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Abstract

Nassella trichotoma (Nees) Hack. ex Arechav. (Serrated tussock) is an aggressive globally

significant weed to agricultural and natural ecosystems. Herbicide resistant populations of

this C3 perennial weed have emerged, increasing the need for effective wide-scale cultural

control strategies. A thorough seed ecology study on two spatially distinct populations of N.

trichotoma was conducted on this weed to identify differences in important environmental

factors (drought, salinity, alternating temperature, photoperiod, burial depth, soil pH, artificial

seed aging, and radiant heat) which influence seed dormancy. Seeds were collected from

two spatially distinct populations; Gnarwarre (38 O 9’ 8.892’’ S, 144 O 7’ 38.784’’ E) and

Ingliston (37O 40’ 4.44’’ S, 144 O 18’ 39.24’’ E) in December 2016 and February 2017,

respectively. Twenty sterilized seeds were placed into Petri dishes lined with a single What-

man®No. 10 filter paper dampened with the relevant treatments solution and then incu-

bated under the identified optimal alternating temperature and photoperiod regime of 25˚C/

15˚C (light/dark, 12h/12h). For the burial depth treatment, 20 seeds were placed into plastic

containers (10cm in diameter and 6cm in depth) and buried to the relevant depth in sterilized

soil. All trials were monitored for 30 days and germination was indicated by 5mm exposure

of the radicle and emergence was indicated by the exposure of the cotyledon. Each treat-

ment had three replicates for each population, and each treatment was repeated to give a

total of six replicates per treatment, per population. Nassella trichotoma was identified to be

non-photoblastic, with germination (%) being similar under alternating light and dark and

complete darkness conditions. With an increase of osmotic potential and salinity, a signifi-

cant decline in germination was observed. There was no effect of pH on germination. Expo-

sure to a radiant heat of 120˚C for 9 minutes resulted in the lowest germination in the

Ingliston population (33%) and the Gnarwarre population (60%). In the burial depth treat-

ment, the Ingliston population and the Gnarwarre population had highest emergence of 75%

and 80%, respectively at a depth of 1cm. Variation between the two populations was

observed for the burial depth treatments; Gnarwarre had greater emergence than Ingliston
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from the 4cm burial depth, while Ingliston had greater emergence at the soil surface than

Gnarwarre. The Gnarwarre population had greater overall germination than Ingliston, which

could be attributed to the greater seed mass (0.86mg compared to 0.76mg, respectively).

This study identifies that spatial variations in N. trichotoma’s seed ecology are present

between spatially distinct populations.

Introduction

The ability for aggressive weeds to germinate and emerge vigorously allows them to dominate

and displace desirable species. Therefore, an understanding of seed ecology is essential for

developing effective management programs for problematic weed species. Weeds are usually

most susceptible to control methods, making control strategies targeted to early life stages

highly effective [1, 2]. Abiotic factors such as drought, light, salinity, seed burial depth, soil pH,

and temperature as well as disturbance events such as a fire, flooding or tillage can play an

important role in initiating or inhibiting seed germination [3–4]. Therefore, in order to

develop smarter and more effective control strategies for aggressive weeds like Nassella tricho-
toma (Nees) Hack. ex Arechav., a comprehensive study into the requirements for their success-

ful germination, seedling emergence and subsequent establishment should be investigated [5,

6, 7]. By identifying the parameters which positively or negatively influence seed germination

and seedling vigour, suitable management strategies can be developed to reduce the successful

establishment of seedlings and deplete the soil stored seedbank [8].

High reproductive output is a key trait of successful weeds. A high density of seeds in the

soil seedbank can give a weed a competitive advantage over crops or native plant species, par-

ticularly if the weed species is faster growing than desirable species. Dense seedbanks can

cause persistent management challenges. Nassella trichotoma of the Poaceae family is problem-

atic weed can produce over 140,000 seeds per plant on an annual basis, allowing it to quickly

dominate the soil seedbank [9–10]. It has been identified that between 74% to 91% of N. tricho-
toma seeds will germinate within their first six to twelve months, with some seeds remaining

dormant in the soil for up to three years before losing their viability [11]. Dormancy is an

internal feature of a seed that prevents germination, even when environmental conditions are

adequate [1, 12]. Once a seed has initiated the germination process it, it cannot be stopped.

Therefore, to ensure the best chance of successful growth and survival, dormancy break is

strongly linked with specific environmental cues. Understanding dormancy patterns for inva-

sive weeds has important implications for their management [12, 13]. Many weed species,

including N. trichotoma undergo a brief period of non-deep physiological dormancy [4]. This

type of dormancy is strongly associated with seasonality, particularly alternating temperatures.

Non-deep physiological dormancy is caused by a physiological mechanism within the seeds

embryo that requires specific stimulation, before the radical will emerge [5]. This trait allows

N. trichotoma to avoid germinating in summer after seed drop and allows it to wait for more

suitable wetter and cooler conditions [14].

Studies have shown that light and alternating temperature regimes have been identified as

two of the most important environmental factors in triggering seed germination [4, 15, 16].

Photochromes within an imbibed seed allow identification of the intensity of competition

within its environment [17–18]. The ability to detect competition prior to germination may

improve seedling survival rates [17]. Ratios of far-red to red light are higher in environments

with intense competition, as the more favourable red light is absorbed by established plants,
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therefore less red light reaches the soil surface [17]. In an environment where competition is

low, red light will be detected in higher ratios than far-red light by the seed, promoting the ger-

mination process [19]. Seeds which germinate under completely dark conditions may have an

abundance of far-red phytochromes within their embryonic tissue, helping them to identify

intense competition [12, 20]. Researchers have identified that light can promote significantly

higher germination in many plants species including Halocnemum strobilaceum [21], Lepto-
chloa chinensis [22], Carduus nutans [23], and Echinochloa colona [5]. By identifying if a weed

is positive photoblastic, light restrictive management strategies such as mulching using crop

residue [24–25] or developing dense perennial competition [26] can be introduced for effective

control. Despite the implications of light sensitivity on successful recruitment, there are also

many plants that exhibit light independent germination [4, 6]. Light independent germination

is closely linked to other environmental triggers, particularly temperature [4, 19]. Temperature

breaks dormancy by altering seed physiology and has been observed to influence the rate and

percentage of germination, although this effect varies greatly by species [4, 15]. For example,

optimal alternating temperature regimes were found to break the dormancy of, and hence sig-

nificantly increase germination in Moehringia trinervia seeds, in contrast to this, it had mini-

mal effect on Stellaria nemorum [27]. Therefore, while temperature is an important trigger for

breaking seed dormancy in some species, like M. trinervia, different environmental factors

such as rainfall and soil type can also play an important role in triggering the germination

process.

