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Abstract: Background and objective: Dry eye disease (DED) is a relatively common disorder associ-
ated with abnormal tear film and the ocular surface that causes ocular irritation, dryness, visual
impairment, and damage to the cornea. DED is not a life-threatening disease but causes discomfort
and multifactorial disorders in vision that affect daily life. It has been reported that all traditional
medicinal plants exhibit anti-inflammatory effects on several diseases. We hypothesized that the
decoction ameliorated ocular irritation and decreased cytokine expression in the cornea. This study
aimed to investigate the molecular mechanisms of DED and discover a therapeutic strategy to reduce
corneal inflammation. Material and Methods: We used a DED mouse model with extraorbital lacrimal
gland (ELG) excision and treated the mice with a decoction of five traditional medicines: Lycium
chinense, Cuscuta chinensis, Senna tora, Ophiopogon japonicus, and Dendrobium nobile for 3 months. The
tear osmolarity and the ocular surface staining were evaluated as indicators of DED. Immunohis-
tochemistry was used to detect the level of inflammation on the cornea. Results: After treatment
with the decoction for three months, epithelial erosions and desquamation were reduced, the intact
of corneal endothelium was maintained, and tear osmolarity was restored in the eyes. The IL-1β-
associated inflammatory response was reduced in the cornea in the DED model. Conclusions: These
data suggested that a mixture of traditional medicines might be a novel therapy to treat DED.

Keywords: dry eye disease; lacrimal gland; Lycium chinense; Cuscuta chinensis; Senna tora; Ophiopogon
japonicu; Dendrobium nobile; inflammation

1. Introduction

Dry eye disease (DED) is a common ocular surface disease that leads to eye discomfort,
ocular irritation, dryness, visual impairment, and corneal damage. DED is associated with
an unstable tear film that progressively compromises vision and affects the daily activities
of patients [1,2]. The pathogenesis of DED is complex and multifactorial and involves
autoimmune disorders, infections, the use of contact lenses, hormonal changes, chronic
inflammation, and environmental factors [3,4]. DED diagnosis depends on subjective
symptoms and dry eye tests, including ocular surface staining, tear film breakup time
(TFBUT), tear secretion volume measurement by Schirmer’s test, and tear osmolarity [5,6].
As DED is a common disease, it may affect quality of life worldwide. It is necessary to
investigate the molecular mechanisms involved in DED and understand the pathogenesis
of DED.

Traditional medicinal herbs have been used as therapeutic agents for millions of years
to cure disease and explore potential health properties. Five different traditional medicinal
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plants (Lycium chinense, Cuscuta chinensis, Senna tora, Ophiopogon japonicus, and Dendrobium
nobile) have been widely used to treat many diseases. Extracts of Lycium chinense induced
anti-inflammatory responses by suppressing interleukin (IL)-1β and tumor necrosis factor
(TNF)-α expression and lipopolysaccharide (LPS)-induced inflammation [7] and exerting
antioxidant effects to treat Parkinson’s disease [8]; moreover, neuroprotective effects in
retinal ischemia and reperfusion injury studies have been observed [9,10]. The extraction of
Cuscuta chinensis has bioactive natural flavonoids and exerts antioxidant, anti-inflammatory,
anticancer, and neuroprotective effects on an LPS-induced murine autoimmune model by
reducing IL-6, TNF-α, and NF-κB levels [11,12]. The seed extracts of Senna tora exert bio-
logical activities, including anti-inflammatory and neuroprotective effects on LPS-induced
RAW264.7 macrophages, hippocampal neurons, and retinal precursor cells by modulat-
ing the NF-κB pathway [13,14]. The root of Ophiopogon japonicus has been reported
to have immunomodulatory and antioxidative effects on liver and lung injury [15–17]
by suppressing the NF-κB pathway. Several useful chemical components extracted from
Dendrobium nobile have antithrombotic and immunomodulatory effects on LPS-induced
murine macrophage models and retinal cell models by inhibiting VEGP, COX-2, IL-6, and
IL-1β production [18,19]. We hypothesized that a decoction of five traditional medicinal
herbs may have therapeutic effects on DED.

