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Abstract

Background: A-to-I RNA editing is an important step in RNA processing in which specific adenosines in some RNA
molecules are post-transcriptionally modified to inosines. RNA editing has emerged as a widespread mechanism for
generating transcriptome diversity. However, there remain significant knowledge gaps about the variation and
function of RNA editing.

Results: In order to determine the influence of genetic variation on A-to-I RNA editing, we integrate genomic and
transcriptomic data from 445 human lymphoblastoid cell lines by combining an RNA editing QTL (edQTL) analysis
with an allele-specific RNA editing (ASED) analysis. We identify 1054 RNA editing events associated with cis genetic
polymorphisms. Additionally, we find that a subset of these polymorphisms is linked to genome-wide association
study signals of complex traits or diseases. Finally, compared to random cis polymorphisms, polymorphisms associated
with RNA editing variation are located closer spatially to their respective editing sites and have a more pronounced
impact on RNA secondary structure.

Conclusions: Our study reveals widespread cis variation in RNA editing among genetically distinct individuals and
sheds light on possible phenotypic consequences of such variation on complex traits and diseases.
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Background
RNA editing is a prevalent post-transcriptional regula-
tory process that adds an additional layer of complexity
to the transcriptome. In mammals, the most common
form of RNA editing is A-to-I RNA editing, in which
adenosine is deaminated to inosine by the ADAR family
of enzymes [1]. Mice lacking Adar (also known as
ADAR1) die embryonically at approximately embryonic
day 12.5 [2, 3] while mice lacking Adarb1 (also known
as ADAR2) die shortly after birth due to seizures [4].
Double-stranded RNA (dsRNA) is a required substrate
for ADAR enzymes [5] and one hypothesis states that
the ancestral function of ADARs may have been to
combat viral dsRNAs [6]; however, many groups have re-
ported a pro-viral effect of ADARs [7], which may indi-
cate a commandeering of cellular machinery that was
originally anti-viral. Recent studies using mouse models
show that ADAR1 plays a central role in mammalian
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innate immunity by down-regulating immune response
to endogenous dsRNA [8, 9]. There have been numerous
reports of functional consequences of RNA editing. Earl-
ier reported consequences involve nonsynonymous pro-
tein coding substitutions [10] and alternative splicing
[11]. However, human RNA editing sites have been
found to be most prevalent in Alu repeats located in
non-coding regions, such as in introns and UTRs [12],
which suggests possible regulatory roles of RNA editing.
Indeed, nuclear retention [13], miRNA biogenesis [14],
and miRNA targeting via editing of miRNA seed regions
[15] or target sequences in mRNA [16] are some of the
functional consequences that have been described for
RNA editing in non-coding regions. Additionally, RNA
editing has been shown to be associated with many
diseases such as cancer [17], viral infection [18], and
neurological disorders [19]. A-to-I changes in RNA lead
to A-to-G changes in sequencing data because inosine is
interpreted as guanosine by the reverse transcriptase.
With the advent of high-throughput RNA sequencing
(RNA-seq), the catalog of identified RNA editing sites
has expanded tremendously [20–22], with some
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estimates being over a hundred million sites within most
genes of the human genome [12]. Although many RNA
editing sites have been identified, much less is known
about how RNA editing is regulated, as well as the ex-
tent of cis variation and phenotypic association of RNA
editing in human populations.
Quantitative trait loci (QTL) analysis has been suc-

cessfully used to identify cis-regulatory mechanisms of
quantifiable phenotypes such as gene expression (eQTL)
[23] and alternative splicing (sQTL) [24]. These loci have
been used to bridge the gap in our understanding
between complex diseases and their respective suscepti-
bility loci. Mapping QTLs involves testing for correla-
tions between genomic polymorphisms and quantitative
phenotypes. In addition to eQTL and sQTL analysis,
other molecular traits have been studied with a QTL
approach such as DNA methylation (meQTL) [25], chro-
matin accessibility (dsQTL) [26], and transcription factor
binding (bQTL) [27]. For molecular traits corresponding
to genomic loci, cis-QTLs are defined as significant poly-
morphisms that are located sufficiently close to the loci
while trans-QTLs are defined as polymorphisms located
beyond a fixed (often arbitrary) distance or on a separate
chromosome. Similar to QTL analysis, allele-specific ana-
lysis has been used to investigate cis-regulation of gene ex-
pression [28] and RNA processing [29].
To the best of our knowledge, RNA editing quantita-

tive trait loci (edQTL) analysis has only been applied to
mouse [30] and fly [31], while allele-specific RNA editing
(ASED) analysis has not been explored in any organism.
In order to investigate cis variation of RNA editing in
human populations, here we apply a comprehensive
edQTL and ASED analysis to 445 lymphoblastoid cell
lines (LCLs) from multiple ethnic groups and identified
1054 RNA editing sites that show significant evidence of
population and allelic variation. We find that many of
these edQTL and ASED signals are associated with
genome-wide association study (GWAS) signals of com-
plex traits and diseases. Lastly, we provide evidence that
many cis SNPs associated with changes in RNA editing
may regulate editing via effects on RNA secondary
structure.

