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Osteoarthritis (OA), especially knee OA, is the most common form of arthritis, causing significant disability in patients
worldwide. Manual diagnosis, segmentation, and annotations of knee joints remain as the popular method to diagnose OA in
clinical practices, although they are tedious and greatly subject to user variation. 0erefore, to overcome the limitations of the
commonly used method as above, numerous deep learning approaches, especially the convolutional neural network (CNN), have
been developed to improve the clinical workflow efficiency. Medical imaging processes, especially those that produce 3-di-
mensional (3D) images such as MRI, possess ability to reveal hidden structures in a volumetric view. Acknowledging that changes
in a knee joint is a 3D complexity, 3D CNN has been employed to analyse the joint problem for a more accurate diagnosis in the
recent years. In this review, we provide a broad overview on the current 2D and 3D CNN approaches in the OA research field. We
reviewed 74 studies related to classification and segmentation of knee osteoarthritis from the Web of Science database and
discussed the various state-of-the-art deep learning approaches proposed.We highlighted the potential and possibility of 3D CNN
in the knee osteoarthritis field. We concluded by discussing the possible challenges faced as well as the potential advancements in
adopting 3D CNNs in this field.

1. Introduction

Osteoarthritis (OA) is one of the most prevalent degener-
ative musculoskeletal diseases. 0is disease is affecting al-
most 5% of the global population [1]. 0e knee is the most
common joint affected by OA, which is characterized by
irreversible degeneration of the articular cartilage at the ends
of the bones such as femoral, tibial, and patella cartilages [2].
Knee osteoarthritis (knee OA) is a progressive disease that
affects the entire knee joint. Knee OA is a condition driven
by mechanical wear and tear as well as biochemical changes.
Known risk factors for OA include aging, obesity [3], and
previous knee injuries [4]. OA causes pain that limits
function and reduces one’s quality of life. 0e joint damage

in OA is irreversible, and definitive treatment requires total
knee replacement (TKR), which is expensive and has a short
life span especially for the obese individuals [5]. 0erefore,
early detection of knee OA is crucial for initiation of therapy
such as weight reduction and exercises that has been found
to be effective in halting knee OA progression and delaying
TKR [3, 6].

Current radiographic grading scales for OA rely pri-
marily on Kellgren–Lawrence grading which examines the
changes shown on X-ray plain radiography images. How-
ever, this approach causes delay in OA diagnosis because the
bony changes only appear in advanced conditions. Besides
X-ray, other imaging modalities such as magnetic resonance
imaging can utilize several OA soft tissue biomarkers such as
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cartilage and meniscus degeneration and also deformation
of the subchondral and trabecular bone to determine the
onset of knee OA [1]. 0ere exist different types of OA-
related segmentation or classification models for assessing
the knee which are generally classified into classical methods
and deep learning (DL) methods [7, 8]. In current clinical
practices, evaluation of OA severity is normally performed
visually with radiography images, which is prone to inter-
rater variability and time consumption for large datasets [9].

Recent studies have adapted artificial intelligence (AI)
and have increasingly recognized the role of deep learning in
the medical field, including computer-aided knee OA di-
agnosis [10, 11] which is aimed to reduce uncertainties in
diagnosis due to human error [12]. 0e significant moti-
vation in the development of AI in OA research is the
availability of huge repositories of clinical and imaging data
such as through Osteoarthritis Initiative (OAI) [13]. 0ere
are different types of architecture of deep learning such as
convolutional neural network (CNN), recurrent neural
network (RNN), recursive neural network, and unsuper-
vised pretrained network (UPN) [8].

In the field of medical imaging classification tasks,
assessing imaging biomarkers via end-to-end deep neural
networks can support the clinicians to provide a more
precise diagnosis such as predicting the incident, severity, or
progression of a disease or even a clinical outcome. 0e use
of deep learning, especially with convolutional neural net-
works, is prevalent as it has shown validated results as
compared to human practitioners’ manual methods or
classical methods [8, 12]. Deep learning methods such as
CNN learn complex features by extracting visual features
automatically using combinations of series of transforma-
tions in the model architecture [11, 14]. Figure 1 illustrates
the category of CNN under the umbrella of AI. CNN is a
form of deep learning which falls under the machine
learning category under the umbrella of artificial intelligence
(AI). CNNs are robust with low complexity and easy to train
where the network learns throughout the optimization
process with a reduced number of parameters [15]. 0e
general architecture of CNN involves an input layer, hidden
layers associated with a series of image filters with layers of
feed-forward networks where image filters are projected
onto the input image, and output layer where the feature will
be extracted [8, 14].

Clinicians often use a variety of a patient’s data to di-
agnose OA. 0e data that can be used in medical diagnosis
studies are medical image data, usually DICOM images from
different modalities such as ultrasound imaging, computed
tomography (CT), X-ray, or magnetic resonance imaging
(MRI), and nonmedical image data such as statistical data,
subject demographic information, and health behaviour
information. One of the critical issues in deep learning is
overfitting due to the high numbers of parameters and
complexity of regularization techniques in the model.
Hence, to ensure generalization of the model, the data are
typically categorized into three sets: training set for
hyperparameter optimization, validation set for overfitting
control, and test set [16].

2. Nonimaging-Based Deep Learning

Electronic health record datasets contain a diverse clinical
dataset of patient information such as diagnosis, treatment
plans, test results, and medical history including imaging
data which are radiography medical images. Demographic
information, personal characteristics, symptoms, lifestyles,
and health behaviour of patients, either self-reported or
assessed, are variables that are included in patient’s as-
sessment. Not only imaging data but also these nonimaging
data contain rich sources of important information that
might play important roles in disease predictions [4].

0e studies on deep learning in OA using nonimage data
are limited as most studies focused on imaging-based deep
learning models in OA diagnosis. Early diagnosis of OA is
challenging as it is a complex disease that might be due to a
lot of risk factors such as age, sex, body weight, body mass
index (BMI), family history of disease, activities of daily
living, or even job scope [2, 4]. Besides demographic in-
formation, radiographic risk factors such as KL-grade can be
utilized as well. Although radiographic images remain the
“gold standard” of OA diagnosis, statistical data including
the health behaviour information of the patients will be
convenient for knee OA progression prediction. 0e non-
imaging data are easier to obtain, are cost- and time-efficient
compared to medical images, and have shown ability in OA
diagnosis [4, 9].

Studies have shown that utilizing only nonimaging data
can be a promising approach to prescreen prevalence of
osteoarthritis [4, 9]. Lim et al. [9] proposed a deep learning
model of deep neural network (DNN) with eight hidden
layers with scaled principal component analysis (PCA) for
early OA diagnosis using demographic and personal in-
formation data. An area under the receiver operating
characteristics curve (AUC) of 76.8% has been achieved
using DNN with scaled PCA in the classification task on
predicting the presence and the risk of OA.
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Figure 1: Category of CNN under the umbrella of artificial
intelligence.
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Unlike the study in [9] that performed two-class
classification where it only takes into account subjects
diagnosed with OA and subjects without OA into classifi-
cation, Christodoulou et al. [4] separated the subjects into 3
classes: incidence, progressive, and nonexposed OA. DNN
was also investigated by Christodoulou et al. [4] to classify
and detect OA without medical images, solely depending on
141 risk factors dataset. 0e data included are all self-re-
ported data on health behaviour, including the joint
symptoms and disability of the subjects with or without
KOA from baseline visit. Different DNN architectures were
tested on six subgroups which are based on the gender (male
or female), age (below or above 70), and obesity (obese or
nonobese) respectively. 0e authors discussed the possibility
of creating more accurate diagnostic models by subgroups
especially for patients with obesity. Based on the overall
performance, DNN with one hidden layer and 50 modes has
the highest classification accuracy of 79.39%.

Several studies have integrated nonimaging data and
medical images in the OA detection architecture. Studies have
shown that inclusion of nonimaging data such as demo-
graphics will improve the DL model’s performance to predict
OA severity and progression [11, 17, 18], staging lesion se-
verity [19, 20], TKR [21], and even knee pain [22]. Table 1
presents the studies conducted with nonimaging data.

3. Imaging-Based Deep Learning

0e structural hallmarks of whole joint involvement in this
degenerative disease include the joint space narrowing,
which is indirectly caused by cartilage and menisci loss, and
subchondral bone changes such as osteophyte formation
[10, 23, 24]. Noninvasive medical imaging which is widely
used for phenotyping OA based on these structural changes
has proven to perform well in detection of early OA.
However, the manual segmentation approach that is most
commonly used is relatively time consuming and suffers
from high observer variability especially in quantifying
biomarkers such as cartilage thickness or volume. It is also
inadequate to perform manual segmentation when the
image data size is large [8].