It has been reported that many animal models of DED have been established to
mimic the pathogenesis of DED, including monkey, rabbit, mouse, and rat models [20–22].
However, some genetically modified and spontaneous mouse models may not sufficiently
mimic DED pathogenesis, such as damage to the ocular surface. Additionally, many models
are difficult to implement in experiments. In this study, lacrimal gland excision was used
to establish a DED model [23] to determine the molecular mechanism of the decoction. We
confirmed that after exorbital lacrimal gland (ELG) excision, inflammatory responses in the
epithelium and Bowman’s layer were decreased and corneal thickness was suppressed by
decoction treatment. In the future, this decoction might be a novel treatment for DED.

2. Materials and Methods
2.1. Animals

Thirty-six C57BL/6J mice (8 weeks old) were purchased from the National Laboratory
Animal Center and maintained in the Laboratory Animal Center at Tzu Chi University.
This study was performed in accordance with the IACUC (No. 109011). Mice were housed
under conventional conditions with a 12 h light and dark cycle and provided food and
water ad libitum.

2.2. Lacrimal Gland Excision

The mice were anesthetized by an intraperitoneal injection of 100 mg/kg ketamine
(Health-Tech Pharmaceutical Co., Ltd., Taipei, Taiwan) and 10 mg/kg xylazine (Health-
Tech Pharmaceutical Co., Ltd., Taiwan). Vidisic gel (Dr. Gerhard Mann Chem.-Pharm.,
Berlin, Germany) was dropped on the eye. After shaving the hair, a 3 mm area anterior and
ventral to the ear was cleansed with iodine tincture, and an incision was made in the ear
on the right side to expose the ELG with a stereoscopic microscope. The ELG was excised,
and the incision was sutured with 6-0 ophthalmic nylon thread (Figure 1). An ointment
was applied to the incision (0.3% tobramycin and 0.1% dexamethasone, TobraDex, Alcon,
Puurs, Belgium).
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Figure 1. Extraorbital lacrimal gland (ELG) excision. (A) After anesthetization, the hair was shaved. 
(B) A 3 mm area anterior and ventral to the ear was cleansed with iodine tincture. (C) A 3 mm 
incision was made and the extraorbital lacrimal gland was excised. (D) The incision was sutured 
with 6-0 ophthalmic nylon thread and the incision was covered with ointment. 
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Eight grams of the dry seeds of Lycium chinense, 8 g of the dry seeds of Cuscuta 

chinensis, 8 g of the dry seeds of Senna tora, 8 g of the dry roots of Ophiopogon japonicus, 
and 8 g of the dry stems of Dendrobium nobile were crushed and mixed in 100 mL of 
drinking water. After being boiled in water, the decoction was isolated from the mixture. 

2.4. Treatment with the Decoction 
The concentrations of the herbs for human treatment are 20 g of five traditional 

medicines per day. The guide for dose conversion between animals and human follows 
the equivalent dose: Mouse equivalent dose (mg/kg) = (Dose to be converted)/(Mouse 
Km/Human Km). The average body weights of humans and mice are 63 kg and 25 g. The 
Km for humans and mice is 37 and 3, respectively [1]. The mouse equivalent dose (mg/kg) 
is 3909.6 mg/kg. The water intake per day in C57BL/6J mice is 7 mL [2]. The final 
concentration of the herbs of C57BL/6J mice is 13.96 mg/mL/day. 

The decoction was diluted in a ratio of 28:1 in drinking water. The diluted decoction 
was given immediately after ELG excision. The decoction was administered for 3 months. 
The sham and ELG excision groups received normal drinking water during all 
experimental procedures. 

2.5. Tear Osmolarity Measurement 
Before ELG excision, mice were anesthetized by an intraperitoneal injection of 100 

mg/kg ketamine and 10 mg/kg xylazine. Eye drops containing 0.5% Alcaine (Alcon, Puurs, 
Belgium) were administered before tear osmolarity measurement. Tear osmolarity was 
measured using an osmolarity system (I-Pen Vet Osmolarity, I-MED Pharma, Saint-
Laurent, Canada). After 3 months of decoction treatment, the tear osmolarity was 
measured after anesthesia. 