Results
RNA editing variability across 445 human LCLs
In order to assess the extent to which natural genetic
polymorphisms within human populations affect RNA
editing levels, we used RNA-seq data from the Geuvadis
RNA-seq Project [32] coupled with genotype data from
the 1000 Genomes Project [33]. We used matching tran-
scriptome and genotype data from LCLs of 445 individ-
uals across five populations (CEU, FIN, GBR, TSI, YRI;
Additional file 1: Table S1) to determine the association
between genetic polymorphisms and RNA editing levels.
Four European (CEU-Utah, FIN-Finland, GBR-Britain,
TSI-Italy) and one African (YRI-Nigeria) populations are
represented in the Geuvadis dataset. We limited our
analysis to annotated RNA editing sites within the
RADAR RNA editing database [34]. In order to identify
potential RNA editing sites regulated by cis polymor-
phisms, we applied a preliminary set of filters to the
~2.6 million annotated RADAR RNA editing sites and
collected 9094 candidate sites for downstream analyses.
Briefly, we required the sites to have a minimum average
coverage of at least two reads supporting the edited ver-
sion (i.e., “I”), a minimum average total coverage of ten
reads, and a minimum of 10% difference between the
editing level of the 90% quantile and the 10% quantile
across all 445 individuals. Within these sites, we found
that RNA editing can be variable among different indi-
viduals (Fig. 1a) and hypothesized that genetic variation
may account for some of the RNA editing variation. For
simplicity, we introduce the term Φ (FI, frequency of in-
osine) to denote the RNA editing level.

edQTL analysis
The first approach we used to test the association be-
tween RNA editing levels and genomic SNPs was with
an edQTL analysis. Specifically, we tested associations
between SNPs and RNA editing levels (Φ) using a gener-
alized linear mixed model GLiMMPS [24], which
accounts for coverage variation and noise in the RNA-
seq data. Rather than treating the RNA-seq estimate of
Φ as a point estimate, the GLiMMPS model uses the
read counts for the edited and unedited transcripts to
model the estimation uncertainty of the RNA editing
levels. Of note, GLiMMPS was originally developed in
our previous work to test association between SNPs and
alternative splicing levels [24], but as a generic statistical
model for QTL analysis on isoform ratio estimated from
sequence count data, it is readily applicable to edQTL
analysis. In order to focus on cis-effects, we limited our
analysis to SNPs within 200 kb of the RNA editing site.
Association tests were done independently for each of
the five populations (CEU, FIN, GBR, TSI, YRI). We
found that a significant number of RNA editing events
were quantitatively associated with genomic polymor-
phisms (Fig. 1b). As expected, there was a higher statis-
tical significance and greater association with SNPs that
were closer to the RNA editing site (Fig. 1c). From this
analysis, we identified 393 unique RNA editing sites as-
sociated with at least one edQTL SNP across the five
populations at a false discovery rate (FDR) threshold of
10% (Fig. 1d; Additional file 2: Table S2). We detected
75 significant edQTL signals in all five populations,
while the YRI African population had the highest num-
ber (102) of population-specific edQTLs observed only
in that population. An example of an RNA editing event
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Fig. 1 edQTL analysis to identify cis-regulated RNA editing events. a Distribution of RNA editing levels (Φ) across the 445 human LCLs. Box plots
of RNA editing levels for 9094 candidate sites across 445 individuals. Sites are sorted by the mean Φ value on the x-axis. The inner quartile ranges
for each box plot are represented in yellow and the medians are in white. b Quantile-quantile plot (qq-plot) testing association of RNA editing levels with
cis genetic polymorphisms in five populations. c Relationship between edQTL significance and distance of SNP to editing site in five populations. Note that
the apparent spikes at +60 kb and −110 kb are due to multiple RNA editing sites in a single gene (SLC35E2 for +60 kb and HLA-G for −110 kb) with edQTL
signals in multiple populations. d Mosaic plot indicating the number of edQTL RNA editing sites shared between five populations. Values
in the top rectangles represent population-specific edQTL sites and values in the bottom rectangles represent edQTL sites shared across all five populations.
e Example of an edQTL signal in the NDE1 gene. Box plot showing the significant association of rs8048427 with the editing level (Φ) at chr16:15795035
within the CEU population. Each dot represents data from a particular individual and the size of the dot indicates the number of reads covering the RNA
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Park et al. Genome Biology  (2017) 18:143 Page 3 of 15
that is strongly associated with a genetic polymorphism
occurs at chr16:15795035 (hg19) within the NDE1 gene
in which the C-allele for rs8048427 is associated with a
high level of RNA editing while the T-allele nearly abol-
ishes RNA editing (Fig. 1e). The average editing levels
for the CC, CT, and TT genotypes were 60, 28, and 2%,
respectively. To rule out artifacts due to unknown SNPs
at RADAR RNA editing sites, we sequenced the genomic
DNA around this RNA editing site in NDE1 as well as
additional sites of three other genes across multiple indi-
viduals and found no evidence of A/G polymorphism in
the genome (Additional file 3: Figure S1).