Artificial intelligence or machine learning is an efficient
approach to establish fully automatic algorithms that can
identify early-onset OA biomarkers in numerous datasets in
a standardized manner [24, 25]. Deep learning is a machine
learning approach that is popular in the research field, and it
has revolutionized computer-aided diagnosis using medical
imaging as it has overcome the need of manual conventional
techniques [26]. Studies over the past few years have shown
that deep neural network architectures have been widely
used in medical image analysis and have shown promising
accuracy results in terms of classification, detection, and
segmentation tasks in knee OA diagnosis. 0ese tasks play a
crucial role in early detection of OA [2, 8, 27]. Medical image
analysis tools such as Imorphics (based in Manchester, UK),
ArthroVision (based in Montreal, Canada), and Chondro-
metrics (based in Ainring, Germany) were developed to
detect knee OA based on imaging biomarkers [8].

Different architectures of deep learning have been
applied in different types of medical images from imaging
modalities such as radiography, ultrasound, computed to-
mography, and MRI to diagnose knee OA. Among all the
deep learning architectures, CNN architecture has gained a
large amount of research interest, particularly in knee OA
segmentations and diagnosis [26, 28, 29]. One of the main
advantages of CNN is that they are easier to train and have
fewer parameters compared to other architectures [30].
CNN, basically the U-Net architecture, is popularly used in
knee OA for automated segmentation of the cartilage,
menisci, bone, or total knee joint anatomy [31, 32]. Seg-
mentation of the anatomical structures is important in the
clinical practice to evaluate the disease progression and
morphological changes where the recent breakthrough of
this field is segmenting the cartilage from magnetic reso-
nance (MR) images [28, 33].

In the study of OA pathophysiology, there are a variety of
imaging modalities available in the healthcare and research
sector where the choice depends on the specific role of the
modality [28]. Previously, plain radiographs were the “gold
standard” used for initial radiographic evaluation to diag-
nose or assess the severity of knee OA. 0e standardized
knee radiography OA severity reading is Kellgren–Lawrence
grading (KL-grade). Key pathological features of OA that
can be easily obtained by radiographs are joint space nar-
rowing (JSN) and formation of osteophytes [30, 34].
However, radiography not only exposes patients to radiation
but also is incapable to characterize various structural
phenotypes of knee OA, especially soft tissue structures such
as cartilages, which are crucial for knee OA diagnosis [10].

Recent osteoarthritis research studies on fully automatic
methods are mostly focused on MR images as they have
excellent soft tissue contrast and distinct resolution on a knee
joint. MRI is also a noninvasive technique that does not
require ionizing radiation [8, 10, 35–37]. Although ultra-
sound imaging is a noninvasive, portable option that does not
require ionizing radiation, its application is limited, especially
on the segmentation tasks, due to the low contrast ratio and
presence of speckle noise [38–40]. In addition, knee OA is a
whole joint disease, which is a 3D complexity.0erefore, a 3D
image of MRI can reflect the 3D structure of the knee joint
while discriminating multiple tissue types and hence will
provide a better interpretation of OA condition with a more
detailed structure of the knee than two-dimensional (2D)
radiography images [14, 16, 34]. MRI is not only capable for
visualizing OA biomarkers as joint tissues, cartilage, and
menisci, but it can also provide quantitative analysis of
biomarkers such as cartilage volume, thickness, and bio-
chemical changes depending on the MRI sequences [3, 6].

0ere are different types of MR imaging sequences such
as dual energy steady state (DESS), turbo spin-echo (TSE),
fast spin-echo (FSE), fast low angle shot (FLASH), spoiled-
gradient echo (SPGR), gradient recalled echo (GRE), spin-
echo spectral attenuated inversion recovery (SPAIR), and
T1-weighted imaging sequence with fat suppression (FS) or
water excitation (WE) [8]. To standardize kneeMRI reading,
scores such as Whole-Organ Magnetic Resonance Imaging
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Score (WORMS) or MRI Osteoarthritis Knee Score
(MOAKS) have been developed [19].

4. Gap of Knowledge

0ere exist multiple reviews that have included deep
learning in OA diagnosis. A number of OA review studies on
knee joint segmentation have been published [8, 28, 41]. To
the best of the authors’ knowledge, no review article has
addressed DL methods, specifically CNN on both seg-
mentation and classification models, especially in 3D. 0e
database used to find relevant articles was Web of Science.
0e keywords used were “Knee Osteoarthritis” AND (“Deep
Learning’’ OR “Convolutional Neural Network”) AND
“3D.” 0e search resulted in 107 articles. We excluded ar-
ticles with irrelevant titles or abstracts to our study. A full-
text reading was conducted to ensure all articles fall under
the scope of this review. 43 articles from the search were
excluded. 10 additional relevant works from the included

article’s reference list were included. 0ere are a total of 74
studies reviewed in this paper. Review papers obtained from
the search are summarized in Table 2.

0e gap of the existing reviews [8, 10, 13, 24, 28, 41–45] is
that none of the reviews highlighted 3D CNN as well as its
importance in OA studies. In addition, most of the review
papers focused on knee anatomical segmentation approaches
instead of classification approaches in OA diagnosis. 0is
review is focused on the evolution from 2D DL models to-
wards 3D DL models, particularly CNN in OA diagnosis. As
the adaptation of CNN is increasing in OA diagnosis, only
CNN architectures will be covered in this review. 0is work
presents all types of state-of-the-art CNN architecture and
approaches in OA diagnosis, which also covers the highlights
and improvement of the studies. Figure 2 illustrates the
taxonomy of CNN approaches in this review.

0e rest of this review is organized into four sections.
Sections 5 and 6 review the existing 2D and 3D architectures,
respectively, for both segmentation and classification

Table 1: Summary of studies conducted with nonimaging data.

Publication
reference Task Data set (nonimaging data)

Performance

With nonimaging data Without nonimaging
data

Lim et al. [9] Predict presence of OA

5749 subjects with 24 features
including demographics, personal

characteristics, lifestyle variables, and
health status (3795 training (30%

validation), 1955 testing)

AUC: 76.8%

—

Accuracy: 71.97%
SN: 66.67%
SP: 73.35%

Positive predictive
value: 39.53%

Christodoulou
et al. [4] Predict progression of OA

OAI: 4796 subjects with 141 features
including joint symptoms, disability,
functionality, lifestyle, and general

health status

Overall accuracy:
79.39% —

Guan et al. [11]
Predicting progression of
radiographic medial joint

space loss

7 features of demographic data and
radiographic risk factors

AUC: 0.863; SN: 80.5%;
SP: 80.5%

AUC: 0.799; SN: 78.0%;
SP: 75.5%

Kim et al. [17] Predict knee OA severity
based on KL-grade

6 features including demographics,
alignment, and metabolic data

AUC: 0.97 (KL0), 0.85
(KL1), 0.75 (KL2), 0.86
(KL3), and 0.95 (KL4)

AUC: 0.91 (KL0), 0.80
(KL1), 0.69 (KL2), 0.86
(KL3), and 0.96 (KL4)

Martinez et al.
[18]

Detect OA and predict
future onset OA 3 features including demographic data

Detecting OA: SN:
81.03%; SP: 79.01%

Detecting OA: SN:
79.0%; SP: 77.1%

Predicting onset: SN:
76.77%; SP: 62.5%

Predicting onset: SN:
76.8%; SP: 57.5%

Nunes et al. [19] Stage severity of cartilage
lesion 3 features including demographic data Accuracy: 86.7% Accuracy: 82.79%

Pedoia et al. [20]

Detect and stage severity
of meniscus and

patellofemoral cartilage
lesions

2 features including demographic data
Accuracy: 80.74%

(normal), 78.02% (mild-
moderate), 75% (severe)

Accuracy: 87.55%
(normal), 71.43% (mild-

moderate), 66.7%
(severe)

Tolpadi et al. [21] Predict total knee
replacement

27 features including demographic
data, health status, disability, pain

scores

AUC± SD: 0.890± 0.021
(X-ray), 0.834± 0.036

(MRI)

AUC± SD:
0.848± 0.039 (X-ray),
0.886± 0.020 (MRI)

Guan et al. [22] Predict knee pain 7 features including demographic and
radiographic risk factors

AUC: 0.804; SN: 75.2%;
SP: 76.2%

AUC: 0.753; SN:
65.77%; SP: 73.51%

Note. Task: osteoarthritis (OA); performance: magnetic resonance imaging (MRI), specificity (SP), sensitivity (SN), and area under receiver operating
characteristics curve (AUC).
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approaches. Based on the existing reviews, Section 7 dis-
cusses the performance of 3D CNN and its potential in the
future direction of OA diagnosis. Section 8 presents the
conclusion of this review.

5. Application of 2D Deep Learning in Knee
Osteoarthritis Assessment

5.1. Segmentation of Knee Cartilages/Menisci. Most of the
techniques used in deep learning studies in the OA field are
based on convolutional neural networks. A summary of 2D
CNN-based segmentation approaches in the OA field is
given in Table 3.