Seeds buried deeper into the soil profile often have lower success rates of emergence and

establishment due to the amount of energy required to reach the soil surface. The size of a seed

may determine the depth from which it emerges; large seeds may have greater energy reserves,

allowing emergence from greater depths than smaller seeds. The effect of seed size on emer-

gence was observed in four species of Amaranthus, with the lightest species (Amaranthus spi-

nosus) having significantly shallower optimal burial depth compared to the denser species

(Amaranthus viridis) [28]. Germination of photoblastic seeds decrease with an increase in

burial depth. Seed burial has been observed to significantly reduce seedling emergence in light

dependent weeds such Eclipta prostrata [29], L. chinensis [22], and Murdannia nudiflora [24].

Depending on the vigour of the seed, those species that germinate independent of light can

also be restricted by increased burial, as observed in the desert weed Marrubium vulgare [30].

By identifying the burial depth from which weed seedlings cannot emerge, recommendations

in tillage depths for control can be proposed.

Seed germination can be linked to other environmental factors. Low moisture availability

can prolong dormancy as soil moisture levels may be insufficient for imbibition and competi-

tive emergence of seedlings [31]. This may prove problematic for N. trichotoma as mass germi-

nation events have been strongly linked to periods of heavy rainfall [14, 32]. In saline

environments, the salt ions in the soil can reverse the natural osmotic flow of moisture into the

dry seed and rather force water out of the seed, preventing imbibition. Increased salinity has

been observed to significantly reduce seed germination in many weed species including Car-
daria draba [33] and Eragrostis plana [31]. However, it generally does not affect their viability

when these seeds were alleviated from the salinity stress, and normal germination was

observed. It is common for weeds to tolerate a wide range of soil pH levels [4, 28, 33, 34] which

is a key trait of an invasive generalist species. However, by identifying if particular soil factors,

such as pH and salinity enhance germination, regions at risk will be easier to identify.

Fire can also play an important role in breaking seed dormancy and triggering germination

events. Fire can remove established competition, allowing for greater light penetration to the

soil surface, which can trigger germination in light sensitive seeds. The reduced competition

allows for higher nutrient and moisture availability for seedling establishment. As weeds are

Seed ecology of spatially varied populations of Nassella trichotoma
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generally good, fast-growing coloniser species, they can have a competitive advantage over

desirable species. Due to fire being an important ecological management tool, it is important

to understand how weeds like N. trichotoma respond to burn temperatures and durations. Fire

may be a useful tool to decrease the seedbank if seed viability or establishment can be reduced

[35]. On the contrary, fire can also act as a germination trigger, as observed for N. trichotoma,

and utilized to promote a flush of seed germination from the seedbank before herbicide appli-

cation [10, 32, 33, 36, 37].

Understanding how these environmental cues influence the germination of weeds may not

be sufficient alone for developing wide scale strategic management plans. Weeds are consid-

ered to be pioneer species, which contributes to their wide dispersal and fast adaptability to a

variety of ecosystems. The selective pressures exerted by these different ecosystems can, over-

time, lead to in local adaptions between geographically distinct populations [38, 39]. This can

result in one species responding differently to the same environmental cues based on the selec-

tive pressures acting on the population. Germination rates varied significantly between two

spatially distinct populations of Poa annua in response to photoperiod, temperature and the

fungicide, fenarimol [40]. Differences in temperature tolerance were observed in different

populations of the widespread crop weeds Galinsoga quadriradiata and G. parviflora, with

optimal germination under controlled conditions reflecting that of the given populations habi-

tat [8].

Nassella trichotoma has adapted to a range of managed and natural ecosystems across the

world, which may have resulted in spatially distinct populations exhibiting some variability in

their seed ecology [41]. Phenotypic variations have been observed in the size and height of

Australian populations with Victorian populations being notably smaller than those in New

South Wales and Tasmanian [14]. In Victoria, some populations have been identified to

exhibit resistance to flupropanate herbicide, requiring four times the recommended dose,

which can be harmful to native plants and therefore reducing competition [42, 43]. By identi-

fying any local adaptions, more specialised, ecosystem-specific management practices can be

developed [38].

The objective of this study was to identify how the environmental factors of light, tempera-

ture, heat, salinity, drought, soil pH, and seed burial influence germination and seedling emer-

gence of two N. trichotoma populations.

Methods

Seed collection and storage

Mature N. trichotoma seeds were collected from over 100 plants from two populations in Vic-

toria, Australia; Ingliston (37O 40’ 4.44’’ S, 144O 18’ 39.24’’ E) and Gnarwarre (38 O 9’ 8.892’’ S,

144 O 7’ 38.784’’ E) during February 2017 and December 2016, respectively. Seeds were col-

lected on private properties, and both landholders gave us a permission to collect seeds. Given

that is a weed species and seeds were used for research purpose no further permission or

approval required. These two populations are separated by approximately 100 km. The seeds

were placed in labelled plastic, zip-lock bags and transported to Federation University Austra-

lia’s seed ecology lab. Seeds were stored within labelled plastic zip-lock bags at room tempera-

ture until the trials began in March 2017.

Site description

The Ingliston site is located on a privately owned eucalypt bushland within a valley, which

offers the vegetation some protection from harsh winds. Aside from the established trees, this

site was heavily infested with almost a monoculture of N. trichotoma. A soil analysis was

Seed ecology of spatially varied populations of Nassella trichotoma
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conducted to identify pH and salinity. The soil pH of 4.5 was identified by using a Manutec

soil pH test kit. The soil salinity was measured using the 1:5 soil:water ratio methods described

by Slavich & Patterson [44], and was identified to be 3.8dS/m, which is considered to be

slightly saline [45]. Ingliston receives its highest rainfall throughout August (49ml), and the

average temperature ranges from a maximum of 25˚C in summer to a minimum of 3˚C during

the winter (Fig 1A) [46].

The Gnarwarre site is located on a privately owned pastoral field for grazing sheep. The site

is located on an open hill, with little shelter from the elements. Pastural grasses provide intense

competition for this population of N. trichotoma, resulting in the population size being smaller

than that at Ingliston. The same soil analysis techniques used for the Ingliston site were applied

to Gnarwarre, and identified the soil to have a pH of 6 and soil salinity of 4.3dS/m, which is

considered to be moderately saline [45]. Gnarwarre receives its highest rainfall throughout

August (49ml), and the average temperature ranges from 26˚C in summer to 6˚C during the

winter (Fig 1B) [46].