ASED analysis
To complement the above edQTL analysis, we adopted
a second approach to interrogate the cis-variation of
RNA editing through an ASED analysis (Fig. 2a). Het-
erozygous SNPs near RNA editing sites can be used to
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Fig. 2 ASED analysis to identify cis-regulated RNA editing events. a Schematic diagram of ASED analysis. Heterozygous SNPs are used to assign
RNA-seq reads to specific alleles. b Example of allele-specific RNA editing in the NDE1 gene. ASED analysis of RNA editing site chr16:15795035 with respect
to heterozygous SNP rs8048427. c Cis-regulated RNA editing sites in the CEU population. edQTL and ASED of CEU as well as multiple replicates of GM12878
were used. The three circles outside of the Venn diagram represent RNA editing sites that were not considered in the other two analyses due to preliminary
filters and method-specific limitations. d Example of a cis-regulated RNA editing site in ZDHHC20 associated with a rare variant, called with ASED analysis of
multiple RNA-seq replicates from one individual, GM12878. Error bars represent likelihood-ratio test-based 95% confidence intervals of RNA editing levels
inferred from read counts. Average allelic Φ values are represented in parentheses
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assign RNA-seq reads to two different alleles and Φ, the
frequency of inosine, can be measured for each allele.
This allows for a paired replicate statistical analysis,
which aggregates ASED signals across multiple individ-
uals sharing a given heterozygous SNP to provide greater
statistical power in detecting ASED events (“Methods”).
As a proof of concept analysis, we applied the ASED
analysis to the RNA editing site chr16:15795035 with re-
spect to rs8048427 (the edQTL example within the
NDE1 gene from Fig. 1e). There was a strong agreement
between the edQTL result and the ASED result (Fig. 2b).
The C-allele had an average Φ of 67% and the T-allele
had an average Φ of 2%, which were comparable to the
values for the homozygous CC and TT genotypes in the
edQTL analysis (Fig. 1e).
In order to compare and contrast the edQTL and
ASED approaches we performed a systematic compari-
son (Fig. 2c) between the CEU edQTL, the CEU ASED,
as well as an ASED analysis on 12 distinct RNA-seq
biological replicate samples of GM12878 [35], a member
of the CEU population that was not included in the
Geuvadis RNA-seq project. Each of the three approaches
had different pre-processing steps and filtering criteria
which meant that certain significant sites were only
analyzable by one of the three approaches. In order to
make a fair comparison, we excluded these sites from
the comparison and represent them in the three outer
circles in Fig. 2c. Sites represented in the inner Venn
diagram represent sites that were included in the post-
processing statistical analysis for at least two approaches
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and called significant by at least one approach. The CEU
edQTL analysis had 132 significant sites while the popu-
lation level ASED analysis in CEU had 238 significant
sites; 78 significant sites were shared between the two
approaches. Within these 78 shared sites, only 15 were
shared with the individual level ASED analysis in
GM12878, in most cases due to lack of heterozygosity in
GM12878. For example, the RNA editing site
chr16:15795035 in NDE1 (Figs. 1e and 2b) was signifi-
cant in both edQTL and population level ASED analyses
but absent in the individual level ASED analysis because
the GM12878 individual is homozygous for the T-allele
at SNP rs8048427. We should note that although the in-
dividual level ASED analysis is limited by the availability
of heterozygous SNPs in the particular individual, one
benefit of this approach is that it can identify cis-regu-
lated RNA editing events that are associated with rare
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SPN gene shows the same trend of allele-specific RNA
editing in the CEU population (Fig. 3c) as in the YRI
population (Fig. 3d).

Association between RNA editing and GWAS signals
GWAS have had much success in associating genetic
variants with human traits and diseases. However, it is
often unclear how the phenotype is related to the geno-
type. Here, we sought to assess if cis-regulation of RNA
editing may underlie the association between certain
GWAS signals and their respective traits. We tested for
edQTL and ASED SNPs in high linkage disequilibrium
(LD; r2 > 0.8 within the four European populations) with
GWAS SNPs from the NHGRI GWAS Catalog [36] and
identified 33 unique GWAS signals associated with cis-
regulated RNA editing sites (Table 1; Additional file 5:
Table S4). Many of these GWAS signals reflected traits
and diseases known to be associated with RNA editing
such as cancer, neurological traits, viral infection, and
immune-related conditions. However, a surprisingly
large proportion of the GWAS traits (6 of 33) were re-
lated to metabolism. One interesting example is in the
3′ UTR of ATM where six RNA editing sites are linked
to a GWAS signal (response to metformin in type 2 dia-
betes) via their respective edQTL or ASED SNPs. For
example, chr11:108237832, an RNA editing site with a
significant signal in both the edQTL (Fig. 4a) and ASED
(Fig. 4b) analyses, had a similar trend of RNA editing
levels with respect to SNP rs227091, with the C-allele
associated with a higher editing level and the T-allele as-
sociated with a lower editing level. ATM encodes for a
tumor suppressor protein kinase involved in the cellular
response to double-stranded DNA breaks [37]. Muta-
tions in ATM occur in ataxia telangiectasia, a recessive
disorder associated with radiosensitivity, cancer predis-
position, immunodeficiency, and neuropathology [38].
Deficiencies in ATM have been linked to insulin resist-
ance and type 2 diabetes [39]. Metformin (1,1-dimethyl-
biguanide) is the most commonly used drug to treat
type 2 diabetes [40]. Although metformin has been clin-
ically used since the 1950s, the exact mechanism of ac-
tion has yet to be discovered [41]. The GWAS SNP
rs11212617, which is associated with the effectiveness of
metformin in treating type 2 diabetes [42], lies within a
large haplotype block of 340 kb that encompasses gen-
etic variants like rs227091 (Fig. 4c, d) that can affect
RNA editing of the ATM gene based on our edQTL and
ASED analysis.
Another example of RNA editing sites linked to

GWAS signals is in the MDM4 gene. Our analysis iden-
tified multiple RNA editing sites with edQTL (Fig. 5a) or
ASED (Fig. 5b) signals. One RNA editing site,
chr1:204525548, was linked with SNP rs12038102 in the
edQTL analysis (Fig. 5a) and this SNP was linked with
another SNP rs12143943 which was reported as a
GWAS signal for cognitive performance (Fig. 5c). An-
other RNA editing site, chr1:204526727, was linked with
SNP rs1046874 in the ASED analysis, which was linked
with SNPs associated with prostate cancer [43] and
breast cancer [44]. Of note, MDM4 is widely known to
play a role in cancer and has been described as a regula-
tor of p53, an important tumor suppressor [45]. Little is
known about the influence of MDM4 on cognitive per-
formance; however, one study has shown that MDM4
plays a pro-survival role in neurons [46].