Majority of the CNN segmentation studies are based on
the U-Net architecture, a symmetrical network consisting of
the encoder and decoder, which first learns to encode by
convolution downsampling and then decode into a seg-
mentationmask which represents the object of interest in the
image by upsampling the “deconvolutions” [20, 33]. 0ere
are several statistical evaluation metrics to justify a seg-
mentation model’s performance such as Jaccard similarity
coefficient (JSC), Dice similarity coefficient (DSC), and
Matthew’s correlation coefficient (MCC). Among the met-
rics, DSC is commonly used to evaluate the similarity be-
tween the model’s prediction output image against manual
annotations or ground truth pixel by pixel [8].

Table 2: Summary of existing reviews.

Publication
reference Year Scope of review Modality

Pedoia and
Majumdar [24] 2018

Advances in assessment (image processing and deep
learning techniques), quantitative imaging,

multidimensional data analysis of knee and hip OA
MRI, X-ray (plain radiography)

Hayashiet al. [10] 2019
MRI techniques on knee OA assessment: development

of new concept and techniques, hybrid imaging,
artificial intelligence application

MRI

Chaudhari et al.
[25] 2019

Existing development in OA diagnosis using magnetic
resonance images: Morphological imaging,

compositional imaging, rapid biomarker extraction,
hardware improvements

MRI

Garwood et al. [13] 2020
AI application on knee pathologies: cartilages
(osteoarthritis), ligaments, meniscus, tendons,

musculoskeletal ultrasound, bone tumors, fractures
MRI, X-ray (plain radiography)

Kaur et al. [41] 2020

Knee cartilage and bone segmentation approaches:
thresholding-based, partial differential equation-based,

graph-based, atlas-based, model-based, machine
learning-based (includes deep learning)

MRI, CT

Gan et al. [8] 2020

Knee bone and cartilage segmentation approaches:
region-based; deformable model-based, atlas-based,
graph-based, classical machine learning-based, deep

learning-based MRI

Evaluation of computational models, brief discussion of
classification models

Ebrahimkhani
et al. [28] 2020

Knee articular cartilage segmentation approaches:
conventional methods, active contour models, active
shape and active appearance models, graph-based, atlas-
based, learning-based (5 publications on deep learning)

MRI

Eckstein et al. [42] 2021

Imaging studies on OA research between January 2019
and April 2020: models of early knee OA, structure

modification in established OA, deep learning
approaches in image analysis

MRI, X-ray (plain radiography)

Kijowski et al. [43] 2019

Imaging studies on OA research between April 1, 2018,
and March 30, 2019: risk factors of OA, OA disease
evaluation or treatment response, technical advances,

and deep learning in OA imaging

MRI, ultrasound, X-ray (plain radiography), CT,
positron emission tomography (PET), dual energy

X-ray absorptiometry (DXA)

Nieminen et al.
[44] 2018

Imaging studies on OA research between 1 April 2017
and 31 March 2018: cross-sectional studies, prediction,

prognostic and progression studies of different
modalities and deep learning

MRI, radiography, CT, ultrasound, nuclear medicine

Saini et al. [45] 2021

Knee OA severity classification: distinct feature
quantification-based, and composite grading-based X-ray (plain radiography)Knee segmentation approaches: manual, semiautomatic,

automatic methods
Note. Scope of review: osteoarthritis (OA); modality: magnetic resonance imaging (MRI) and computed tomography (CT).
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Kompella et al. [37] adopted the state-of-the-art Mask
R-CNN (regional convolutional neural network) for auto-
mated femoral cartilage (FC) segmentation from ultrasound
2D image scans. 0e ResNet-50 with the feature pyramid
network was chosen as the backbone of the architecture with
region proposal network to extract the region of interest
(ROI). FC is then classified from ROI using the SoftMax
classifier and results in a binary mask using the feature
pyramid network. Preprocessed images with Gaussian fil-
tering show better results, and networks pretrained with the
COCO 2016 image dataset perform better than networks
pretrained with ImageNet.

Several studies adopted the 2D encoder-decoder U-Net
model proposed by Ronneberger et al. [52] in knee com-
partment segmentation studies. Norman et al. [46] utilizes 2D
U-Net to segment six subcompartments of the knee, partic-
ularly articular cartilages and meniscus. Subjects with and
without OA are both included in this study. Strong DSC has
been reported in this model, especially on the 3D-DESS image
dataset which is ranged between 0.753 and 0.878 for all sub-
compartments. 0e automated cartilage segmentation model
has an efficient computational speed of averaged 5 seconds.

Similar to Norman et al. [46], Si et al. [47] decided to use
2D U-Net to segment the bones and articular cartilages of
the knee from MR images which are femur, tibia, patellar,
and each of their corresponding cartilages. 0e cartilages are
segmented to obtain the cartilage thickness in 14 anatomical
regions. 0e DSCs of cartilage compartments obtained from
this study are in the range of 0.76–0.87. Wirth et al. [31] also
used 2D U-Net for segmenting femorotibial cartilages to test
the cartilage morphometry longitudinal test-retest repro-
ducibility and had demonstrated high DSC for both coronal
FLASH and sagittal DESS images. For both studies by Si et al.
[47] and Wirth et al. [31], only subjects without OA were
included.

To overcome the lack of computational needs such as
memory and training time requirement needed for 3D
CNNs for 3D volumes segmentation tasks, Prasoon et al.
[48] proposed a voxel classification system on 3DMR images

using triplanar 2D CNNs. 0e CNNs are done on three
orthogonal 2D patches on xy, yx, and zx planes of 3D images,
respectively. 0e 3 CNNs were then fused and fed into the
SoftMax classifier to perform tibial cartilage segmentation.

0ere are several works that have made integrations or
extensions to improve the existing models. Panfilov et al.
[36] applied two regularization techniques, supervised
mixup and unsupervised domain adaptation (UDA), to
enhance the existing U-Net model on segmentation of ar-
ticular cartilage and menisci. However, mixed results have
been reported where mixup with weight decay potentially
improves DSC performance, but UDA is relatively unde-
sirable due to its heavy cost of computation. CombinedUDA
and mixup approach performed the worst. Byra et al. [32]
demonstrated automatic menisci segmentation to assess
quantitative evaluation onmeniscus relaxometry.0emodel
used is based on the U-Net architecture with transfer
learning using 3D ultrashort echo time (UTE) cones se-
quences as input. Self-attention mechanism is utilized to
enhance the segmentation performance. A high DSC of
0.860 and 0.833 is achieved. Given that performance of
U-Net is limited by predefined loss functions, Gaj et al. [49]
combined two deep learning networks to modify the ob-
jective function. 0e authors attempted the conditional
generative adversarial networks (CGAN) model at inte-
grating U-Net and had reported excellent cartilage and
menisci segmentation performance on 3D-DESS images
with a DSC in the range of 0.84–0.91. Figure 3 shows the
example of segmented MR images with different colour
codes for different compartments including the articular
cartilage and menisci.

5.2. Segmentation of the Knee Bone. Liu et al. [50] presented
automated segmentation of the knee bone and cartilage by
combining 2D SegNet and 3D simplex deformable model-
ling. 3D deformable modelling allows desirable and smooth
surface and shape of the final segmentation output. Results
demonstrated that the 3D deformable modelling enhanced
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Table 3: Summary of 2D CNN segmentation approaches.

Publication
reference

Region of
interest

Modality (imaging
sequence) Data set Network architecture Performance

Kompella
et al. [37] FC Ultrasound 256 images (training :

validation: 85% :15%) Mask R-CNN DSC: 0.80 (FC)

Norman
et al. [46]

FC, lateral TC,
medial TC, PC,
lateral menisci,
medial menisci

MRI (T1-weighted,
DESS)

OAI: 174 images (121
training, 37

validation, 16 testing)
U-Net

DSC (T1-weighted): 0.742 (FC,
lateral TC, medial TC, PC),
0.767 (lateral menisci, medial

menisci)
DSC (DESS): 0.867 (FC, lateral
TC, medial TC, PC), 0.833
(lateral menisci, medial

menisci)

Si et al. [47] FC, TC, PC

MRI (sagT1-
weighted, sagT2-
weighted, corPDW
FS, transversal
PDW FS)

Tongren Hospital: 47
subjects (27 training,

20 testing)
U-Net

DSC± SD: 0.87± 0.01 (FC),
0.82± 0.01(TC), and
0.76± 0.04 (PC)

Wirth et al.
[31]

Medial FC,
lateral FC,
medial TC,
lateral TC

MRI (corFLASH,
sagDESS)

OAI: 92 subjects (50
training, 21

validation, 21 testing)
U-Net

DSC± SD (corFLASH):
0.92± 0.02 (medial TC),
0.88± 0.03 (medial FC),
0.92± 0.02 (lateral TC),
0.88± 0.02 (lateral FC)
DSC± SD (sagDESS):

0.91± 0.02 (medial TC),
0.89± 0.03 (medial FC),
0.92± 0.02 (lateral TC),
0.90± 0.02 (lateral FC)