Seed preparation

Seeds were assumed to be viable when they had a plump appearance and a soft “clink” was

heard when the seed was dropped into the petri dish. All the trials had three replicates with 20

randomly selected seeds in each, which were repeated to give a total of six replicates (120

seeds) per treatment. All seeds were sterilized using 1% sodium hypochlorite for 5 minutes

and then were thoroughly rinsed with sterilized reverse osmosis (RO) water. All trials had 20

sterilized seeds placed into each plastic Petri dish lined with a single layer of sterilized What-

man1 No. 10 filter paper and then moistened with 10ml of the relevant solution. The Petri

dishes were wrapped with a strip of parafilm to maintain moisture, and germination was

counted weekly for 30 days. Germination was determined when approximately 2mm of the

radicle was visible and the cotyledon had emerged from the seed coat [47]. At the conclusion

of the treatments, any un-germinated seeds were tested for their viability using 2,3,5-triphenyl-

tetrazolium chloride (TTC) test [48, 49].

The effect of photoperiod and alternating temperature

Determination of the photoperiod and temperature range that generates the highest germina-

tion percentage for N. trichotoma is essential for the success of all subsequent experiments.

Replicates were placed into one of four incubation cabinets (Thermoline Scientific and

Humidity Cabinet, TRISLH-495-1-SD, Vol. 240, Australia) fitted with cool-white fluorescent

lamps that provided a photosynthetic photon flux of 40μmol m-2 s-1 set at various temperature

regimes: 17/7, 25/15, 30/20 and 40/30˚C, each alternating 12 hours light and 12 hours dark. To

prevent excessive water loss, the dishes exposed to the light and dark treatments had a strip of

parafilm wrapped around the outside of each Petri dish, and the 24-hour dark replicates were

covered in a double layer of aluminum foil, which also blocked out light. To ensure appropri-

ate conditions for the 24-hour dark treatment, seeds were not subjected to any white light,

which was assured by the practice of examining Petri dishes containing these seeds under a

green safe light. The dishes exposed to the 40/30˚C treatments also had an additional strip of

cling wrap placed over the parafilm as an added precaution, as the parafilm was observed to

melt at this temperature regime.

The effect of drought

To identify the effects of drought on germination, polyethylene glycol 80001 (PEG, Sigma-

Aldrich Co., 3050, Spruce St., MO 63103 in sterilized distilled water) was dissolved into

Seed ecology of spatially varied populations of Nassella trichotoma
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Fig 1. a: The average monthly rainfall and maximum and minimum temperature collected from the closest weather stations with relevant and recent data to the

Ingliston site. The rainfall data was collected from the Pykes Creek station (37˚36’40"S, 144˚18’0"E) located approximately 10 km from the Ingliston site, and the data

was averaged from November 1956 to August 2017, and the temperature data was collected from the Ballarat Aerodrome station (37˚30’46"S, 143˚47’28"E) located

approximately 50 km from the Ingliston site, with the data averaged from January 1908 to August 2017. The information was sourced from the Bureau of Meteorology

[49]. b: The average monthly rainfall and maximum and minimum temperature collected from the closest weather stations with relevant and recent data to the

Gnarwarre site. The rainfall data was collected from the Gnarwarre station (38˚8’37"S, 144˚11’14"E) located approximately 5 km from the Gnarwarre site, and the data

Seed ecology of spatially varied populations of Nassella trichotoma
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sterilized RO water to make aqueous osmotic potential solutions of 0 (sterilized RO water for

the control), -0.1, -0.2, -0.4, -0.6, -0.8, and -1.0MPa. To make 500ml of each solutions for the

average temperature of 20˚C, PEG was weighed out using an electric scale and added to a flask

containing 500ml of RO water and stirred automatically until dissolved. The solutions were

placed into a labelled bottle wrapped in aluminium foil and stored in a fridge until use. The

concentrations used for each solution was 46.8, 66.175, 93.575, 114.6, 132.35, and 147.95g to

make the -0.1, -0.2, -0.4, -0.6, -0.8, and -1MPa solutions, respectively. The filter papers were

dampened with 10ml of the relevant solution, and the dishes were incubated under alternating

temperatures of 25/15˚C, 12 hours light and 12 hours dark.

The effect of salinity

The effect of salinity on N. trichotoma germination was examined by using sodium chloride

(NaCl) solutions of 0 (sterilized RO water for the control), 25, 50, 100, 150, 200, and 250mM.

This range of NaCl concentrations was selected to reflect the level of salinity occurring in typi-

cal Australian disturbed soil [50]. Approximately 10ml of the relevant saline solution was used

to dampen the filter paper, and the petri dishes were incubated under alternating temperatures

of 25/15˚C, 12 hours light and 12 hours dark.

The effect of seed burial

To test the impact of seed burial on germination and subsequent seedling emergence, the

seeds were placed at depths of 0 (surface), 1, 2, 3 and 4cm in sterilized soil. Soil was collected

from the Ingliston site (37O 40’ 4.44’’ S, 144O 18’ 39.24’’ E) and sterilized in an autoclave at Fed-

eration University (Victoria), to kill other seeds and propagules. Soil was sieved using a 2cm

sieve and stored in a sealed 100L plastic tub until use. Round plastic containers 10cm in diame-

ter and 6cm in depth were prepared by drilling small holes into the bottom of each to allow the

percolation of water into the soil. Each container had a single layer of cleaning cloth placed at

the base prior to being filled with soil and burying the seeds. The trials were placed into large

white trays (28cm x 44cm x 5.5cm), which were lined with two sheets of cleaning cloth. The

trays were initially filled with 500ml of RO water, and this amount was added on every alter-

nating day. The trials were housed in the incubation cabinets under alternating temperatures

of 25/15˚C, 12 hours light and 12 hours dark. Seedling emergence was monitored on alternat-

ing days. Emergence was indicated by the cotyledon protruding from the soils surface.

Seed longevity under field conditions

In order to determine the effect of burial depth on seed viability under field conditions, 120

viable seeds from the Ingliston population were randomly selected and placed into a 5cm X

5cm semi-permeable bag made of 0.5mm aluminium mesh that allowed for the natural flow of

water and micro pathogens, while keeping the seeds contained. A total of 24 bags containing

120 seeds each were made in total and they were sealed using a hot glue gun. The mesh bags

were then buried at a randomly selected site within the location of seed collection at Ingliston,

Victoria (37O 40’ 4.44’’ S, 144 O 18’ 39.24’’ E). The bags were buried at depths of 0 (surface), 1,

2 and 4cm. One bag from each depth was collected each month and returned to Federation

University Australia, seed ecology lab where germinated seeds were counted and removed

was averaged from October 1996 to August 2017, and the temperature data was collected from the Geelong Racecourse station (38˚10’25"S, 144˚22’35"E) located

approximately 25 km from the Gnarwarre site, with the data averaged from June 2011 to August 2017. The information was sourced from the Bureau of Meteorology

[49].

https://doi.org/10.1371/journal.pone.0199491.g001
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from the mesh bag. The remaining seeds had excess dirt removed using tap water and up to 20

seeds were plated into Petri dishes lined with a single layer of sterilized Whatman1 No. 10 fil-

ter paper and then moistened with 10ml of sterilized RO water. The Petri dishes were placed

into an incubation cabinet at alternating temperatures of 25/15˚C, 12 hours light and 12 hours

dark.