Impact of cis variants on RNA secondary structure
The number of ADAR-mediated RNA editing sites in
the human transcriptome is much greater than that in
many other non-primate organisms [34]. This is primar-
ily due to the expansion of Alu repeats across the human
genome. Alu elements often insert to form inverted re-
peats (IRAlus) in which two adjacent Alu elements are
in opposite orientation. When these IRAlus are inserted
into genes and transcribed as part of mRNAs, they form
dsRNA hairpins which act as preferable substrates for
ADAR enzymes [47].
We investigated the potential effects of edQTL SNPs

on RNA secondary structure of IRAlus (Additional file
6: Figure S2). Here we focused on edQTL signals be-
cause ASED signals are inherently biased towards SNPs
in close proximity to the RNA editing sites within the
transcripts. IRAlu sequences containing cis-regulated
RNA editing sites were obtained and a multiple se-
quence alignment (MSA) was performed to identify
comparable regions across multiple IRAlus (Additional
file 6: Figure S2, panels 1 and 2). The alignments were
sorted with respect to the RNA editing position (panels
3 and 4) and the locations of significant SNPs (p value
<10−10) were plotted (panels 5 and 6). We noticed a sub-
tle X-shape in the positional distribution of significant
SNPs (panels 5 and 6), with one diagonal of the X repre-
senting SNPs located on the same Alu as the RNA edit-
ing site and the other diagonal of the X representing
SNPs located on the opposite Alu to the RNA editing
site. These data suggest that genetic variants spatially
near the RNA editing site within the IRAlu hairpin are
more likely to influence RNA editing. IRAlus can be
formed from a tail-to-tail (panels 1, 3, and 5) orientation
or a head-to-head (panels 2, 4, and 6) orientation, so we
analyzed both types separately. Based on the predicted
secondary structure of the IRAlu hairpin, we found that
significant edQTL SNPs (p value <10−10) tend to be
closer to the editing site than random control non-
edQTL SNPs (p value >10−3) (Fig. 6a), when we consid-
ered the shortest spatial distance between the SNP and
the associated editing site within the IRAlu secondary
structure. Additionally, significant edQTL SNPs had a



Table 1 List of selected GWAS SNPs that are linked to both edQTL and ASED SNPs

Gene symbol Editing site ASED SNP edQTL SNP Linked GWAS
SNP(s)

GWAS gene
symbol

GWAS disease/trait Reference
(PMID)

PSPH Chr7:56078339 NA rs4947534 rs4947534 PSPH Blood metabolite levels 24816252 [73]

Chr7:56079087 rs4947534 NA

Chr7:56079100 rs4947534 NA

ATM Chr11:108236635 NA rs12801988 rs227080
rs170546 rs5023001

rs11212617 C11orf65 Response to metformin in
type 2 diabetes (glycemic)

21186350 [42]

Chr11:108237818 rs227091 NA

Chr11:108237819 rs227091 NA

Chr11:108237832 rs227091 rs227080 rs227090

Chr11:108237844 rs227091 NA

Chr11:108237854 rs227091 NA

ICOSLG Chr21:45644472 rs8127114 rs8127114 rs4819388 ICOSLG Celiac disease 20190752 [74]

GINS1 Chr20:25427805 rs6037121
rs6050623

NA rs7267979 ABHD12 Liver enzyme levels
(alkaline phosphatase)

22001757 [75]

Chr20:25427815 rs6050626
rs6050623

rs2258728

Chr20:25428294 rs1047171
rs6050626
rs6037121

NA

Chr20:25428308 rs6050626 NA

Chr20:25428320 rs6050626
rs6050623

NA

Chr20:25428646 rs1047171 NA

Chr20:25428669 rs1047171 NA

Chr20:25428724 rs1047171 NA

Chr20:25428750 rs6037121 NA

CCL28 Chr5:43380817 NA rs7706402 rs11951515 CCL28 Metabolite levels
(X-11787)

23934736 [76]

Chr5:43381564 rs7706402 NA

FAM129A Chr1:184761188 rs492126 rs682331 rs570441 rs682331 rs682331 FAM129A Obesity-related traits 23251661 [77]