Prasoon et al.
[48] TC MRI (turbo 3D-T1-

weighted)
(25 training, 114
testing) images 0ree 2D CNN DSC: 0.8249 (TC); SN: 81.92%

(TC); SP: 99.97% (TC)

Panfilov et al.
[36]

FC, TC, PC,
menisci MRI (DESS) OAI: 88 subjects

U-Net-mixup-
unsupervised domain

adaptation

DSC±SD: 0.907± 0.019 (FC),
0.897± 0.028 (TC),
0.871± 0.046 (PC),

0.863± 0.034 (menisci)

Byraet al.
[32] Menisci MRI (3D UTE

cones)

University of
California

2D attention U-Net DSC: 0.860 (menisci)
San Diego

Institutional Review
Board: 61 subjects (36

training, 10
validation, 15 testing)

Gajet al. [49]

FC, lateral TC,
medial TC, PC,
lateral menisci,
medial menisci

MRI (3D-DESS)
OAI: 176 images (122

training, 36
validation, 18 testing)

U-Net-conditional
generative adversarial

networks

DSC± SD: 0.8972± 0.023 (FC),
0.9181± 0.013 (lateral TC),
0.8609± 0.038 (medial TC),

0.8417± 0.058 (PC),
0.8950± 0.023 (lateral
menisci), 0.8738± 0.045

(medial menisci)

Liu et al. [50] FC, TC, FB, TB MRI (T1-weighted
SPGR)

SKI10: (60 training,
40 testing) images

SegNet + 3D simplex
deformable modelling

ASD± SD: 0.56± 0.12mm
(FB), 0.50± 0.14mm (TB)
VOE� 28.4 (FC), 33.1(TC)

Zhou et al.
[51]

FC, TC, PC,
FB, TB, PB,
menisci

MRI (3D-FSE) 60 images
SegNet + conditional

random field + 3D simplex
deformable model

DSC± SD: 0.97± 0.01 (FB),
0.962± 0.015 (TB),
0.898± 0.033 (PB),
0.806± 0.062 (FC),
0.801± 0.052 (TC),
0.807± 0.101 (PC),

0.831± 0.031 (menisci)
Note. Region of interest: femoral cartilage (FC), tibial cartilage (TC), patellar cartilage (PC), femur bone (FB), tibia bone (TB), and patella bone (PB); modality
(imaging sequence): magnetic resonance imaging (MRI); data set: Osteoarthritis Initiative (OAI); network architecture: convolutional neural network (CNN);
performance: Dice similarity coefficient (DSC), specificity (SP), sensitivity (SN), average symmetric surface distance (ASD), and standard deviation (SD).
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the segmentation accuracy of both models where the SegNet
(Figure 4) outperforms the U-Net model.

Inspired by Liu et al. [50], Zhou et al. [51] extended the
model by combining the 3D conditional random field (CRF)
on 3D fast spin-echo (3D-FSE) MR image data sets. 3D CRF
is integrated as a postprocessing step to ensure accurate
labelling of the voxels. 0e multiclass tissue segmentation
model reported DSC of more than 0.8 for most of the tissue
types, especially the femur, tibia, and patella and their re-
spective cartilages, as well as knee menisci.

5.3. Classification. 0e classification aspect of deep learning
can be applied for predictive purposes in 3 main areas:
progression of OA diagnosis, onset of symptomatic OA, and
grading of OA severity.

5.3.1. Progression of Osteoarthritis Diagnosis. A summary of
2D CNN-based classification approaches on progression of
OA diagnosis is shown in Table 4. Among the deep learning
classification works, most studies have compared deep
learning model performance with other machine learning
method’s performance.

Schwartz et al. [12] have demonstrated that the CNN
model is able to detect critical features and knee OA grade
severity based on knee plain radiographs. 0is study clas-
sifies knee OA severity based on the International Knee
Documentation Committee (IKDC) grading system. Results
showed that when considering grades separately, CNN is
achieving an intraclass correlation coefficient (ICC) of 0.685
with surgeons. Binary classification of IKDC D vs. other
grading shows that the ICC achieved was 0.697, which is

FC
LTB
MTC

PC
LM
MM

(a)

FC
LTB
MTC

PC
LM
MM

(b)

FC
LTB
MTC

PC
LM
MM

(c)

Figure 3: Examples of segmented MR images with different colour codes for different compartments (femoral cartilage (FC), lateral tibial
cartilage (LTB), medial tibial cartilage (MTC), patellar cartilage (PC), lateral menisci (LM), and medial menisci (MM)) (adapted from [49]).
(a) Original image, (b) manual segmentation, and (c) automatic segmentation.
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slightly higher. 0e study showed that CNN classifies knee
OA as accurate as an arthroplasty surgeon.

Deep learning architectures have been proven feasible in
detecting OA radiographic OA progression. Studies have
presented that deep learning models using radiographic
images outperformed the traditional model or clinical model
that utilizes nonimaging data only [11, 53, 54]. Guan et al.
[53] trained two CNN models which are VGG16 and
DenseNet on knee radiographs to compare their knee OA
prediction feasibility with support vector machine (SVM) on
nonimage data. 0e clinical model based on SVM includes
demographic and risk factors data to predict OA. 0e study
showed that the combined SVM and deep learning model
achieved the highest AUC of 0.832 followed by deep learning
models with AUC more than 0.7 which is significantly
higher than that of the clinical model. Next, Tiulpin et al.

[54] developed CNNwith the ImageNet pretrained model to
perform multiclass classification to predict OA progression
based on knee radiographs. 0e DL model is then compared
to logistic regression which used demographic information
of age, sex, BMI, and KL-grade as input variables. 0e DL
model outperformed the logistic regression model with an
AUC of 0.71. Guan et al. [11] developed an OA prediction
model based on progression of medial joint space loss on
knee radiography. 0e model proposed is the combination
of two deep learning architectures for joint cropping and
classification that are inspired from the YouOnly Look Once
(YOLO) model and DenseNet, respectively. Similar to [53],
the authors have attempted to integrate the DL model to
extract features from knee radiograph and then joined them
with demographic and radiographic risk factor data to form
a joint training model. 0is approach resulted in a

4

3

2

1

0

Tibial
Cartilage (4)

100

50

0
Tibia (3)Femoral 

Cartilage (2)
Femur (1)Background (0)

(a) (b) (c) (d) (e) (f) (g)

Figure 4: Example of knee bone and cartilage segmentation from pixelwise class probability with (a) original MR image, (b–f) background,
femur, femoral cartilage, tibia, and tibial cartilage, with index 0 to 4, respectively, and (g) combination of each class index (adapted from
[50]).

Table 4: Summary of 2DCNN classification approaches on progression of osteoarthritis diagnosis.

Publication
reference Target tasks

Modality
(imaging
sequence)

Data set Network architecture Performance

Guan et al.
[53] Predict OA progression X-ray (plain

radiography)

OAI: 600 subjects (450
training, 50 validation,

100 testing)
Vgg16 and DenseNet

Vgg16: AUC: 0.717;
SN: 80.0%; SP:

56.1%
DenseNet: AUC:
0.744; SN: 94.1%;

SP: 48.0%

Tiulpin et al.
[54] Predict OA progression X-ray (plain

radiography)

OAI: 5139 images
(training) CNN AUC: 0.71MOST: 2,491 images
(testing)

Guan et al.
[11]

Predicting progression
of radiographic medial

joint space loss

X-ray (plain
radiography)

OAI: (1400 training,
150 validation, 400
testing) images

YOLO+DenseNet AUC: 0.799; SN:
78.0%; SP: 75.5%

Razmjoo et al.
[7] Predict OA incidence MRI OAI: 1805 subjects

Topological data analysis
(TDA) + graph convolutional

network (GCN model)

Accuracy (F1): 0.91;
SN: 0.84; SP: 0.99

Li et al. [55] Predict OA progression
by assessing severity

X-ray (plain
radiography)

MOST: 3021 subjects
(training : validation :
testing; 80 :10 :10%)

Siamese neural network AUC: 0.90

Note. Modality (imaging sequence): magnetic resonance imaging (MRI); data set: Osteoarthritis Initiative (OAI) and Multicenter Osteoarthritis Study
(MOST); network architecture: convolutional neural network (CNN); performance: specificity (SP), sensitivity (SN), and area under receiver operating
characteristics curve (AUC).
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significantly higher AUC than of the traditional model that
uses nonimage data, DL model, and joined DL and logistic
regression model.

To address the lack of labelled training samples, Razmjoo
et al. [7] presented semisupervised learning for OA pro-
gression prediction. Razmjoo et al. [7] proposed a predictive
model using topological data analysis to construct graphs to
feed into graph convolution network (GCN) as the input.
Prediction of OA incidence is done by node labelling of
different biomarkers and risk factors of the subjects si-
multaneously using graph-based analysis. 0e authors re-
ported that the proposed semisupervised predictive model is
a potential robust model.