The effect of heat shock

The effect of heat on seed germination and viability was examined by exposing the seeds to

five temperatures; 40, 60, 80, 100, and 120˚C. Furthermore, at each temperature, seeds were

exposed to the heat for three durations; 3, 6 or 9 minutes. Seeds were placed circular into alu-

minum trays (8cm diameter and 3cm depth) and then placed into a digital oven (Memmert,

Type No. ULE500) at the relevant temperature for the required duration. Once removed, they

were immediately plated on plastic Petri dish lined with a single layer of sterilized Whatman1

No. 10 filter paper and then moistened with sterilized RO water and placed into an incubation

cabinet under alternating temperatures of 25/15˚C, 12 hours light and 12 hours dark.

The effect of pH

The effect of pH on seed germination was determined by dampening the filter papers with rel-

evant buffer solutions ranging from pH 4 through to pH 10, prepared according to the method

described by Chachalis and Reddy [51]. Potassium hydrogen phthalate was adjusted to pH 4

using 1 N of hydrogen chloride (HCl). The buffer solutions of pH 5 and 6 were prepared by

altering 2mM of MES [2-(N-morpholino) ethanesulfonic acid] with 1 N of sodium hydroxide

(NaOH). To make the buffer solutions of pH 7 and 8, 2mM of HEPES [N-(2-hydroxymethyl)

piperazine–N–(2- ethane sulfonic acid)] was adjusted using 1 N of NaOH. The buffer solutions

of pH 9 and 10 were created by adjusting a 2mM solution of Tricine [N-Tris (hydroxymethyl)

methyl glycine] with 1 N of NaOH. The dishes were incubated at an alternating light and tem-

perature regime of 25/15˚C, 12 hours light and 12 hours dark.

Statistical analyses

The final germination percentage (FG%) was calculated dividing the sum of germinated seeds

(SG) by the total number (TS) of seeds placed into each Petri dish:

FG ¼
SG
TS
� 100

The average germination percentage (G%) and standard error was calculated for each treat-

ment, and these values for all the treatments except for the rate of germination data, were

entered into the statistical software SigmaPlot 13 (Systat Software, Inc., Point Richmond, CA,

USA) for analysis. The rate of germination was analysed using Microsoft Excel. The effect of

drought on germination percentage was fitted with a polynomial linear model:

G% ¼ y0þ a� x

-where, G% is the averaged germination (%) at the osmotic potential of x and a indicates the

slope.

The effect of salinity on germination percentage was fitted with a three-parameter sigmoid

model:

G% ¼ a= 1þ e �
x � x0

b

� �� �
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-where, G% is the total germination (%) at the NaCl concentration of x and b indicates the

slope, a is the maximum emergence (%) and x0 is defined as the concentration for 50% inhibi-

tion of the maximum germination (%) as a result of the treatment.

The effect of burial depth on seedling emergence was fitted with a three-parameter peak

Gaussian model:

E% ¼ a� eð� 0:5�
ðx � x0Þ

b
Þ

2

-where, E% indicates the emergence (%), a is the maximum emergence (%), b indicates the

slope, and x0 is defined as the concentration for 50% inhibition of the maximum germination

(%) as a result of the treatment.

A two-way ANOVA was generated for each treatment by using a general linear model on

with the statistical program Minitab.

Results and discussion

The effect of photoperiod and alternating temperature on germination (%)

Both N. trichotoma populations had the highest germination (%) at the alternating tempera-

ture of 25/15˚C (Fig 2A and 2B). Under the alternating photoperiod of 12 hours light and 12

hours dark at this temperature, the Ingliston population had 82.5% germination and Gnar-

warre had 90.8%, and similar counts were obtained in complete darkness with 80% and 92.5%

germination for the Ingliston and Gnarwarre populations, respectively. Both populations also

demonstrated high germination (%) under the alternating temperature of 17/7˚C under both

alternating light and dark (75% and 75.8% for Ingliston and Gnarwarre, respectively) and

complete darkness photoperiods (74.16% and 77.5% for Ingliston and Gnarwarre, respec-

tively). For both populations, germination (%) was significantly reduced under the alternating

temperature of 40/30˚C (p = 0.000), with a total germination (%) for the Ingliston population

of 34.2% (alternating) and 9.2% (complete darkness), and was even further reduced for the

Gnarwarre population, which had a germination (%) of only 6.7% (alternating) and 0.8%

(complete darkness). At the alternating temperature of 30/20˚C, the 12 hours light and 12

hours dark photoperiod significantly enhanced the germination (%) in the Gnarwarre popula-

tion (p = 0.002), with a total germination of 80.8% for the alternating photoperiod and only

60.8% under complete darkness. At this temperature, germination (%) was significantly

reduced compared to the 17/7˚C and 25/15˚C treatments within the Ingliston population, hav-

ing a total germination (%) of only 34.1% for both photoperiods. The germination (%) for

Ingliston in the 30/20˚C alternating photoperiod treatment was also lower compared to the

Gnarwarre population at the same light and temperature regime (p = 0.028). Temperature was

a more influential factor on germination (%) than photoperiod (Table 1). The high R-squared

value of 89% shows that the results obtained are strongly associated with the treatment

(Table 1).

The effect of photoperiod and alternating temperature on rate of

germination

Germination rate was steady, with both populations taking two weeks before 50% germination

or higher was observed (Fig 3A and 3B). For the Ingliston population, 53.3% germination was

observed for both the 17/7˚C and 25/15˚C temperature regimes under complete darkness after

two weeks of incubation, which was higher than the germination (%) observed for the alternat-

ing photoperiod at the same temperature, being only 36.6% and 25.8%, respectively. A similar

result was also observed in the Gnarwarre population for the 25/15˚C temperature regime

Seed ecology of spatially varied populations of Nassella trichotoma
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under both photoperiod treatments, with 55.8% and 64.2% germination being observed for

the alternating and complete darkness photoperiods respectively. Unlike the Ingliston popula-

tion, Gnarwarre had a lower germination (%) at the 17/7˚C temperature treatment, with only

29.2% germination observed under alternating and 5.8% germination in complete darkness

after two weeks of incubation. However, at the two-week mark, the Gnarwarre population had

50.8% germination in the 30/20˚C alternating photoperiod treatment, which was much higher

than the 23.3% germination observed in the Ingliston population at the same point in time.