Chr1:184762487 rs526024 NA

Chr1:184762590 rs492126 NA
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significantly larger impact on the number of paired bases
(Fig. 6b) and the minimum free energy (Fig. 6c) of the
predicted RNA secondary structure, suggesting that cis
SNPs may regulate RNA editing via effects on RNA sec-
ondary structure.
We found interesting examples of cis SNPs that poten-

tially influence RNA editing via RNA secondary struc-
ture (Fig. 6d, e). The cis-regulated RNA editing site
(chr16:15795035) in the gene NDE1 (Figs. 1e and 2b)
and the associated SNP rs8048427 are located on the op-
posite Alu elements within an IRAlu hairpin. Here, the
SNP is positioned exactly opposite to the RNA editing
site within the hairpin (Fig. 6d). The C-allele is associ-
ated with a high level of RNA editing and has a C–A
mismatch with the unedited site while the T-allele is as-
sociated with a low level of RNA editing and has a U–A
base pairing with the unedited site. Multiple reports sug-
gest that a C–A mismatch tends to be a favorable site
for RNA editing as the mismatch would be converted
into a C–I base pair by RNA editing [48]. A C–A mis-
match may enhance the enzymatic reaction by facilitat-
ing a base-flipping mechanism which occurs during
RNA editing [49]. When we investigated whether there
was a consistent base composition preference for SNPs
associated with altered RNA editing, the most striking
pattern was observed at the SNP directly opposite to the
RNA editing site in the IRAlu hairpin. In five out of six
cases, the SNP at the opposite strand of the hairpin was
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Fig. 4 RNA editing of ATM is genetically associated with response to metformin. a Box plot showing the significant association of SNP rs227091
with editing level (Φ) at chr11:108237832 within the CEU population. Each dot represents data from a particular individual and the size of each
dot indicates the number of reads covering the RNA editing site in that individual. b ASED allele-specific editing level (Φ) of chr11:108237832 with
respect to SNP rs227091 within the CEU population. Error bars represent likelihood-ratio test-based 95% confidence intervals of RNA editing levels
inferred from read counts. Average allelic Φ values are represented in parentheses. c LD plot showing a GWAS signal (response to metformin;
green) linked with edQTL (purple) and ASED (orange) SNPs in ATM. d Heatmap of edQTL significance for six cis-regulated RNA editing sites in ATM
along with seven cis SNPs. The values in the heatmap represent − log(p value) for the association between a given RNA editing site and a given
SNP within the given population
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a C versus T SNP and the RNA editing level was greater
for the C allele than the T allele, consistent with the ex-
ample in Fig. 6d for the NDE1 gene. Another example is
in the H2AFV gene where the SNP rs7789162 is located
immediately upstream of the RNA editing site
chr7:44872899 within the same Alu. The A-allele of this
SNP base pairs with a U on the opposite Alu within the
hairpin, leading to a single A–C mismatch across the
hairpin at the RNA editing site. By contrast the G-allele
creates a larger mismatch bubble involving two consecu-
tive bases (Fig. 6e). Consequently, the A-allele is associ-
ated with high editing while the G-allele is associated
with low editing, which supports the idea that the size of
the mismatch bubble affects the editing level of this site.



a c

b

Fig. 5 RNA editing of MDM4 is genetically associated with cancer and cognitive performance. a Box plot showing the significant association of
SNP rs12038102 with editing level (Φ) at chr1:204525548 within the TSI population. Each dot represents data from a particular individual and the
size of each dot indicates the number of reads covering the RNA editing site in that individual. b ASED allele-specific editing level (Φ) of
chr1:204526727 with respect to SNP rs1046874 within the TSI population. Error bars represent likelihood-ratio test-based 95% confidence intervals
of RNA editing levels inferred from read counts. Average allelic Φ values are represented in parentheses. c LD plot showing GWAS signals (breast
cancer, prostate cancer, and cognitive performance; green) linked with edQTL (purple) and ASED (orange) SNPs in MDM4
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Discussion
We showed that the edQTL analysis and the ASED ana-
lysis are powerful yet complementary approaches to
study the cis-variation of RNA editing. Each approach
has strengths and weaknesses that complement each
other, and many sites identified with one approach were
not analyzable by the other approach due to certain
method-specific limitations. The advantage of the
edQTL approach over the ASED approach is that it is
not limited to heterozygous SNPs and has no limit on
distance between the SNP and the RNA editing site, as
the edQTL analysis can be used to test associations with
any combination of genotypes over any range. Addition-
ally, the SNP does not need to be expressed in the tran-
scriptome. However, the edQTL analysis may be
influenced by batch effects and other non-genetic con-
founding factors in large-scale RNA-seq datasets [50],
and cannot interrogate rare variants in the population.
The main advantage of the ASED approach is that the
two alleles of the same individual share the identical cel-
lular environment. By treating the two alleles as matched
pairs and multiple individuals sharing a given heterozy-
gous SNP as replicates, a paired replicate statistical
analysis can be applied to the data, which increases the
statistical power and is more robust against batch effects
and other confounding factors across different individ-
uals. In fact, as we demonstrate in this work, the ASED
analysis can be applied broadly across datasets generated
from multiple genetically distinct individuals, or deeply
across multiple replicate datasets generated from a single
individual. The advantage of the latter strategy is that it
can reveal cis-regulation of RNA editing by rare variants,
as shown in the example of ZDHHC20 (Fig. 2d). The
main limitation of the ASED approach is that it relies on
heterozygous SNPs that are expressed in the transcrip-
tome and in close proximity to the RNA editing site.
Additionally, incorrect phasing of heterozygous SNPs
[51] or occurrence of RNA editing at an A/G SNP site
in RNA can potentially result in incorrect allele assign-
ment and confound the ASED analysis. Collectively, the
integration of edQTL and ASED analyses allows us to
reveal extensive population and allelic variation of A-to-
I RNA editing in human transcriptomes.
One potential concern was that the RNA editing sites