2.6. Ocular Surface Staining 
After 3 months of treatment, the mice were anesthetized by an intraperitoneal 

injection of 100 mg/kg ketamine and 10 mg/kg xylazine. A fluorescein sodium ophthalmic 
strip (1 mg/strip) (HUB Pharmaceuticals, Scottsdale, AZ, USA) was diluted in 300 μL of 
0.9% normal saline to make the solution. Then, 20 μL of the solution was added dropwise 
to the conjunctival sac of each eye. The eyes were examined with a visual electrodiagnostic 
system (Espion, Diagnosys LLC, Gaithersburg, MA, USA). To assess corneal staining, we 
used the ocular surface score to evaluate damage to the cornea, and the cornea-divided 
horizon was assessed on a scale of 0 to 3 (total of 9 points) (Figure 2A) [24]. 

Figure 1. Extraorbital lacrimal gland (ELG) excision. (A) After anesthetization, the hair was shaved.
(B) A 3 mm area anterior and ventral to the ear was cleansed with iodine tincture. (C) A 3 mm
incision was made and the extraorbital lacrimal gland was excised. (D) The incision was sutured
with 6-0 ophthalmic nylon thread and the incision was covered with ointment.

2.3. Decoction Preparation

Eight grams of the dry seeds of Lycium chinense, 8 g of the dry seeds of Cuscuta chinensis,
8 g of the dry seeds of Senna tora, 8 g of the dry roots of Ophiopogon japonicus, and 8 g of the
dry stems of Dendrobium nobile were crushed and mixed in 100 mL of drinking water. After
being boiled in water, the decoction was isolated from the mixture.

2.4. Treatment with the Decoction

The concentrations of the herbs for human treatment are 20 g of five traditional
medicines per day. The guide for dose conversion between animals and human follows
the equivalent dose: Mouse equivalent dose (mg/kg) = (Dose to be converted)/(Mouse
Km/Human Km). The average body weights of humans and mice are 63 kg and 25 g.
The Km for humans and mice is 37 and 3, respectively [1]. The mouse equivalent dose
(mg/kg) is 3909.6 mg/kg. The water intake per day in C57BL/6J mice is 7 mL [2]. The final
concentration of the herbs of C57BL/6J mice is 13.96 mg/mL/day.

The decoction was diluted in a ratio of 28:1 in drinking water. The diluted decoction
was given immediately after ELG excision. The decoction was administered for 3 months.
The sham and ELG excision groups received normal drinking water during all experimen-
tal procedures.

2.5. Tear Osmolarity Measurement

Before ELG excision, mice were anesthetized by an intraperitoneal injection of
100 mg/kg ketamine and 10 mg/kg xylazine. Eye drops containing 0.5% Alcaine (Alcon,
Puurs, Belgium) were administered before tear osmolarity measurement. Tear osmolarity
was measured using an osmolarity system (I-Pen Vet Osmolarity, I-MED Pharma, Saint-
Laurent, QC, Canada). After 3 months of decoction treatment, the tear osmolarity was
measured after anesthesia.

2.6. Ocular Surface Staining

After 3 months of treatment, the mice were anesthetized by an intraperitoneal injection
of 100 mg/kg ketamine and 10 mg/kg xylazine. A fluorescein sodium ophthalmic strip
(1 mg/strip) (HUB Pharmaceuticals, Scottsdale, AZ, USA) was diluted in 300 µL of 0.9%
normal saline to make the solution. Then, 20 µL of the solution was added dropwise to
the conjunctival sac of each eye. The eyes were examined with a visual electrodiagnostic
system (Espion, Diagnosys LLC, Gaithersburg, MA, USA). To assess corneal staining, we
used the ocular surface score to evaluate damage to the cornea, and the cornea-divided
horizon was assessed on a scale of 0 to 3 (total of 9 points) (Figure 2A) [24].
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Figure 2. Fluorescein staining of the ocular surface. (A) Assessment of the corneal surface. (B) 
Decrease in punctate epithelial erosions on the cornea after decoction treatment. (C) The columns 
represent the defects in corneal staining, and the scores in the sham, ELG excision, and ELG excision-
treated groups were 2.5 ± 1, 8 ± 1, and 3.25 ± 0.5, respectively. (n = 12, ** p < 0.001). 