These results show that for the Ingliston population, the temperatures of 17/7˚C and 25/15˚C

under complete darkness favours more rapid germination rates, while the Gnarwarre popula-

tion demonstrated a faster germination rate under the temperature regimes of 25/15˚C and

30/20˚C, with light being an irrelevant factor. After three-weeks of incubation, the germination

(%) rate declined for all the tested treatments.

For many plants, light plays an important role in allowing a seed to gauge its position within

the soil profile, identify existing competition, and detect any soil disturbance events [1]. For N.

trichotoma, light was not observed to be an important factor for regulating germination when

alternating temperatures were favourable. Photoperiod as a singular factor was only significant

in the 30/20˚C alternating temperature for the Gnarwarre population with only 60% of the

seeds germinating compared with 80% in the alternating light and dark trials. Germination in

complete darkness indicates that N. trichotoma is non-photoblastic; rather, other environmen-

tal factors may be more closely linked with breaking its dormancy [1, 16, 52]. The germinated

seedlings from the complete darkness treatment exhibited etiolated growth, while those seed-

lings from the alternating photoperiod treatment were observed to be larger and a vibrant

green colour. Light also had little influence on the rate of germination, with both tested photo-

periods producing similar weekly germination yields. Germination was highest in both popu-

lations at the alternating temperatures of 17/7˚C (approximately 75% for Ingliston and 76%

for Gnarwarre) and 25/15˚C (81% for Ingliston and 91% for Gnarwarre). The in situ average

maximum temperature of the two populations is approximately 25˚C and 15˚C, respectively,

in the spring and summer months, and 15˚C and 5˚C, respectively, throughout winter, which

is fitting with this optimal temperature result [46].

Fig 2. a: The effect of alternating temperature and photoperiod regimes on the germination (%) of Nassella trichotoma seeds for the Ingliston and b:

Gnarwarre populations after incubation in a growth chamber for 30 days. Vertical bars represent standard error of the mean.

https://doi.org/10.1371/journal.pone.0199491.g002
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There was a significant difference between the two populations when exposed to the higher

two alternating temperature regimes. The Ingliston population experience significantly higher

germination at the 40/30˚C regime than that of the Gnarwarre population. In the 30/20˚C and

the 40/30˚C alternating photoperiod treatments, germination was reduced to a similar level

for the Ingliston population, indicating that if moisture levels are adequate, approximately

34% of this population’s seeds will still germinate at these unfavourable temperatures. The

Gnarwarre population experienced an exponential reduction in the 40/30˚C treatment, with

only 6% of the seeds germinating under alternating light and dark conditions, and no seeds

germinating under complete darkness at this temperature. The Gnarwarre population had sig-

nificantly higher germination in the 30/20˚C treatment (80% in alternating light and 60% in

complete darkness) compared to the Ingliston population. The average seasonal temperatures

are slightly warmer across all seasons at Gnarwarre compared to Ingliston, which may have

contributed to this population’s higher optimal germination temperatures [11]. These results

observed subtle variations in germination response to alternating temperature regimes, and it

is possible that these differences could be stronger between more spatially distinct populations.

Table 1. Statistical output of the two-way ANOVA created using a general linear model. The tested environmental parameters and their interactions are displayed. Sta-

tistically significant points are italicized in red. The r-squared value indicates the proportion of the result that is influenced directly by the treatment.

Treatment Factors Df F-Value Sig R-Sq

Temperature and Photoperiod Temperature 3 192.91 0.000 89.5%

Population 1 10.63 0.002

Photoperiod 1 10.63 0.002

Temperature X Population 3 21.18 0.000

Temperature X Photoperiod 3 1.57 0.204

Population X Photoperiod 1 0.21 0.608

Temperature X Population X Photoperiod 3 3.19 0.028

pH pH Level 6 0.83 0.548 36.6%

Population 1 27.31 0.000

pH X Population 6 1.36 0.244

NaCl NaCl Concentration 6 96.06 0.000 89.6%

Population 1 11.61 0.001

NaCl X Population 6 2.49 0.031

Heat Temperature 4 22.21 0.000 70.2%

Duration of Exposure 2 1.70 0.185

Population 1 229.31 0.000

Temperature X Duration of Exposure 8 1.74 0.093

Temperature X Population 4 1.84 0.129

Duration of Exposure X Population 2 0.03 0.966

Temperature X Duration of Exposure X Population 8 1.24 0.280

Burial Depth Depth 4 9.18 0.000 49.0%

Population 1 0.74 0.393

Depth X Population 4 2.63 0.045

Drought PEG Concentration 6 330.34 0.000 96.1%

Population 1 50.46 0.000

PEG Concentration X Population 6 11.59 0.000

Germination under field conditions Depth 3 63.14 0.000 90.5%

Month 5 0.22 0.951

Artificial aging Depth 3 15.79 0.000 70.3%

Month 5 0.24 0.939

https://doi.org/10.1371/journal.pone.0199491.t001
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Fig 3. a The germination (%) for the Ingliston and b: Gnarwarre populations of Nassella trichotoma seeds tallied at the end of

every week from day 0 for the alternating temperature and photoperiod regime treatment.

https://doi.org/10.1371/journal.pone.0199491.g003
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Effect of drought

For the drought treatment, germination was highest in the control for both populations with

the Ingliston population having 70% germination and Gnarwarre having 93.3% germination

(Fig 4). There was little variation in germination (%) for the osmotic potential of 0.1MPa with

Ingliston having 65.8% germination and Gnarwarre having 92.5% germination. Exposure of

the seeds to an osmotic potential of 0.2MPa resulted in a decline in germination within each

population, as compared to 0.1MPa, with the germination (%) in the Ingliston population

declining to 46.6% and 75.8% for the Gnarwarre population. Both populations had signifi-

cantly reduced germination at the osmotic potential of 0.4MPa and above, with zero germina-

tion being observed from this concentration onwards (p = 0.000). The Gnarwarre population

had significantly higher germination compared to the Ingliston population in the control,

0.1MPa and 0.2Mpa treatments (p = 0.000), suggesting that the Gnarwarre population was

able to germinate better under the effect of drought than the Ingliston population (p = 0.000)

(Table 1). The r-squared value of 96% demonstrates that the effect of this osmotic potential

treatment strongly inhibited N. trichotoma’s seed germination at concentrations of 0.4MPa

and above.

