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The Ebola virus (EBOV) epidemic in West Africa that devastated
Guinea, Liberia, and Sierra Leone from 2013 to 2016 became a
global public health crisis and claimed over 11,000 human lives
[1]. There were no licensed vaccines and therapeutics against
EBOV disease available at the time of the epidemic, but several
experimental vaccine approaches were accelerated into human
clinical trials starting in October 2014 [2]. Among these a repli-
cation competent vesicular stomatitis virus (VSV) vector expres-
sing the EBOV glycoprotein (GP) in place of the VSV
glycoprotein (VSV-EBOV, also known as rVSV-ZEBOV) met with
single-dose success, a success that was demonstrated using a
ring vaccination strategy [3]. This vaccine is moving toward
licensure in the United States and Europe, but has already
been licensed as a combination vaccine in Russia [4].
However, VSV-EBOV has disadvantages. As it was developed
as an emergency vaccine, it is fast-acting due to its replication
competence in the vaccinated individual, but can cause mild
adverse events similar to those observed by Yellow fever vacci-
nation, for example, pain at injection site and fever [5]. In
addition, a single study showed that the VSV-EBOV vaccine
requires long-term storage conditions at −70°C and has limited
stability at 4°C and 25°C [6], although the manufacturer’s are
currently working toward a lyophilized formulation. If multiple
doses of the VSV-EBOV have to be administered to achieve
complete protection its use would be limited as the vaccine
doses require a stable cold-chain for long-term storage which is
challenging in Africa; however, as a single-dose vaccine, its
stability is appropriate for where it is most needed in the
developing world during outbreaks. However, several other
experimental vaccine approaches have been developed to sup-
port a population-based vaccine effort against EBOV for the
endemic areas in Africa [2]. Among the most promising candi-
dates are adenovirus-based and modified vaccinia Ankara
(MVA)-based vaccines [2].

Adenovirus (Ad)-based vectors have frequently been devel-
oped for emerging viral diseases; however, the high seroposi-
tivity in humans for human Ads limited their use. Chimpanzee
adenovirus (ChAd)-EBOV was developed to circumvent these
preexisting immunity complications associated with particu-
larly human Ad5-based vaccines [2]. However, the ChAd-EBOV
vaccine by itself as a single high-dose vaccine only elicits
short-lived protective immune responses and requires a

boost vaccination [7]. Studies in NHPs have shown that a
ChAd-EBOV prime together with a boost of MVA-based vac-
cines expressing the EBOV GP is effective in mediating long-
term protective immunity and has been analyzed in several
clinical trials [2]. A single dose of this MVA-EBOV GP vaccine
was also not protective in NHPs [7], which is not unexpected
considering previous approaches with a vaccinia virus-based
vaccine resulted in partial protection in guinea pigs and failed
to protect NHPs [8]. However, does MVA have the potential
to being developed as an effective single dose vaccine
against EBOV?

MVA is a highly attenuated vaccinia virus first produced in
Germany in 1975 as a ‘safer smallpox vaccine’ for immuno-
compromised individuals considered to be at risk for the
standard vaccinia inoculation [9,10]. Attenuation was accom-
plished by 570 serial passages in chicken embryo fibroblasts
resulting in a virus that has lost about 30,000 bases of a wild-
type vaccinia virus genome, particularly affecting genes
important for virulence and immune evasion [8]. While MVA
replicates well in avian cells, it undergoes an abortive infection
in primates [11]. Despite its abortive infection in primates,
MVA has retained desirable features of its vaccinia parent:
the elicitation of durable T cell and antibody (Ab) responses
[12], the ability to be stored as a lyophilized product at ambi-
ent temperature (www.ClinicalTrials.gov; NCT00914732), and
the ability to be used without an adjuvant. Due to its large
genome size and the amount of coding capacity lost during
adaptation (~20%), MVA can be used as a vector to express
multiple vaccine antigens [13], a characteristic that readily
supports the construction of recombinant MVAs expressing
foreign virus-like particles (VLPs) [14–16]. Recently, promise
for a safer and more stable vaccine has been demonstrated
using MVA to express EBOV-like particles to achieve single-
dose protection in nonhuman primates [14]. The advantage of
this particular MVA vector compared to previously used vec-
tors only expressing EBOV GP is that it expresses two EBOV
antigens – the GP and the matrix protein VP40. Expression of
both EBOV proteins from a MVA-infected cell leads to EBOV-
like particle formation and the generation of a protective
immune response [14,15]. The single-dose protection in non-
human primates recently reported in Nature’s Scientific
Reports reflects this ‘first in class’ VLP vaccine benefitting
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from the choice of insertion sites and promoters and the
careful design of the EBOV GP and VP40 transgenes used in
its construction [14]. Domi et al. reported uniform protection
of the MVA-EBOV vaccine when a single-dose was adminis-
tered 28 days prior to lethal challenge with EBOV. The animals
developed good humoral immune responses including anti-
gen-specific IgG and EBOV-neutralizing antibodies [14].