with significant edQTL/ASED signals were derived from
unannotated genomic SNPs rather than bona fide RNA



a

d

e

b c

Fig. 6 Impact of edQTL SNPs on RNA secondary structure. a Cumulative distribution plot comparing the absolute value of the distance between
SNP–RNA editing site pairs for significant edQTL SNPs and control SNPs within the computationally predicted RNA secondary structure of the IRAlu hairpin.
b Cumulative distribution plot comparing the absolute value of the change in the number of paired bases for significant edQTL SNPs and control SNPs.
c Cumulative distribution plot comparing the absolute value of the change in free energy of the predicted RNA secondary structure for significant edQTL
SNPs and control SNPs. The Kolmogorov–Smirnov test was used for the cumulative distribution plots. Two examples of SNPs that significantly alter RNA
editing levels: SNP on the opposite Alu to the RNA editing site in NDE1 (d) and SNP on the same Alu as the RNA editing site in H2AFV (e). Cartoon
representation of the IRAlu hairpins and computationally predicted RNA secondary structures (left). Detailed base-pairing structures (right)
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editing events. In fact, the association between SNPs and
putative RNA editing sites had previously been proposed
as a filter for spurious RNA editing sites in RNA-seq
reads [52]. We used several strategies to assess and
guard against this potential concern. First, we limited
our analysis in this work to annotated SNPs and RNA
editing events in HapMap and 1000 Genomes LCLs,
which are the best characterized human samples with re-
spect to genomic polymorphisms [33] and RNA editing
sites [34]. Second, we sequenced the genomic DNAs of
four edQTL/ASED RNA editing sites and found no
evidence of A/G polymorphisms at these sites
(Additional file 3: Figure S1). Lastly, if the RNA edit-
ing sites were indeed derived from genomic polymor-
phisms, we would expect to observe a bimodal
distribution of editing level Φ concentrated at 0 and
100% in RNA-seq reads of the two alleles in the
ASED analysis. Instead, we observed a skewed
distribution of allele-specific RNA editing levels for
significant ASED sites, in which most sites are lowly
edited, which is characteristic of bona fide RNA edit-
ing sites (Additional file 7: Figure S3).
We found that many edQTL and ASED SNPs are in

high association with GWAS signals, which could imply
a mechanistic role of RNA editing in connecting GWAS
traits with their respective genetic variants. Diverse
downstream molecular processes could potentially be in-
fluenced by altered RNA editing. For instance, RNA
editing has been reported to alter miRNA-mediated gene
regulation [53]. Additionally, editing of IRAlus in a tran-
script has been suggested to alter the translation and
cellular localization of the transcript [47]. Cleavage of
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edited transcripts is another possible downstream mech-
anism. For instance, hEndoV is a human endonuclease
that is specific for inosine-containing RNAs [54].
One example of GWAS linked RNA editing events is

in the ATM gene. ATM has one of the longest annotated
3′ UTRs (~3.5 kb) and it has been suggested that this al-
lows for a rapid post-transcriptional control of gene ex-
pression in response to stimuli [55]. In addition, RNA
editing in the 3′ UTR has the potential to affect
miRNA-mediated regulation of tumor suppressors [16].
Thus, it is possible that RNA editing may play a role in
altering the level of the ATM gene product and mediat-
ing a poor response to metformin for treating type 2
diabetes, although a definitive proof would require add-
itional functional experiments. Recently, interest has also
grown in the therapeutic potential for metformin to treat
cancer and a number of clinical trials are in progress to
determine the efficacy of metformin in cancer treatment
[56, 57]. However, there have been conflicting initial re-
ports on metformin’s effectiveness to treat cancer [58].
Since a genetic factor is associated with metformin’s
efficacy in treating type 2 diabetes, it may be worth inves-
tigating whether the same variant is also associated with
metformin’s efficacy in cancer treatment and whether
RNA editing may mediate the therapeutic response.
We also found evidence that cis genetic variation

could affect RNA editing levels via their effects on RNA
secondary structure, extending previous reports using a
smaller list of cis-regulated editing sites in mouse [30]
and fly [31]. Specifically, we observed that SNPs associ-
ated with RNA editing levels tend to be located signifi-
cantly closer to the RNA editing sites spatially within
IRAlu hairpins, and may consequently alter RNA
secondary structure. This change in RNA secondary
structure has the potential to alter the affinity of the cel-
lular RNA editing machinery to the substrate and subse-
quently change the editing level of a particular site.
In the human genome, Alu elements are the most suc-