Most studies are done on multiclass discrete classifica-
tion on knee OA severity without conveying the actual
continuous spectrum of OA progression. To overcome this
issue, a Siamese neural network was developed by Li et al.
[55] to perform binary classification of OA progression by
assessing OA severity at single time points. 0e proposed
model achieved an AUC of 0.9. 0e authors have reported
that with image labelling, manual localization of ROI can be
eliminated for the proposed method.

5.3.2. Onset of Symptomatic Osteoarthritis. Table 5 displays
the summary of 2D CNN-based classification approaches on
prediction of onset of symptomatic OA.

Pierson et al. [56] trained a CNN to perform algorithmic
pain prediction (ALG-P) which predicts pain based on knee
X-ray. Similar to [11], the same authors, Guan et al. [22],
combined YOLO and DenseNet to perform automated ROI
cropping on knee radiographs and classification where it will
be based on predicting pain progression. 0e DL model was
then combined with risk factor data into a joint training
model. 0e authors attempted similar performance com-
parison, and results demonstrated that the joint training
model shows greater prediction performance than the deep
learning and clinical model. Chang et al. [14] developed a
Siamese network to classify knees with and without pain
from 2D sagittal intermediate-weighted turbo spin-echoMR
slices.0emodel achieved an AUC of 0.808 in assessing knee
pain. 0e class activation mapping (CAM) saliency maps
showed that effusion synovitis is present in most knee pain
regions.

5.3.3. Grading of Osteoarthritis Severity. A large proportion
of the published study focused on utilizing deep learning to
improve the grading of OA severity. A summary of 2D
CNN-based classification approaches on grading of OA
severity is presented in Table 6.

Numerous studies utilize knee X-ray plain radiography
in their classification model not only because it is commonly
available and cost-efficient but also because the most sig-
nificant hallmarks of OA are JSN and osteophyte formation
which can be easily visualized by knee X-rays. Moreover, the
JSN plays an important role in determining OA severity
according to the KL-grade, which is a relatively commonly
used grading by practitioners worldwide [16, 29, 59]. 0e
KL-grading system (as shown in Figure 5) is categorized into

five grades based on the ground truth where Grade 0 in-
dicates no OA, Grade 1 indicates doubtful OA with minute
osteophytes, Grade 2 indicates mild OA with definite
osteophytes, Grade 3 indicates moderate OA with definite
JSN and multiple osteophytes with possible bone defor-
mation, and Grade 4 indicates severe OA where large
osteophytes, JSN, severe sclerosis, and definite bone de-
formity are present [29, 34]. KL-grade defines OA severity as
a composite score and is subjective based on practitioner’s
interpretation, hence causing a certain level of uncertainty in
OA diagnosis [26].

To overcome this limitation, Tiulpin et al. [16] have
developed a state-of-the-art approach using deep Siamese
CNN to predict OA severity that presents probability dis-
tribution of the KL-grade and displays the highlighted OA
features from knee radiographs by ensembling class dis-
criminating attention maps. By highlighting the radio-
graphic features, the model’s decision-making process is
made transparent which hence builds trust from the clini-
cians. 0e authors stated that the deep Siamese neural
network allows the classification model to be more robust
due to lower number of training parameters. 0e model
achieved a high AUC score of 0.93.

Another study [5] was also interested in examining
radiographic features identified for decision-making using
saliency maps. Norman et al. [5] adopted U-Net in knee
localization from radiographs where the localized images
will be used to train the DenseNet neural network to classify
OA severity, which is categorized into no OA, mild OA,
moderate OA, and severe OA. DenseNet neural network
utilizes dense blocks to allow feature learning from con-
catenating previous layers. Saliency maps have shown that
osteophyte formation and joint space narrowing are the
features identified by the network which are also biomarkers
of OA. It was also found that the presence of hardware in the
knee is one of the reasons of misclassification of OA severity
by the algorithm.

Liu et al. [58] used Faster R-CNN, a deep learning ap-
proach that consists of a region proposal network (RPN) and
Fast R-CNN to detect knee joints and perform classification
based on KL-grading simultaneously. RPN plays a critical
role in removing unwanted details from plain radiographs.
0eir proposed model involved novel loss function and
larger anchors to enhance the performance of Faster R-CNN
by addressing class imbalance and large input size issues.0e
proposed model performs better than the Faster R-CNN
model.0e authors acknowledge the limitations of this study
where it is a supervised learning which requires a large
amount of good quality annotated data to ensure classifi-
cation accuracy and performance of the model.

Not only in the prediction of OA progression [7],
semisupervised learning (SSL) has also been applied in
staging OA severity and has demonstrated its advantage and
effectiveness [23, 57]. To address the inadequacy of a large,
annotated dataset, Nguyen et al. [57] extended the model
from Tiulpin et al. [16] to perform a semisupervised learning
method using the pi-model approach, where it adapted
consistency regularization to ensure that the network be-
haves similarly on unannotated data. 0e proposed
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Table 5: Summary of 2D CNN classification approaches on onset of symptomatic osteoarthritis.

Publication
reference Target tasks Modality (imaging

sequence) Data set Network
architecture Performance

Pierson et al.
[56]

Predict knee
pain

X-ray (plain
radiography)

OAI: 4,172 subjects (2877 training,
1295 validation) CNN AUC: 0.69

Guan et al. [22] Predict knee
pain

X-ray (plain
radiography)

OAI: 2000 subjects (1500 testing,
200 validation, 300 testing) YOLO+DenseNet AUC: 0.753; SN: 65.77;

SP: 73.51

Chang et al. [14] Predict knee
pain MRI (SAG-IW-TSE) OAI: 1505 subjects (training :

testing; 90% :10%) Siamese network AUC: 0.808

Note.Modality (imaging sequence): magnetic resonance imaging (MRI); data set: Osteoarthritis Initiative (OAI); network architecture: convolutional neural
network (CNN); performance: specificity (SP), sensitivity (SN), and area under receiver operating characteristics curve (AUC).

Table 6: Summary of 2D CNN classification approaches on grading of osteoarthritis severity.

Publication
reference Target tasks

Modality
(imaging
sequence)

Data set Network architecture Performance

Tiulpin et al.
[16]

Predict knee OA
severity based on KL-

grade

X-ray (plain
radiography)

MOST: 18376 images
(training), Deep Siamese

convolutional neural
network

AUC: 0.93OAI: 2957 images
(validation), 5960
images (testing)

Nguyen et al.
[57]

Predict knee OA
severity based on KL-

grade

X-ray (plain
radiography)

OAI: 39,902 images
(training)

Deep Siamese
convolutional neural

network with pi-model
approach

Cohen’s Kappa
coefficient (KC): 0.790

MOST: 3,445 images
(testing)

Balanced accuracy (BA):
0.527

Nguyen et al.
[23]

Predict knee OA
severity based on KL-

grade

X-ray (plain
radiography)

OAI: 39902 images
(training/validating) Semixup (Siamese

network + novel deep
semisupervised learning)

Balanced accuracy± SD:
71± 0.8%MOST: 3445 images

(testing)

Liu et al. [58]
Predict knee OA

severity based on KL-
grade

X-ray (plain
radiography) 2770 images

Faster R-CNN (region
proposal network + Fast
R–CNN) + focal loss

Accuracy: 82.5%; SN:
78.2%; SP: 94.8%

Antony et al.
[30]

Predict knee OA
severity based on KL-

grade

X-ray (plain
radiography) OAI: 8892 images

VGG16, VGG-M-128, and
BVLC Mean squared error:

0.504 (CNN-Reg)CaffeNet

Norman et al.
[5]

Predict knee OA
severity based on KL-

grade

X-ray (plain
radiography)

OAI: 39,593 images
(25,873 training, 7779

validation, 5941
testing)

DenseNet

SN: 83.7 (no OA), 70.2
(mild OA), 68.9

(moderate OA), 86.0
(severe OA) %

SP: 86.1 (no OA), 83.8
(mild OA), 97.1

(moderate OA), 99.1
(severe OA) %

Zhang et al.
[59]

Predict knee OA
severity based on KL-

grade

X-ray (plain
radiography)

OAI: (38232 training,
10986 testing, 5422
validation) images

ResNet with convolutional
block attention module

(CBAM)

Accuracy: 74.81%; mean
squared error: 0.36;

quadratic Kappa score:
0.88

Leung et al.
[60]

Predict knee OA
severity based on KL-
grade and predict total

knee replacement

X-ray (plain
radiography) OAI: 728 subjects ResNet-34 (ResNet with

34 layers) AUC: 0.87

Tiulpin and
Saarakkala
[26]

Predict knee OA
severity

X-ray (plain
radiography)

OAI: 19704 images
(training); MOST:
11743 (testing)

SE-ResNet-50 + SE-
ResNet-50-32× 4d (SE-
ResNet-50 with ResNeXt

blocks)

AUC: 0.98

Kim et al. [17]
Predict knee OA

severity based on KL-
grade

X-ray (plain
radiography)

4366 images (3464
training, 386
validation, 516

testing)

Six SE-ResNet
AUC: 0.97 (KL 0), 0.85
(KL1), 0.75 (KL2), 0.86

(KL3), 0.95 (KL4)
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approach outperformed the approach in [16] and SL model
in a limited data setting. 0e work in [16] was also extended
in the study by Nguyen et al. [23] where the authors pro-
posed a novel Semixup algorithm, which is also an SSL
approach to automatically classify OA severity according to
KL-grade based on knee radiographs. Semixup uses both in-
and out-of-manifold regularizers with interpolated consis-
tency for consistency regularization.