Effect of salinity

For the salinity treatment, the highest germination (%) for the Ingliston population of 64.1%

was obtained in the 25mM treatment, and the highest germination (%) for the Gnarwarre pop-

ulation of 85% was obtained in the control treatment (Fig 5). Significantly higher germination

in the Gnarwarre population compared to the Ingliston population in the control and 25mM

treatments (p = 0.001), and this was independent of the salinity treatment (p = 0.031)

(Table 1). A NaCl concentration of 150mM significantly reduced N. trichotoma’s germination

in both populations (p = 0.000), with only 9.1% germination being observed for the Ingliston

population and 10% for the Gnarwarre. The model suggests that the Gnarwarre population

could tolerate up to 71.63mM of the NaCl solution before germination was inhibited by 50%,

while the Ingliston population germination was reduced to 50% with a NaCl concentration of

55.99mM. Germination continued to decline as the concentration of NaCl increased, and zero

germination was observed in both populations in the 250mM treatment. The r-squared value

of 89% confirms that the salinity treatment was the main factor reducing seed germination

(%).

Drought and salinity are environmental factors that impose osmotic stress on seeds, pre-

venting the natural flow of water into the seed from its surrounding environment. Under

osmotically stressful conditions, seeds may be unable to achieve the critical moisture levels

required for imbibition, and therefore unable to prepare for germination. The results of this

study demonstrated that water availability was a highly influential factor for triggering N. tri-
chotoma seed germination. In the drought treatments, both populations demonstrated reason-

able germination rates under the osmotic stress of -0.2MPa (46.6% for Ingliston and 75.8% for

Gnarwarre), but doubling this stress to -0.4MPa completely inhibited germination in both

populations. The effect of osmotic stress had a similar effect on C. nutans, where germination

was observed to be somewhat unaffected by osmotic stress between 0 and 0.2MPa, but was

almost completely inhibited by -0.4MPa [22]. A tetrazolium test identified a high proportion

of the un-germinated N. trichotoma seeds were still viable at the conclusion of the trials, indi-

cating that these seeds may germinate if osmotic conditions became favourable [52].

The Gnarwarre population had a higher tolerance to osmotic stress than the Ingliston pop-

ulation. At an osmotic potential of -0.2MPa, Gnarwarre had significantly higher germination

than that of the Ingliston population. The home ranges of the two populations have substantial
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variations in the volume of rainfall, with Ingliston having an average yearly rainfall of 654mm,

while the average for Gnarwarre is only 437mm, in addition to this the pattern of rainfall for

Ingliston is higher than Gnarwarre across all seasons, particularly in the autumn months

which is when N. trichotoma’s non-deep dormancy begins to break [36, 46, 53]. In addition to

this, the average maximum temperature is lower at Ingliston compared to Gnarwarre, mean-

ing this site is likely to have higher soil moisture conditions and exert less osmotic stress on

seeds and mature seed producing plants. The Gnarwarre population is subjected to lower rain-

fall and warmer maximum temperatures, therefore the osmotic pressures of this environment

is selecting for those plants that are more tolerant of dryer conditions compared to Ingliston.

The results suggest that the different osmotic selective pressures of these two environments

have resulted in variations in the seeds sensitivity to osmotic stress.

Salinity exerts a similar osmotic stress as drought, however as a result of the increased ion

concentrations, saline conditions can have a more profound inhibiting effect on seed germina-

tion [4, 54, 55]. While salinity often has a dormancy inducing effect on seeds, some salt toler-

ant species, like Vicia faba [56], Atriplex lentiformis [56] and Juncas ranarius [57] have been

observed to germinate under higher salinity stress, however the rate and vigour of germination

Fig 4. The effect of osmotic potential (-MPa) on the germination (%) of Nassella trichotoma for Ingliston (white dot) and Gnarwarre

(black dot) after incubation in a growth chamber at 25/15˚C 12 hours light/12 hours dark for 30 days. The line for Ingliston represents a

linear polynomial model fitted to the data with the equation G% = 77.671+83.09�X. The osmotic potential for 50% inhibition of maximum

germination for Ingliston is estimated as -0.15MPa. The same model was fitted to the Gnarwarre data with the equation G% = 108.67

+24.43�X. The osmotic potential for 50% inhibition of maximum germination for Gnarwarre is estimated as -0.24MPa. The vertical bars

represent standard error of the mean.

https://doi.org/10.1371/journal.pone.0199491.g004
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is considerably reduced. In addition to this, salinity can reduce a seedlings ability to take up

nutrients, such as potassium ions, and accumulate higher proportions of sodium and chloride

ions, reducing the seedlings growth potential [54, 58]. The germination inhibiting effect of

increasing salinity concentrations was similar in both populations. The Gnarwarre population

proved to have greater germination (%) than the Ingliston population, particularly in the con-

trol and 25mM treatments. The 100mM treatment reduced germination to 47% in the Gnar-

warre population and to 39% in the Ingliston population, which was significantly lower than

the control treatments. Germination was reduced to 9.2% and 10% for Ingliston and Gnar-

warre respectively in the 150mM treatment, and the 200mM treatment reduced germination

of the Ingliston population to only 4.2%, and no germination occurred for the Gnarwarre pop-

ulation at this concentration. No further germination occurred beyond 150mM indicating that

high salinity concentrations have an inhibiting effect on the germination volume of N. tricho-
toma seeds. The Gnarwarre collection site had moderately soil salinity (4.3dS m-1) compared

the Ingliston site’s soil being only slightly saline soil (3.8dS m-1), therefore the greater germi-

nation observed in the Gnarwarre population could be attributed to this environmental selec-

tive pressure. Similar responses to salinity have been observed in other noxious weeds,

including Amaranthus spinosus [28], Croton setigerus [22], and Emex australis [52]. The

Fig 5. The effect of NaCl (mM) on the average germination (%) of Nassella trichotoma for Ingliston (black dot) and Gnarwarre

(white dot) after incubation at 25/15˚C 12 hours light/12 hours dark for 30 days. The Ingliston population was fitted with a three-

parameter sigmoid model with the equation G% = 62.45/(1+e(-x-109.6/27.22). The Gnarwarre population was also fitted with a three-

parameter sigmoid model with the equation G% = 86.02/(1+e(-x-98.6/29.79). Germination was reduced to 50% at a NaCl concentration of

109.6mM for the Ingliston population and 98.6mM for the Gnarwarre population. The vertical bars represent standard error of the mean.

https://doi.org/10.1371/journal.pone.0199491.g005
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inhibiting effect of salinity on seed germination can explain why mature N. trichotoma plants

are rarely seen growing in saline affected regions of Australia, and the small proportion of the

population that do germinate in these regions are outcompeted with more salt tolerant plants

[14, 19, 36, 53].