cessful retrotransposon with over a million copies, and a
new Alu element is inserted in approximately one in
twenty births [59]. Similar to other types of mutagenic
processes during evolution, the vast majority of Alu inser-
tions are likely non-adaptive, but some are beneficial and
propagate in the population. As copies of Alu elements in-
sert into the genome, they carry with them certain func-
tional elements, such as transcription factor binding sites
and CpG DNA methylation sites [60]. Additionally, Alu
elements have many roles in the transcriptome. Tran-
scribed Alu elements are known to interact with RNA
binding proteins [61], modulate alternative polyadenyla-
tion [62] and alternative splicing [63], regulate translation
efficiency [64], and contribute to the proteome [65]. Alu
elements are a major contributor of endogenous dsRNAs
which are targeted by the RNA editing machinery.
Conclusions
In this work we demonstrate that RNA editing can be
variable between individuals within a population and
such variability can be genetically controlled. We used
two orthogonal approaches (edQTL and ASED) to iden-
tify 1054 unique cis-regulated RNA editing sites in LCLs
of 445 individuals across five populations. Given meas-
urement limitations such as the modest RNA-seq cover-
age, this number is expected to be an underestimate for
cis-regulated RNA editing events in the LCLs. Among
these sites, 393 were significantly associated with edQTL
SNPs and 826 were significantly associated with ASED
SNPs, at an FDR of 10%. Many of these SNPs were in
high LD with GWAS signals, which suggests that RNA
editing may play a mechanistic role in linking genetic
variation to complex traits and diseases. Additionally,
we suggest a structural explanation for the causal im-
pact of these genetic variants. Taken together, we show
widespread cis variation of RNA editing within Alu ele-
ments and suggest that such variation may potentially
contribute to phenotypic diversity across human
populations.
Methods
Measuring RNA editing levels from RNA-seq datasets
RNA-seq alignments (hg19) for LCLs were obtained
from the Geuvadis RNA-seq Project (http://www.ebi.a-
c.uk/Tools/geuvadis-das/) [32]. Genotype data were ob-
tained from the 1000 Genomes Project (phase 3) [33].
Both RNA-seq and genotype data were available for 445
LCLs and these were used for subsequent analyses. A list
of annotated RNA editing sites was obtained from the
RADAR RNA editing database (v2) [34] and the number
of RNA-seq reads supporting the edited (G in the sense
of transcription) and unedited (A in the sense of tran-
scription) sequences were obtained for each site across
the 445 LCL cell lines using the mpileup command from
samtools (v0.1.19) [66]. We defined the editing level, Φ
(frequency of inosine), as the ratio of G reads to the sum

of A and G reads RNAediting level ¼ G
AþG

� �
.

Preliminary filters of RNA editing sites for edQTL analysis
We required the RNA editing sites to meet the following
criteria: a minimum average coverage of at least two
reads supporting the edited version, a minimum average
total coverage of at least ten reads, and a minimum of
10% difference between the editing levels of the 90%
quantile and the 10% quantile across all individuals. To
remove potential artifacts, we also limited our analysis
to annotated RADAR RNA editing sites that did not
overlap with annotated SNPs from the 1000 Genomes
Project.

http://www.ebi.ac.uk/Tools/geuvadis-das/
http://www.ebi.ac.uk/Tools/geuvadis-das/
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edQTL analysis
For each RNA editing site, we applied the GLiMMPS
statistical model [24] to SNPs within a 400-kb window
centered at the editing site. The FDR was estimated
using a permutation procedure [67] to obtain the null
distribution of p values. Using five permutations, we re-
corded the minimum p value for each site over all cis
SNPs in each permutation, and used this set of p values
as the empirical null distribution. For a given FDR value f,
we defined the p value cutoff z such that P(p0 < z)/
P(p1 < z) = f, where P(p0 < z) is the fraction of expected
p values from the null distribution less than z and
P(p1 < z) is the fraction of observed p values from the
real data less than z. For each editing site, the edQTL
SNP was defined as the closest SNP with the most
significant association. Here we used an FDR thresh-
old of 10%.
ASED analysis
Allele-specific alignments were obtained by aligning
RNA-seq reads using STAR v2.4.2a [68] to the hg19
genome with all heterozygous SNPs N-masked, supplied
with Ensembl gene annotations (release 75) using the
following alignment parameters: –alignEndsType End-
ToEnd –outSAMattributes NH HI NM MD –outSAM-
type BAM Unsorted –outSJfilterOverhangMin 8 8 8 8 8
–outFilterType BySJout –outFilterMultimapNmax 20
–outFilterMultimapScoreRange 0 –outFilterMismatchN-
max 6 –outFilterIntronMotifs RemoveNoncanonicalU-
nannotated –alignIntronMax 300000. In-house python
scripts (Additional file 8) were used to split alignments
overlapping heterozygous SNPs to the two alleles. Allele-
specific read counts and Φ values were calculated from
the split alignments. For each replicate, we required both
alleles to have non-zero coverage of RNA-seq reads and
a minimum editing level of 1%. A minimum of three
replicates were required for subsequent analyses.
Sources of GM12878 RNA-seq data are listed in
Additional file 9: Table S5.
We used a paired replicate statistical framework for re-

liable detection of allele-specific RNA editing signals in
population-scale RNA-seq datasets. We treated the two
alleles as matched pairs and multiple individuals sharing
a given heterozygous SNP as replicates. We modeled
and tested for the paired difference between the two al-
leles. Conceptually, a hierarchical framework was used
to simultaneously account for the estimation uncertainty
of RNA editing levels in each individual and model for
the paired allelic difference in RNA editing levels across
replicates. Let Φi1k and Φi2k be the editing levels of site i
for allele 1 versus allele 2 in the kth individual. For each
RNA editing site in each individual, the editing level Φ
of allele 1 or allele 2 can be modeled by the counts of
RNA-seq reads corresponding to the edited (I) and un-
edited (A) sequences via the binomial distributions:

Ii1keBinomial ni1k ¼ Ai1k þ Ii1k ; pi1k ¼ Φi1kð Þ

Ii2keBinomial ni2k ¼ Ai2k þ Ii2k ; pi2k ¼ Φi2kð Þ

We used an additive model to account for the allelic
difference in RNA editing across multiple individuals.
The logit transformed editing levels logit(Φi1k) and
logit(Φi2k) can be modeled by the normal distributions:

logit Φi1kð Þ ¼ N μ ¼ αik ; σ
2
i1

� �
;

logit Φi2kð Þ ¼ N μ ¼ αik þ δi; σ
2
i2

� �
;

where the baseline editing levels common to the two al-
leles were represented by the fixed effect term αik; the par-
ameter δi captures the difference between the logit
transformed editing levels between the two alleles; and σi1

2

and σi2
2 are the variances of allele 1 or allele 2 across

multiple individuals (or replicates). The Benjamini–Hochberg
procedure was used to control the FDR at 10%.