In another study, Zhang et al. [59] have proposed a state-
of-the-art approach that has also shown better accuracy than
that of approaches from [16]. Zhang et al. [59] applied
different architectures of residual neural network (ResNet)
to perform knee localization and prediction of KL-grade
which were ResNet-18 and ResNet-34, respectively. ResNet-
34 from [16] is modified and joined with the convolutional
block attention module (CBAM) mechanism and suggested
that CBAM contributes to achieving high accuracy by
generating more concentration on radiographic feature
relevant regions.

Most studies predict OA severity based on discrete
grading such as KL-grade. However, the approach by
Antony et al. [30] has allowed the predictions to fall between
grades, which correlate to the OA progression. Antony et al.
[30] demonstrated different CNN model and regression loss
in assessing knee OA severity based on mean squared area
instead of binary or multiclass classification. 0is is because
the authors proposed that the measure of OA severity is a

continuous evaluation and hence, it is inappropriate to
categorize OA in a discrete way. Comparisons were done
between VGG16, VGG-M-128, and BVLC CaffeNet and
trained linear SVMs. 0e findings suggested that fine tuning
networks with regression loss have shown better classifi-
cation performance.

Leung et al. [60] proposed a multitask DL model to
diagnose OA severity based on KL-grade and predict the
TKR possibility within 9 years using baseline plain radio-
graphs. 0e model is based on the ResNet-34 architecture.
0e proposed model was compared with the binary outcome
model based on KL-grade and OARSI grade and single-task
learning DL model. 0e proposed multitask model achieved
the best performance compared to the single-task learning
model and binary outcome models with an AUC of 0.87.

Unlike the KL-grade that works as a composite score,
Osteoarthritis Research Society International (OARSI) al-
lows grading of OA severity on different features inde-
pendently. Tiulpin and Saarakkala [26] developed two deep
residual networks incorporating squeeze-excitation (SE) and
ResNeXt blocks to perform OA severity prediction from
plain radiographs based on KL-grading as well as OARSI
grading. 0e authors reported SE-ResNet-50 and SE-
ResNet-50-32× 4d as a whole as their final model, achieving
an AUC of 0.98. Kim et al. [17] utilized the SE-
ResNet algorithm to compare deep learning algorithm
performance with image data solely and with both image and

Table 6: Continued.

Publication
reference Target tasks

Modality
(imaging
sequence)

Data set Network architecture Performance

Chen et al.
[34]

Predict knee OA
severity based on KL-

grade

X-ray (plain
radiography)

OAI: 4130 images
(training : validation :

testing; 7 :1 : 2)

VGG-19 + proposed
ordinal loss

Accuracy: 70.4%; mean
absolute error (MAE):

0.358

Pedoia et al.
[61] Predict presence of OA

MRI (T2
mapping

acquisition)
OAI: 4384 subjects DenseNet AUC: 83.44%; SN:

76.99%; SP: 77.94%

Note. Modality (imaging sequence): magnetic resonance imaging (MRI); data set: Osteoarthritis Initiative (OAI); network architecture: convolutional neural
network (CNN) and squeeze-and-excitation (SE); performance: specificity (SP), sensitivity (SN), area under receiver operating characteristics curve (AUC),
and standard deviation (SD).

Kellgren and Lawrence (KL) Grading System

Grade 0
No radiographic 

features of OA

Grade 1
Possible osteophytic

lipping
Doubtful joint space

narrowing (JSN)

Grade 2
Definite osteophytes

Possible JSN

Grade 3
Multiple osteophytes 

Definite JSN
Sclerosis

Grade 4
Large osteophytes

Marked JSN
Severe sclerosis

Figure 5: KL-grading system with corresponding knee joint samples (adapted from [34]).
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nonimage datasets. 0e average AUC for DL with both
image and nonimage data is higher than that with sole image
data, significantly for OA severity of KL-grade of 2 and
below. Hence, by adding patient data, the model is signif-
icantly efficient to detect early OA.

Similar to the works mentioned earlier regarding the
classification-based approaches on knee pain [11, 22], Chen
et al. [34] also proposed two deep CNN approaches in knee
OA diagnosis based on KL-grading (Figure 6). 0e YOLOv2
network was used to localize knee joints as an input for the
classification networks, which are the variants of ResNet,
DenseNet, InceptionV3, and VGG architectures. 0e fine-
tuned models with the proposed ordinal loss perform better
than models with cross-entropy loss. For this study, the
VGG-19 with the proposed ordinal loss model achieved the
best KL-grade classification performance.

Although knee radiographs have shown significant
performance in OA diagnosis, it is unable to identify early
OA as the best measure of early OA only can be detected
through degeneration of articular cartilage, which is a critical
progression towards formation of JSN [16]. Hence, recent
studies also investigate prediction of severity grading based
on MRI images. Besides morphological features, biochem-
ical analyses such as T1p and T2 relaxation time values are
potential biomarkers of OA as well [46, 61]. Voxel-based
relaxometry has shown feasibility in both segmentation and
classification studies. 0e relaxation time measurements
help to predict the degradation levels of the collagen in the
cartilage and menisci [25]. Pedoia et al. [61] proposed a deep
learning approach, DenseNet, to classify the presence of OA
by learning one feature from the MR images, which is the T2
relaxation times only, and included other demographic
information.

Under the big umbrella of deep learning, besides CNN,
various non-CNNs have been applied in segmentations and
classifications in knee joints for OA studies. For example,
conditional generative adversarial networks (CGANs) [62]
have been applied in segmentation of multiple knee joint
tissues whereas holistically nested network (HNN) has
demonstrated bone segmentation [33]. However, non-
CNNs such as dense neural network [63] and discriminative
regularized auto-encoder (DRAE) [2] have been proposed in
the classification task.

Meanwhile, Wahyuningrum et al. [29] proposed a deep
learning approach that applies a CNN, VGG16, to extract
features from plain radiography and a non-CNN, long short-
term memory (LSTM), to classify knee OA severity based on
KL-grading. LSTM is a type of recurrent neural network
(RNN). 0e results showed that the proposed method
achieves better accuracy than previous approaches [9, 16, 34]
with a relatively shorter computing time.

6. Application of 3D Deep Learning in Knee
Osteoarthritis Assessment

All the previous studies mentioned above utilized the 2D image
or 2D slice from the 3D image as the model input to perform
segmentation and classification. Several 2D CNN studies on
OA proposed 3DCNN as a future work or recommendation to

improve OA diagnosis. 3D networks require higher GPU
memory and computation performance which can be ac-
complished with the technologies available today.

6.1. Segmentation of Knee Cartilages/Menisci. A summary of
3D CNN-based segmentation approaches in the OA field is
presented in Table 7.

Marzorati et al. [64] performed automatic femur and
tibia segmentation from CT images to extract pathological
OA features. Results presented that implementation of 3D-
U-Net in bone segmentation outperformed 2D-U-Net de-
spite having more processing layers. Although CT provides
excellent 3D visualization, recent 3D studies on OA diag-
nosis show limited attention to CT images and are more
concentrated on 3DMR images. One of the main drawbacks
is that CT exposes radiation to patients [28].

Various DL methods on knee cartilage segmentation
using MR images have been proposed. 0e MR image se-
quences acquired in most 3D CNN OA applications are 3D-
DESS MR volumes [1, 3, 18, 21, 65, 66, 68–70].

“μ- Net” is one of the first 3D fully developed CNNs for
knee cartilage segmentation proposed by Raj et al. [3]. 0e
network architecture is inspired by U-Net to develop a
multiclass segmentation of cartilages and menisci. 0e DSC
scores achieved for various classes are 0.785 and above. A 3D
U-Net CNN was utilized by Chaudhari et al. [65] to perform
automated femoral segmentation to compare results from
the image with original resolution and super-resolution by
Deep Resolve and tricubic interpolation. Results conclude
that super-resolution produces a more accurate segmenta-
tion than naive interpolation.

To obtain quantitative meniscal measures, Tack et al. [66]
presented a 3D knee menisci segmentation model based on
the combination of 2D U-Net, 3D U-Net, and 3D statistical
shape modelling (SSM). 0e approach involves concatena-
tion of 2D segmented mask to a 3D mask from which SSM
will remove unwanted segmentation regions. Results con-
clude that medial meniscus extrusion is a potential bio-
marker to predict incident OA. Ambellan et al. [67]
implemented amethod similar to [66] which involves a four-
step approach with additional SSM postprocessing, but on
segmentation of knee cartilages and bones. 0e DSC scores
reported are 85.6%–89.9% and 98.5–98.6% for both tibia’s
and femur’s cartilage and bone. Tack and Zachow [68]
adapted 3D U-Net to segment medial and lateral tibial
cartilages via supervised learning methods. 0e authors
claimed that this approach outperformed other approaches
in articular cartilage segmentation [3, 66, 67].