2.7. Histology 
The cornea was excised and fixed in 4% paraformaldehyde (#43368, Alfa Aesar, 

Tewksbury, MA, USA) for 2 h at 25 °C. The tissue was embedded in OCT compounds 
(#4583, SAKURA, Torrance, CA, USA) and cut into 8 μm thick sections by a cryostat (Leica 
CM3050S, Deer Park, IL, USA). Hematoxylin (#1.09249.0500, Sigma, St. Louis, MO, USA) 
and eosin (#1.09844.1000, Merck, Darmstadt, Germany) staining was performed on each 
group. The stained sections were photographed by microscope (EVOS™ M5000 Imaging 
System, Invitrogen, Waltham, MA, USA). The detached corneal epithelial cells were 
calculated per section at 40× magnification (n = 12 in each group) and quantified with 
ImageJ software (version 1.8.0_172; U.S. National Institutes of Health, Bethesda, MD, 
USA, https://imagej.nih.gov/ij/). 

2.8. Immunohistochemistry (IHC) 
Frozen corneal sections were blocked with 1% BSA and labeled with IL-1β (1:200, 

Abcam) and IL-6 (1:500, Abcam) primary antibodies at 4 °C overnight. The sections were 

Figure 2. Fluorescein staining of the ocular surface. (A) Assessment of the corneal surface. (B) De-
crease in punctate epithelial erosions on the cornea after decoction treatment. (C) The columns
represent the defects in corneal staining, and the scores in the sham, ELG excision, and ELG excision-
treated groups were 2.5 ± 1, 8 ± 1, and 3.25 ± 0.5, respectively. (n = 12, ** p < 0.001).

2.7. Histology

The cornea was excised and fixed in 4% paraformaldehyde (#43368, Alfa Aesar,
Tewksbury, MA, USA) for 2 h at 25 ◦C. The tissue was embedded in OCT compounds
(#4583, SAKURA, Torrance, CA, USA) and cut into 8 µm thick sections by a cryostat (Leica
CM3050S, Deer Park, IL, USA). Hematoxylin (#1.09249.0500, Sigma, St. Louis, MO, USA)
and eosin (#1.09844.1000, Merck, Darmstadt, Germany) staining was performed on each
group. The stained sections were photographed by microscope (EVOS™ M5000 Imag-
ing System, Invitrogen, Waltham, MA, USA). The detached corneal epithelial cells were
calculated per section at 40× magnification (n = 12 in each group) and quantified with
ImageJ software (version 1.8.0_172; U.S. National Institutes of Health, Bethesda, MD, USA,
https://imagej.nih.gov/ij/).

https://imagej.nih.gov/ij/
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2.8. Immunohistochemistry (IHC)

Frozen corneal sections were blocked with 1% BSA and labeled with IL-1β (1:200,
Abcam) and IL-6 (1:500, Abcam) primary antibodies at 4 ◦C overnight. The sections
were incubated with corresponding Alexa Fluor-conjugated secondary antibodies (1:100,
Invitrogen, USA). Photographs were taken with a Zeiss LSM 900 confocal system (Zeiss,
Oberkochen, Germany). At least six images per eye at 20× magnification were collected to
quantify the number of positive cells in the cornea with ImageJ software.

2.9. Statistical Analysis

All the data are shown as the mean ± standard deviation (SD). Statistical analysis
was performed by the Kruskal–Wallis test for comparisons between groups with Graph-
Pad Prism 5 (GraphPad Software, La Jolla, CA, USA), and p values less than 0.05 were
considered to indicate statistical significance.