Effect of burial depth on seedling emergence

The burial depth treatment obtained the highest emergence (%)at the 1cm burial depth treat-

ment for both populations, with the Ingliston population having 75% seedling emergence and

the Gnarwarre population having 80% emergence (Fig 6). The Ingliston population had the

same proportion of seedlings emerge at the 2cm burial treatment. A variation was observed

between the two populations in the surface treatment and the 4cm burial treatment

(p = 0.045). In the surface treatments, the Ingliston population had an emergence (%) of 51.6%

compared to only 30.8% for the Gnarwarre population. Contrastingly, in the 4cm burial treat-

ment, Gnarwarre had 50.8% emergence, while Ingliston had only 20.8%. Despite an identifi-

able bell-curve response to the effect of seed burial in both populations, the r-squared value of

only 49% suggests that other factors may have also been influencing the results of this

treatment.

Effect of burial depth on seed germination and viability under field

conditions

The results of the seed germination under field conditions treatment, shows that N. trichotoma
demonstrated similar germination (%) at 1, 2 and 4cm burial depth under field conditions (Fig

7). The germination (%) observed at these depths were significantly higher than the germina-

tion on the soil surface (0cm) (p = 0.000). The seeds viability remained consistent throughout

the six-month collection span, which suggests that seeds have the ability to remain viable

under field conditions for at least 170 days (Fig 8). Burial of 1cm or deeper appeared to have a

protective effect on the seeds, as these seeds had higher viability compared to those exposed to

surface conditions.

The effect of burial depth influenced the emergence (%) of seedlings slightly differently

between the two populations. The depth of 1cm was optimal for seedling emergence with 75%

and 80% germination for Ingliston and Gnarwarre respectively, with the Ingliston population

also having the same proportion of seeds germinate at a burial depth of 2cm. A burial depth of

4cm had significantly different proportion of emergence between the two populations, with

Gnarwarre having 50% emergence at this depth, while Ingliston’s emergence was reduced to

only 20%. As it was identified in the photoperiod treatment, N. trichotoma does not require

light for germination, therefore it is likely that the significant difference is related to seedling

vigour. Lighter seed weight was observed to increase sensitivity to burial depth interspecifically

amongst 13 different annual species collected from a Spanish grassland [59]. Intraspecific vari-

ations in the seed size was observed in two spatially distinct populations of Caucalis platycarpos
[38] and Ambrosia artemisiifolia [60] as a response to different environmental pressures, allow-

ing the population with larger, denser seeds to have higher emergence from greater burial

depths [59]. A similar variation in the seed density was observed between the two N. tricho-
toma populations studied, which may have influenced the difference in emergence at the 4cm

depth. The average individual seed weight of the Gnarwarre seeds were heavier (0.86mg) than

the Ingliston seeds (0.76mg), which could explain the significant difference in emergence at

this depth. It was identified in the artificial aging under field conditions treatment that germi-

nation of more than 20% does occur at a burial of 4cm in the Ingliston population, in fact, an
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average of 65% of the seeds germinated at this depth. Therefore, the lighter density of the

Ingliston population seeds is the likely factor decreasing emergence.

Nassella trichotoma seeds experienced a significant reduction in germination and seedling

emergence at the surface treatments compared to 1cm burial in both populations, with Inglis-

ton being reduced to 50% and Gnarwarre to 30% germination. Under field conditions, only

one seed germinated on the soil surface across the 6 months tested, and the total viability

results indicated that surface conditions reduce seed viability compared to a burial of 1cm or

greater. This is somewhat uncommon in species that germinate well in alternating light and

dark regimes, as surface conditions have been identified to be favourable for optimal germina-

tion in a magnitude of weed species inclusive of: Chromolaena odorata [61], Ceratocarpus are-
narius [62], Galinsoga quadriradiata and Galinsoga parviflora [8]. Germination and emergence

of the noxious grass weed E. colona, was significantly reduced from 97% at the soil surface to

12% with a burial depth of only 0.5cm [5]. A possible reason for the reduced germination in

the surface burial treatment may be related to a defensive response of the seeds far-red phyto-

chromes, as these play an important role in identifying the optimal time for germination by

Fig 6. The effect of seed burial (cm) on the average seedling emergence (%) of Nassella trichotoma for Ingliston (black dot) and Gnarwarre

(white dot) after incubation at 25/15˚C 12 hours light/12 hours dark for 30 days. The Ingliston population was fitted with a three-parameter peak

Gaussian model with the equation E(%) = 79.53�e(-0.5�X-1.49/1.59)2. The Gnarwarre population was also fitted with a three-parameter sigmoid

model with the equation E(%) = 77.68�e(-0.5�X-2.15/1.88)2. Maximum emergence occurred at a burial of 1.49cm for Ingliston and 2.15cm for

Gnarwarre. The vertical bars represent standard error of the mean.

https://doi.org/10.1371/journal.pone.0199491.g006
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Fig 7. The effect of seed burial (cm) under field conditions on seed germination (%) for Nassella trichotoma. Each month 120

seeds were collected from each depth and this graph shows the proportion (%) of seeds that had germinated within the field.

https://doi.org/10.1371/journal.pone.0199491.g007

Fig 8. The effect of seed burial (cm) under field conditions on total seed viability (%) for Nassella trichotoma collected from

Ingliston. Each month 120 seeds were collected from each depth and then incubated for up to 30 days and then had a TTC viability

test conducted on the seeds. This graph shows the total number (%) of seeds that had germinated within the field, within the

incubation period, and responded positively to the viability test.

https://doi.org/10.1371/journal.pone.0199491.g008
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not only sensing the intensity of competition, but also excessive light associated with soil surface

conditions [12]. This mechanism is known as high irradiance response sensitivity and it protects

the seed from germinating under intense sunlight as these factors can indicate harsh and unfa-

vourable temperatures and dry conditions [12]. As it was identified in the photoperiod trials, N.

trichotoma is non-photoblastic and can germinate well with alternating light and dark condi-

tions and in complete darkness, furthermore the results of the drought treatment highlighted

that N. trichotoma germination is highly dependent on ample water availability. The yearly aver-

age solar exposure for Ingliston and Gnarwarre is 15.1 MJ/m2 and 15.2 MJ/m2 respectively,

which indicates that these sites experience predominantly overcast conditions, and tolerating

full sunlight would not be a selective pressure of these environments [46]. Throughout the

burial depth experiment, it was observed that the surface conditions experienced loss of soil

moisture quicker that the soil layers just below, despite regular watering. Therefore, it is likely

that in addition to the far-red phytochromes preventing germination under full sunlight, differ-

ence in soil moisture between the surface and 1cm burial treatments also may have influenced

the significant difference observed in germination and emergence at these depths.