Not only 3D morphology but also quantitative assess-
ment such as cartilage thickness [69] and T2 [6] values which
require segmentation of relevant compartments are im-
portant for OA indication. Iriondo et al. [69] have developed
automated segmentation and cartilage thickness measure-
ment algorithms to perform OA trajectory analysis. 0e
segmentation performance obtained a DSC score of 0.874
for meniscus and 0.850–0.890 for articular cartilages. 0e
study has validated that knees with nonstable cartilage
thickness change rate are likely to represent OA incidence.
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Table 7: Summary of 3D CNN segmentation approaches.

Publication
reference

Region of
interest

Modality
(imaging
sequence)

Data set Network
architecture Performance

Marzorati et al.
[64]

Distal FB,
proximal TB CT 200 images (160 training,

20 validation, 20 testing) U-Net DSC: 96% (FB, TB); SN: 96% (FB, TB)

Raj et al. [3] FC, TC MRI (3D-DESS)

SKI10: 100 images (80
training, 20 testing) μ-Net DSC: 0.849 (FC), 0.8565 (lateral TC),

0.8066 (medial TC), 0.7847 (PC)OAI: 176 images (140
training, 35 testing)

Chaudhari
et al. [65] FC MRI (3D-DESS)

OAI: 176 images (124
training, 35 validation, 17

testing)
U-Net DSC± SD: 90.2± 1.7% (FC)

Tack et al. [66] Menisci MRI (2D-DESS) OAI: 1240 subjects (5
datasets)

2D U-Net
(SSM); 3D U-

Net

DSC (baseline): 83.8% (medial
menisci), 88.9% (lateral menisci)

Ambellan et al.
[67] FC, TC, FB, TB

MRI: SKI10 (T1,
T2, GRE, SPGR
FS), OAI (DESS)

SKI10: (60 training, 40
validation, 50 testing)

subjects 2D U-Net
(SSM); 3D U-
Net (SSM)

Imorphics: DSC± SD (baseline):
89.4± 2.41 (FC), 86.1± 5.33 (medial

TC), 90.4± 2.42 (lateral TC)

OAI (Imorphics, ZIB): 88
subjects, 507 subjects

ZIB: DSC± SD: 89.9± 3.60 (FC),
85.6± 4.54 (TC); ASD± SD:

98.6± 0.30 (FB), 98.5± 0.33 (TB)
SKI10: ASD± SD: 0.43± 0.13mm

(FB), 0.35± 0.07mm (TB)

Tack and
Zachow [68] TC MRI (DESS)

OAI (Chondrometrics,
Imorphics): 1378 subjects,

88 subjects
U-Net

Chondrometrics: DSC± SD
(baseline): 82.85± 5.53 (medial TC),

86.11± 4.37 (lateral TC)
Imorphics: DSC± SD (baseline):

88.02± 4.62 (medial TC), 91.27± 2.33
(lateral TC)

Iriondo et al.
[69]

FC, TC, PC,
menisci MRI (DESS)

OAI (Imorphics): 176
images (1/3 training, 2/3

validation)
CNN

DSC± SD: 0.890± 0.023 (FC),
0.880± 0.036 (TC),

0.850± 0.068(PC), 0.874± 0.024
(menisci)

Razmjoo et al.
[6]

PC, lateral TC,
medial TC,
medial FC,
lateral FC

MRI (MSME
spin-echo
sequence)

OAI: 3921 images
(training : validation : test

set: 65 : 25 :10%)
3D V-Net

DSC± SD: 0.75± 0.11 (lateral TC),
0.69± 0.13 (lateral FC),
0.68± 0.12(medial TC),

0.69± 0.11(medial FC), 0.57± 0.17
(PC)

Tan et al. [70] FC, TC, PC MRI (3D-DESS)
OAI: 176 images (120

training, 26 validation, 30
testing)

V-Net with
adversarial
network

DSC± SD: 0.900± 0.037 (FC),
0.889± 0.038 (TC), 0.880± 0.043
(PC), 0.893± 0.034 (FC, TC, PC)

Joint Detector

Knee X-ray Image Detected Knee Joints (Red)

Expanded Knee Joints (Blue)

KL Grade
Classifier

0:
1:
2:
3:
4:

0:
1:
2:
3:
4:

0.116

0.855

0.016

0.008

0.006

0.018

0.026

0.036

0.044

0.876

Grade 1

Grade 4

Figure 6: Example of knee joint severity grading staging, which includes knee joint detection and knee KL-grade classification (adapted
from [34]).
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Razmjoo et al. [6] utilized 3D V-Net to perform auto-
mated cartilage segmentation and quantification of T2
values. Five cartilage compartments were segmented with a
DSC score of 0.57–0.75. Tan et al. [70] developed a 3D
V-Net-like structured segmentation network with collabo-
rative multiagent learning, where FC, TC, and PC are
segmented separately and fused by the ROI-fusion layer.
Figure 7 shows the visualization results of 3D cartilage
segmentation of the proposed method [70]. To address the
lack of manual segmentation during training, Xu and
Niethammer [27] proposed DeepAtlas, to jointly learn the
weakly supervised image registration and semisupervised
image segmentation. 0e segmentation model is customized
from a light 3D U-Net design with smaller feature size to
accommodate the limitation of GPU memory.

2.5D multiplanar CNN allows combining 3D spatial
information from several orthogonal image planes [51]. Lee
et al. [71] performed a state-of-the-art bone-cartilage seg-
mentation to extract the cartilage by removing the bone
masks from the bone-cartilage complex. 2.5D segmentation
is done by averaging the multiple segmentation masks on
different plans with majority voting.0e BCD-Net proposed
results with a DSC score of 98.1% and 83.8% for femoral and
tibial cartilages.

6.2. Segmentation of the Knee Bone. 0e authors of [1, 18]
demonstrated that bone shape can be used as a predictive
OA biomarker. 0e femur, tibia, and patella are converted
into 2D spherical maps separately and then fused to form a
three-channel image as an input into the classification
model. Martinez et al. [1] modified a 3D V-Net architecture
to predict OA incidence based on bone shape only. ResNet
is utilized in the classification model as it outperformed
other architectures with lower training parameters. Mar-
tinez et al. [18] concluded that integrating demographic
data with bone shape features improves OA prediction
accuracy.

6.3. Classification. 0ere are relatively limited studies on 3D
classification tasks, and the tasks are mostly based on MR
images. A summary of 3D CNN-based classification ap-
proaches in the OA field is displayed in Table 8.

Tolpadi et al. [21] introduced 3D DenseNet to perform
OA severity prediction and TKR prediction from MRI
images. 0is is the first study to apply 3D CNN to predict
TKR, based on OA severity. 0is study demonstrated that
3D MR image input outperformed 2D radiography image
input in the model. As MRI allows visualization of soft
tissues, it contributes to a better pipeline performance, as the
biomarkers of TKR identified are the medial patellar reti-
naculum, gastrocnemius tendon, and plantaris muscle,
which is more complex than that of determining OA pro-
gression. 0e model’s AUC improved significantly when
nonimaging data are included in the classification pipeline.

Pedoia et al. [20] demonstrated detection of meniscus
and cartilage lesions to classify OA severity using full CNN.
Automated segmentation of menisci and cartilages were
done using 2D U-Net and were fed into 3D CNN lesion
severity classifiers. Unlike the study in [20] that utilizes 2D
CNN, Nunes et al. [19] applied two 3D V-Net approaches to
optimize 11 class segmentation tasks. 0e study in [19] has
attempted a novel multitask OA lesion detection approach
by combining 2 3D-CNN DL classification models to
identify cartilage lesions (CLs) and bone marrow edema
lesions (BMELs) simultaneously.0emodel outputs a 3 class
WORMS model after integrating demographics into the
model. Both the studies [19, 20] used high-resolution 3D fast
spin-echo (FSE) CUBE sequence and showed optimal
performance by including demographics.

Not only in the field of OA, 3D CNN has also been
applied in detecting anterior cruciate ligament (ACL) in-
juries from MR images [72]. Moreover, ACL damage has
been known to be a high-risk factor of knee OA. Zhang et al.
[72] have demonstrated that 3D DenseNet outperformed
VGG16 and ResNet due to its low complexity and excellent
anti-overfitting performance.

Table 7: Continued.