The challenge now is how one takes forward a vaccine such
as MVA-EBOV, with preclinical protective potential, but poten-
tially improved safety, durability, and stability profiles than a
vaccine that has successfully completed an initial efficacy test
(VSV-EBOV). Does the safety and stability during storage of this
vaccine merit the cost to develop this vaccine for developing
countries? In the 5643 adults and 194 children inoculated in the
VSV-EBOV ring vaccination study, there was only 1 severe
adverse event, a febrile episode, that was judged to be causally
related to vaccination [3]. Compared to the Yellow fever vac-
cine, which can lead to severe complications [5], that is very
little and warrants the continued use of this vaccine particularly
in emergency situations. However, for travelers and health care
workers from the developed world a safer replication-
incompetent vaccine with no associated adverse effects,
which might even require more than one vaccination dose,
would be of value as these individuals can plan for vaccination
before exposure. The military also would benefit from a safer
prime-boost vaccine approach with no associated adverse
effects, especially one that could protect against aerosol infec-
tions, considering that filoviruses are potential biological terror-
ism agents [17]. In some studies, VSV-EBOV has protected
against an aerosol EBOV challenge, the likely form of a weapo-
nized challenge [18]. Thus, the next most important step for the
MVA-EBOV vaccine is to test its potential, and the reproduci-
bility of its potential, to protect against an aerosol challenge.
Another development pathway will be to evaluate the ability to
formulate the MVA-EBOV vaccine into a multi-hemorrhagic
fever virus vaccine for citizens of West and Central Africa,
travelers, first responders to outbreaks, and the military. The
goal for such a vaccine would be to protect against EBOV,
Sudan (SUDV), Bundibugyo, and Marburg virus (MARV), the
four highly lethal filoviruses that have caused at least 29 out-
breaks since 1976 in Central and West Africa. Additionally, one
should also include Lassa virus (LASV), an arenavirus, in this
vaccine, as it is endemic to West Africa and the causative agent
of thousands of cases of highly lethal hemorrhagic fever
each year. Ebolaviruses do not induce cross-reactive immune
responses between species or even to MARV. It will be challen-
ging to formulate a vaccine of that many components protec-
tive against these different pathogens, regardless if it will be a
blend of single MVA-VLP vaccines or one single MVA-vector
expressing multiple antigens. However, for the latter strategy,
a multivalent VSV vector against EBOV, SUDV, and MARV has
been developed and shown to be efficacious in rodents [19].
Alternatively, consecutive vaccinations with MVA-VLP vectors
targeting different pathogens could be considered; however,
the effect of preexisting immunity targeting MVA for such a
strategy needs to be evaluated in preclinical studies. This has
been shown to be a viable option for the VSV-based vaccines,
particularly for the VSV-EBOV and VSV-LASV vaccines [20].
Consecutive vaccinations enable the use of all VSV-based

vaccines for EBOV, LASV, MARV, and other pathogens endemic
in West and Central Africa in one host. In studies in nonhuman
primates, VSV vaccines can be successfully used in previously
immunized individuals.

The MVA-VLP vaccine platform has high versatility and is
currently being developed not only for the pathogens men-
tioned earlier, but also for members of unrelated virus families
like human immune deficiency virus, Zika virus (ZIKV), Hepatitis
B virus, and even the parasites of the species Plasmodium sp.,
the causative agents of malaria. Furthermore, every effort is
being made to advance the MVA-EBOV and the MVA-ZIKV
vaccines, which target two recent emerging pathogens, toward
licensure.
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