Effect of exposure to radiant heat under increasing time durations

Pre-exposure to radiant heat had a somewhat positive influence on germination (%) of both N.

trichotoma populations (Fig 9A and 9B). Exposure to the 120˚C treatment reduced Ingliston’s,

germination (%) to 35.8%, 37.5% and 33.3% for the 3, 6 and 9 minutes durations, respectively.

This reduction was significantly lower than the 40˚C treatments for this population

(p = 0.000). None of the temperatures or exposure durations resulted in germination (%) of

less than 50% for Gnarwarre, and this population experienced significantly higher germination

than the Ingliston population at all tested treatments (p = 0.000). The lowest germination for

the Gnarwarre population of 60% was obtained when seeds were exposed to 120˚C for 9

minutes.

The Gnarwarre population responded positively to radiant heat, particularly in the 40, 80

and 100˚C treatments, which produced higher germination (%) than the optimal photoperiod

and temperature treatment. For this population, germination was only reduced to 60% when

exposed to 120˚C for nine minutes. The Ingliston population showed greater sensitivity to

radiant heat, with no heat treatments producing better germination than the optimal photope-

riod and temperature regimes. Germination was reduced to approximately 50% in the 60 and

80˚C treatments, and to only 35% in the 120˚C treatments. Despite this, germination propor-

tions between 76 and 50% in newly burnt areas could still give the Ingliston population a

decent competitive advantage. There was no significant difference to germination for either

population as a result of the duration of heat exposure. These results highlight the importance

for integrating fire management with weed management, as fire has been observed to enhance

weed invasion, particularly in areas with poor nutrient availability such as roadsides [63]. Fire

was observed to enhance the rate and volume of germination in the invasive pastoral grass

Hyparrhenia rufa, despite it killing most of the established population [64]. The seeds of N. tri-
chotoma are fire tolerant to temperatures of at least 120˚C and germination and seedling

recruitment is enhanced by heat. Furthermore, the reduced competition associated with burn-

ing will likely promote the recruitment of this opportunistic weed.

Effect of pH on germination and variations in germination

Tthe range of pH levels tested did not have a significant effect on the germination (%) within

either population (Fig 10A and 10B). The germination (%) was significantly higher in the

Gnarwarre population compared to the Ingliston population across all the tested treatments

Seed ecology of spatially varied populations of Nassella trichotoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0199491 July 5, 2018 19 / 25

https://doi.org/10.1371/journal.pone.0199491


(p = 0.000), however this was not linked to the pH level (p = 0.244). The r-squared value of

36.6% suggests that the pH treatment was not the dominant factor influencing these

Fig 9. a: The effect of exposing Nassella trichotoma seeds to radiant heat (OC) at increasing time durations (minutes) on

germination (%) of for the Ingliston, b: Gnarwarre populations after incubation in a growth chamber at an alternating

temperature of 25/15˚C 12 hours light/12 hours dark for 30 days. Vertical bars represent standard error of the mean.

https://doi.org/10.1371/journal.pone.0199491.g009
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Fig 10. a: The effect of pH on the germination (%) of Nassella trichotoma seeds collected from Ingliston and Gnarwarre,

b: after incubation in a growth chamber at an alternating temperature of 25/15˚C 12 hours light/12 hours dark for 30

days. Vertical bars represent standard error of the mean.

https://doi.org/10.1371/journal.pone.0199491.g010

Seed ecology of spatially varied populations of Nassella trichotoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0199491 July 5, 2018 21 / 25

https://doi.org/10.1371/journal.pone.0199491.g010
https://doi.org/10.1371/journal.pone.0199491


differences. Despite this variation, both populations responded with a similar trend to the

range of pH levels treated.

This study highlighted that N. trichotoma does not have a significant preference for a partic-

ular pH level, and both populations were able to germinate well across the tested range of pH 4

to 10. Despite both populations being collected from sites with acidic soils, the lower pH levels

tested were not favoured any more than the higher levels, suggesting that soil pH is not an

active selective pressure on either population. The generalist attributes of most weeds allows

them to take advantage of a wide range of soil types as this allows them to exploit a magnitude

of environments, including disturbed and degraded regions. The minor effect of pH levels on

successful weed seed germination has also been observed in Amaranthus retroflexus [28], Gale-
nia pubescens [34] and Nicotiana glauca [30]. The Gnarwarre population had higher germina-

tion than the Ingliston populations at all pH levels, however the r-squared value of 36.6%

indicates that this is unlikely to be a result of the pH treatment. Overall, the Gnarwarre popula-

tion had higher seed viability than the Ingliston population. The variation observed in weight

could account for the difference in the total proportion of germination. The Gnarwarre seeds

were heavier and denser than the seeds collected from Ingliston, and greater seed density has

been observed to promote higher germination yields [59].

Conclusion

The results of this study highlight that N. trichotoma seeds are non-photoblastic, and dor-

mancy break can be triggered by favourable of alternating temperatures of approximately 25/

15˚C and ample water availability. Radiant heat was also observed to have a positive effect on

total germination yields. Under osmotic stress and salinity, germination was significantly

reduced, and water appeared to be the most important limiting factor on germination. Seeds

are able to germinate when buried to a depth of at least 4cm, and seedling emergence can

occur at this depth, although the success of emergence appears to be linked to seed weight,

with the denser Gnarwarre seeds having higher emergence than the lighter Ingliston seeds at

this depth. Germination was not enhanced or inhibited by pH level, suggesting that soil pH is

not a limiting factor on this species recruitment.

These findings suggest that light reducing management techniques will be unsuccessful for

preventing germination. Tilling the seeds to a depth of at least 4cm may reduce the emergence of

seedlings, and because the seeds still germinate when buried, this may quickly reduce the seed-

bank. The effect of seed burial on emergence should be further explored by investigating the

effect of greater seed burial depths under controlled and field conditions so that better recom-

mendations can be made for using tillage as a control method. Land managers should look for

N. trichotoma recruitment after good rainfall events and suitable temperature regimes, particu-

larly after fire treatments. By understanding the climatic conditions that significantly enhance

recruitment, management techniques can be applied accordingly to maximise their productivity.

This study observed variations in the seed ecology between the two populations of N. tricho-
toma, and it is likely that greater variations would be observed between populations with

greater differences in selective pressures. It would be beneficial to observe the spatial variations

between populations across different states of Australia, or even internationally in order to

develop a more thorough understanding of this species seed ecology so that management rec-

ommendations can be made confidently across wide geographical gradients.
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