Publication
reference

Region of
interest

Modality
(imaging
sequence)

Data set Network
architecture Performance

Xu and
Niethammer
[27]

FC, TC, FB, TB MRI
OAI: 507 images (200
training, 53 validation,

254 testing)
DeepAtlas

DSC± SD: 97.70± 0.65 (FB,
TB),81.19± 3.47 (FC, TC),

89.45± 1.91 (FB, TB, FC, TB)

Lee et al. [71] FC, TC MRI (T1-
weighted SPGR)

SKI10: (60 training, 40
validation) images BCD-Net DSC± SD: 97.3± 1.9 (FB), 84.4± 4.1

(TB), 98.1± 1.1(FC), 83.8± 5.3(TC)

Martinez et al.
[1] FB, TB, PB MRI (3D-DESS)

OAI: 40 images (25
training, 5 validation, 10

testing)
3D V-Net DSC: 97.15% (FB), 97.28% (TB),

95.99% (PB)

Martinez et al.
[18] FB, TB, PB MRI (3D-DESS)

OAI: 40 images (25
training, 5 validation, and

10 testing)
CNN DSC: 88.9%–95.2% (FB), 87.0%–

95.8% (TB), 85.1%–92.2% (PC)

Note. Region of interest: femoral cartilage (FC), tibial cartilage (TC), patellar cartilage (PC), femur bone (FB), tibia bone (TB), and patella bone (PB); modality
(imaging sequence): computed tomography (CT) and magnetic resonance imaging (MRI); data set: Osteoarthritis Initiative (OAI); network architecture:
statistical shape modelling (SSM) and convolutional neural network (CNN); performance: Dice similarity coefficient (DSC), specificity (SP), sensitivity (SN),
average symmetric surface distance (ASD), and standard deviation (SD).
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7. Discussion

In the past few years, deep learning emerged as a popular
field of research in academia, especially in the field of
medical imaging. In this work, we provided updates on the
application of various CNN approaches in segmentation and
classification models. Numerous publications on CNN
models in the OA research have been either used alone or
combined with other strategies such as non-CNN or SSM.
Integrated approaches have shown to achieve excellent re-
sults, showing that it is good to combine different techniques
to improve the CNN performance.

From our review, it is obvious that most studies utilize
plain radiography as their architecture input for classifying
OA. However, changes in the knee joint are multidimen-
sional; hence, a 3D image will provide a better representation
of the joint changes than 2D images. In addition, one of the
key indicators of OA progression involves delineation of

articular cartilages (femoral cartilage, tibial cartilage, and
patellar cartilage), which is not visible on plain radiography.
0e 3D morphology and qualitative assessment of the
cartilages play an important role in the evaluation of OA
[70].

Despite MRI being the ideal modality for OA assessment
considering its excellent soft tissue contrast that enables
advanced 3D biomarker cartilage visualization, there is a
lack of MRI-based 3D CNN application for OA diagnosis
[20, 21]. We observed that the publication on MRI-based
classification models are limited as well, which might be due
to the lack of recognition or feasibility of the MRI-based
grading as compared to the KL-grade which is widely used in
clinical practice. 0e MOAKS and WORMS scoring are
based on multifeature of the MR images, which provide a
more reliable evaluation of the whole knee joint. Hence, the
use of 3D MRI approach in clinical practice and research
should be encouraged. One of the reasons that this technique

Table 8: Summary of 3D CNN classification approaches.

Publication
reference Target tasks

Modality
(imaging
sequence)

Data set Network
architecture Performance

Tolpadi et al.
[21]

Predict total knee
replacement

MRI (3D-
DESS)

OAI: 4790 subjects
(3114 training, 957
validation, 719

testing)

DenseNet-
121 AUC± SD: 0.886± 0.020

Pedoia et al.
[20]

Detect and stage severity of
meniscus and

patellofemoral cartilage
lesions

MRI (3D-FSE
CUBE)

1478 images
(training : validation :
testing: 65 : 20 :15%)

3D CNN

AUC± SD: 0.89 (menisci), 0.88
(cartilage); SN: 89.81% (menisci),
80.0% (cartilage); SP: 81.98%
(menisci), 80.27% (cartilage)

Nunes et al.
[19]

Stage severity of cartilage
lesion

MRI (3D-FSE
CUBE)

1435 images
(training : validation :
testing: 65 : 20 :15%)

3D CNN Accuracy: 86.7%

Zhang et al.
[72]

Detect anterior cruciate
ligament lesion

MRI (PDW-
SPAIR)

(285 training, 81
validation, 42 testing)

images
3D DenseNet AUC: 0.960; accuracy: 0.957; SN:

0.944; SP: 0.940

Note.Modality (imaging sequence): magnetic resonance imaging (MRI); data set: Osteoarthritis Initiative (OAI); network architecture: convolutional neural
network (CNN); performance: specificity (SP), sensitivity (SN), area under receiver operating characteristics curve (AUC), and standard deviation (SD).

(a) (b) (c)

Figure 7: Example of 3D cartilage segment visualization results, with (a, b) sagittal views and (c) segmented cartilages (adapted from [70]).
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has not gained followers among the end users is the com-
putational complexity.

Analysing the knee joint in a 3D view displays an accurate
3D structure of the joint, especially the articular cartilage, for a
better visualization of OA diseases. 3D MR images alone
might contain nonimaging data prediction such as pain ex-
perienced. It is also proven that 3D MR images result in a
better pipeline performance than 2D radiographs, with higher
sensitivity and specificity especially in early OA detection [21].
However, recent studies focused on 2D CNN architectures or
adopting only subvolume of 3D images into 3D CNN as a
compromise to the poor availability of computation size and
limited GPU memory [28]. As 3D MR images are usually of
high resolution and large size, simple adaptation of archi-
tectures might be inapplicable to 3D CNN [21]. Increasing
complexity of the model might enhance the performance, but
it will cause the training of the model to be computationally
heavy and the cost of computation to be expensive. Although
3D CNN is more computationally challenging [64], 3D CNN
models show similar accuracy to the experts in computer-
aided diagnosis performance [68]. Hence, future research can
investigate the optimization of 3D CNNs by reducing the
architecture’s complexity and the training parameters. 0ere
is also potential advancement of the performance, by training
the model well with optimal learning parameters. In addition,
recently, there is a memory-efficient solution for 3D image
segmentation that has been proposed by Heinrich et al. [73]
which may contribute to the emergence of more 3D CNN
research studies [67].

8. Discussion

Artificial intelligence has shown excellent similarity with
human experts in performance of detection and classifica-
tion applications of OA diagnosis, especially deep learning
where it intelligently learns the features directly from the raw
data. It will be an open challenge on 3D CNN using MRI
images in OA diagnosis. First, there are various types of 3D
MRI sequences which have been used across different
studies, which make direct comparisons of the approaches
inapplicable as MRI sequence may affect the results obtained
[20]. 0is makes the comparison between studies and their
approaches difficult. Second, there is a lack of a large-scale
ground truth [8]. Ground truths are manually annotated
medical images by experts used to assess the performance of
the computational model. A limited amount of ground
truths might lead to overfitting of the model. A potential way
to eliminate the need of well-segmented ground truth images
by experts is to replace well-segmented ground truth images
with region-based ground truth images. Region-based
ground truth images are easier to obtain because splitting
into subcropped images is simpler than performing pixel-
wise segmentation [74]. Finally, it is the lack of a standard
database as different databases might affect the accuracy
resulting from the model [28]. To overcome the problem, the
availability of public databases such as OAI, which has been
widely used, contains enormous datasets that are suitable for
future studies to compare their models. However, to ensure
general applicability of the model, it is encouraged to adopt

images from independent datasets to be included in the
testing dataset of any DL model [36].

9. Conclusions

0is study reviews the evolution of deep learning from 2D to
3D as a promising tool for computed-aided diagnosis for the
knee osteoarthritis disease. 0e conventional approach to
diagnose osteoarthritis is by examining medical images
visually where manual assessment makes it difficult to
identify the slightest progression of early-onset osteoar-
thritis. 0is is where the role of artificial intelligence comes
in. In conclusion, deep learning holds significant promise in
the development of osteoarthritis clinical decision aid.

As revealed by the literature above, CNN in medical
imaging research has advanced significantly in recent years
and has shown great potential in OA diagnosis. With the
expanding availability of advanced computational power
and data availability, 3D deep learning may greatly enhance
the early diagnosis of knee osteoarthritis. 0is is significant
in osteoarthritis diagnosis since a three-dimensional image
allows the assessment of the knee joint from different planes
and offers precise information of the disease’s modest
progression. However, to develop a robust and generalized
3D CNN in diagnostic application is still a challenging task
and remains an open research area, not only considering the
accuracy of the model but also the computational efficiency.
Even though the application of 3D CNN is still in a pre-
liminary phase, we envisioned that the development of 3D
CNN methods based on MR images will offer better un-
derstanding on the progression of the OA disease, especially
on early detection of OA in the knee joint. 0e future of
clinical practice may utilize 3D automated clinical appli-
cations to embrace new possibilities, not only to detect
biomarkers but also to show excellent performance on par
with clinical experts in early detection of OA.
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