 receptor
PD-L1 Program death ligand 1
SLM Seleno-L-methionine
TP Thymidine phosphorylase
TNF Tumor necrosis factor
TKI Tyrosine kinase inhibitor
TIL Tumor-infiltrating lymphocyte
VEGF Vascular endothelial growth factor
VHL von Hippel–Lindau
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