3. Results
3.1. Decrease in Superficial Punctate Epithelial Erosions on the Corneas of ELG Excision Mice

Fluorescein sodium was used to confirm corneal epithelial damage and study dry
eye [25,26]. To investigate ocular surface defects, fluorescein staining was used 3 months
after ELG excision. Epithelial erosions in the cornea were ameliorated after 3 months of
decoction treatment, and the numbers of puncta in the sham, ELG excision-only, and ELG
excision-treated groups were 2.5 ± 1, 8 ± 1, and 3.25 ± 0.5, respectively. After 3 months of
treatment with the decoction, the damage to the ocular surface was decreased (Figure 2).
These results suggested that the decoction may rescue DED.

3.2. The Suppression of Tear Osmolarity after Decoction Treatment and ELG Excision

Osmolarity measurement has superior diagnostic performance and is the best single
metric to classify DED [27,28]. In the decoction treatment group, the osmolarity showed a
significant reduction (Figure 3). The results in the sham, ELG excision, and ELG excision-
treated groups were 282.8 ± 7.264, 309.5 ± 2.887, and 282.9 ± 5.146, respectively. These
results confirmed the reduction in osmolarity by the decoction after ELG excision.
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Figure 3. Tear osmolarity. Tear osmolarity was measured 3 months after ELG excision. The results
in the sham, ELG excision, and ELG excision-treated groups were 282.8 ± 7.264, 309.5 ± 2.887, and
282.9 ± 5.146, respectively. (n = 12, * p < 0.05, ** p < 0.001).
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3.3. Decrease in Desquamation on the Corneal Epithelium after Decoction Treatment in the
DED Model

The corneal sections were stained with H&E after being treated with the decoction
for 3 months (Figure 4). The number of detached epithelial cells was reduced in the ELG
excision-treated group (Figure 4A). The quantitative data showed that the numbers of
detached epithelial cells per 0.01 mm2 in sham, ELG excision, and ELG excision-treated
groups were 0.75 ± 0.29, 2.72 ± 0.69, and 1.16 ± 0.52, respectively (Figure 4B). The endothe-
lial defects were observed in the corneas of the ELG excision group. In contrast, treatment
with the decoction for 3 months might reduce the desquamation of corneal epithelium and
maintain the corneal endothelium.
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Figure 4. The effect of treatment with decoction on the desquamation of the corneal epithelium.
(A) The corneal sections were stained with H&E after 3 months of decoction treatment. The red arrows
indicate detached corneal epithelial cells. (Scale bar: 50 µm). The endothelial defects were observed in
the cornea of ELG excision group (red triangles). (B) The quantitative data showed that the numbers
of detached epithelial cells per 0.01 mm2 in sham, ELG excision, and ELG excision-treated groups
were 0.75 ± 0.29, 2.72 ± 0.69, and 1.16 ± 0.52, respectively. (n = 12, * p < 0.05, ** p < 0.001).

3.4. Reduced Inflammatory Responses after Decoction Treatment in the DED Model

Previous studies have shown that innate immune system-mediated inflammation
occurs in dry eye [29], leading to the expression of proinflammatory cytokines, including
IL-1β and IL-6, on the ocular surface [30]. Immunohistochemical staining demonstrated
suppression of IL-1β and IL-6 expression on the ocular surface in the decoction-treated
group (Figure 5). The IL-1β levels in the sham, ELG excision, and ELG excision-treated
groups were 0.1957 ± 0.036, 0.512 ± 0.088, and 0.298 ± 0.087, respectively. The numbers
of IL-1β-positive cells were significantly decreased in the ELG excision-treated group
(Figure 5A,B). The IL-6 intensities in the sham, ELG excision, and ELG excision-treated
groups were 0.049 ± 0.0468, 0.4495 ± 0.054, and 0.252 ± 0.099, respectively. These results
showed the reduction in IL-6 expression due to decoction treatment after ELG excision
(Figure 5C,D). These data confirmed that the decoction may suppress inflammation in DED.
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Figure 5. IHC analysis of IL-1β and IL-6 in the ocular surface. (A) Green fluorescence represents IL-
1β-positive cells, and blue fluorescence represents the nuclei. (B) The columns indicate the intensity
of green fluorescence in IL-1β-positive cells. (Scale bar: 50 µm, * p < 0.05, ** p < 0.001). (C) Green
fluorescence represents IL-6-positive cells, and blue fluorescence represents the nuclei. (D) The
columns indicate the intensity of green fluorescence in IL-6-positive cells. (n = 12, Scale bar: 50 µm,
* p < 0.05, ns = 0.1884).