GWAS signals
We used the NHGRI GWAS Catalog [36] (accessed
2016/03/06, v1.0) and kept SNPs with p values less than
10−3. The liftover tool from the UCSC genome browser
[69] was used to convert hg38 genome coordinates of
the GWAS Catalog to hg19 genome coordinates.
VCFtools [70] was used to calculate linkage disequilib-
rium (LD) correlations between edQTL/ASED SNPs and
GWAS SNPs. We required edQTL/ASED SNPs to be in
high LD (r2 > 0.8) with GWAS SNPs. Only the four
European populations were used in the LD calculation.

RNA secondary structure prediction
RNA secondary structure prediction was preformed
using RNAfold from the Vienna RNA Package [71]
under its default parameters with the addition of the
parameter –noClosingGU, which restricts GU pairs at
the end of helices. IRAlu inverted Alu repeats were
obtained by first identifying RNA editing sites within Alu
repeats and then searching for the closest neighboring Alu
with the correct orientation. Alu repeats without a clear
inverted partner were excluded from this analysis.

Multiple sequence alignment
For the multiple sequence alignment of the Alu se-
quences, we used POA (Partial Order Alignment) [72].
Alu sequences on each end of the IRAlu hairpin were
aligned separately to avoid misalignments across Alu se-
quences. A white spacer region was placed between the
two Alu sequences to facilitate the visualization of align-
ment results.
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Sanger sequencing of genomic DNA
A panel of 86 LCLs from the HapMap3 project was pur-
chased from the Coriell Institute for Medical Research,
Camden, NJ, USA. Three cell lines were selected for
each of the three genotypes of a SNP. Genomic DNA
was extracted using a Quick-DNA Miniprep Plus Kit
(Zymo Research, Irvine, CA, USA).
PCR primers were designed to amplify the flanking

areas of the target editing sites on the corresponding
genomic DNA. Primers are: NDE1_Forward, 5′- CAAC
CAGGTGGAATCGTCTT-3′; NDE1_Reverse, 5′- AC
TCGAACGCACCTCTAGGA-3′; ATM_Forward, 5′-C
CAGGACAGCTACAGCATCA-3′; ATM_Reverse, 5′-C
TAAGCCCTTCCCTTCCAAC-3′; MDM4_Forward, 5′-
GTGATGGGGGATAGGGAGTT-3′; MDM4_Reverse,
5′-GCATTTCATCCCTCCTTTGA-3′; H2AFV_Forwa
rd, 5′-AGGCATGAGAATGACGTGAA-3′; H2AFV_Rev
erse, 5′-CTTCAACCTGGGCAAAAGAG-3′. PCR amp
licons were purified by agarose gel electrophoresis and
gel extraction using a PureLink® Quick Gel Extraction
Kit (Invitrogen, Carlsbad, CA, USA), followed by Sanger
sequencing to confirm the genomic sequence of the
editing sites.
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Additional file 2: Table S2. List of edQTL RNA editing sites with
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Additional file 3: Figure S1. Representative Sanger sequencing
chromatograms of the genomic DNAs of four RNA editing sites to confirm
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highlighted in blue. (PDF 209 kb)
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Additional file 6: Figure S2. Locations of edQTL RNA editing sites and
significant SNPs within IRAlu hairpins. A diagram of the architecture of an
Alu repeat is shown at the top. (panels 1 and 2). Heatmap of multiple
sequence alignments (MSA) of IRAlu hairpins containing cis-regulated edQTL
RNA editing sites. Light blue, tan, yellow, and red represent A, C, G, and T,
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artificial spacer placed between the two Alu sequences in IRAlu hairpins. The
rows of the heatmap represent individual IRAlu sequences and are sorted by
the relative positions of the RNA editing sites (panels 3 and 4). The location of
significant cis SNPs within the IRAlu hairpins are indicated (panels 5 and 6).
Tail-to-tail (panels 1, 3, and 5) and head-to-head (panels 2, 4, and 6) IRAlus are
analyzed separately, and the rows and columns of each group (tail-to-tail or
head-to-head) of panels correspond to each other. (PDF 1540 kb)

Additional file 7: Figure S3. Histograms of RNA editing levels for
heterozygous sites determined from the ASED analysis. Significant RNA editing
sites were obtained from the ASED analysis and the average RNA editing level
(Φ) of each allele for all heterozygous individuals was calculated. This was done
for each population separately and the distribution of Φ values is plotted with
respect to each allele. The allele with lower RNA editing is labeled as Allele 1
and the allele with higher RNA editing is labeled as Allele 2. (PDF 104 kb)
Additional file 8: In-house python scripts for the ASED analysis. List of
command-line commands and python scripts to generate allele-specific
alignments along with R code for paired statistical test. (GZ 12 kb)
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