4. Discussion

Morphological and physiological changes were observed in a DED model, and there
was an increase in tear osmolarity, defects in the ocular surface, and inflammatory responses
in mice with ELG excision. DED is defined as a multifactorial disease of the ocular surface,
and extrinsic and intrinsic factors trigger inflammation in dry eye. Allergic conjunctivitis
and the environment induce autoimmune activation, leading to proinflammatory cytokine
release in the ocular surface and exacerbating dry eye [31]. To modulate the inflammatory
changes in dry eye, immune cells infiltrate the conjunctiva, cornea, and lacrimal glands
and elevate tear cytokine levels in dry eye [32]. After desiccating stress on the corneal
surface, ocular surface cells secrete inflammatory cytokines, especially TNF-α, IL-6, and
IL-1β, triggering antigen presenting cell (APC) activation. APCs stimulate T cells, inducing
further cytokine release, and interact with lymph nodes, leading to the upregulation of
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effector responses, an increase in immune cells on the ocular surface, and defects in corneal
cells [33]. Indeed, inhibiting inflammation may rescue dry eye.

It has been reported that the compounds isolated from Lycium chinense, Cuscuta chi-
nensis, Senna tora, Ophiopogon japonicus, and Dendrobium nobile have antioxidative, anti-
inflammatory, and neuroprotective effects on several cell and animal disease models [34,35].
Aurantio-obtusin is an anthraquinone compound extracted from the seeds of Senna tora that
suppressed NF-κB activation in an LPS-induced macrophage study [14]. Alkaloids isolated
from Dendrobium nobile had neuroprotective effects on an LPS-induced BV2 microglial
model by suppressing IL-1β [36]. Dihydro-N-caffeoyltyramine (DHCT) isolated from Ly-
cium chinense decreased the NF-κB activity levels and antifungal effects of macrophage cells
in PMA-mediated induction [1]. Quercetin and kaempferol isolated from Cuscuta chinen-
sis was associated with increases in brain mitochondrial biogenesis and inhibited COX-2
protein expression in an atherosclerosis rabbit model and exercise mouse model [2–4]. Ho-
moisoflavonoids from the tuberous roots of Ophiopogon japonicus suppressed apoptosis
effects on an ischemia/reperfusion-induced myocardial mouse model by activation of the
PI3K/Akt/eNOS signaling pathway [5]. In this study, decoction-mediated decreases in
IL-6 and IL-1β in mice with ELG excision were examined.

Traditional medicinal herbs comprise several primarily botanical ingredients. The
formulas are oral delivery forms of teas or decoctions. Some frequently used formulas
are premade patent formulas. The traditional medicinal herbs in this study containing
flavonoids, phenolic acids, and alkaloids are associated with an anti-inflammation and
antioxidant effect in several disease models and may be a potential protection therapeutic
strategy for DED [6–8]. However, the compounds in the decoction that act as therapeutic
agents are currently unknown. Additionally, the dose of traditional medicinal herbs for
long-term treatment is a challenge. Some herbs contain aristolochic acid and alkaloids,
which have been related to stroke, nephropathy, and heart attack [37,38]. The inhibition of
cell proliferation, death, and growth is essential for evaluating cytotoxic elements.

5. Conclusions

In this study, we evaluate the effect of the decoction of five traditional medicines:
Lycium chinense, Cuscuta chinensis, Senna tora, Ophiopogon japonicus, and Dendrobium nobile,
in a mouse model of dry eye and found that it was effective in suppression of ocular
irritation and decrease in cytokine expression in the cornea. Our results indicate that the
decoction exerted anti-inflammatory effects and rescued ocular defects. In the future, this
traditional medicinal decoction may be used as a treatment for DED.
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