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Gas hydrate dissociation off Svalbard induced by
isostatic rebound rather than global warming
Klaus Wallmann1, M. Riedel 1, W.L. Hong 2,3, H. Patton 3, A. Hubbard 3,4, T. Pape5, C.W. Hsu5,

C. Schmidt1, J.E. Johnson6, M.E. Torres7, K. Andreassen3, C. Berndt 1 & G. Bohrmann 5

Methane seepage from the upper continental slopes of Western Svalbard has previously

been attributed to gas hydrate dissociation induced by anthropogenic warming of ambient

bottom waters. Here we show that sediment cores drilled off Prins Karls Foreland contain

freshwater from dissociating hydrates. However, our modeling indicates that the observed

pore water freshening began around 8 ka BP when the rate of isostatic uplift outpaced

eustatic sea-level rise. The resultant local shallowing and lowering of hydrostatic pressure

forced gas hydrate dissociation and dissolved chloride depletions consistent with our geo-

chemical analysis. Hence, we propose that hydrate dissociation was triggered by postglacial

isostatic rebound rather than anthropogenic warming. Furthermore, we show that methane

fluxes from dissociating hydrates were considerably smaller than present methane seepage

rates implying that gas hydrates were not a major source of methane to the oceans, but

rather acted as a dynamic seal, regulating methane release from deep geological reservoirs.
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Vast amounts of methane are bound in gas hydrates that
accumulate in seafloor sediments across continental
margins. These ice-like solids are stable under high pres-

sure/ low temperature conditions but dissociate under ocean
warming or relative sea-level lowering. The global gas hydrate
inventory totals some 1000 billion metric tons of carbon1, the
decomposition of which would affect carbon cycling and climate
on the global scale2–4. Hence, hydrate dissociation has been
invoked to explain many observations, such as the Paleocene-
Eocene Thermal Maximum2 and the rapid postglacial increase in
atmospheric methane5. Whereas seafloor methane emissions and
the associated formation of 13C-depleted carbonates have been
ascribed to hydrate dissociation6–8, direct evidence for the latter
process is still conspicuously lacking. Nevertheless, it is argued
that a positive feedback associated with methane release from
widespread hydrate dissociation could amplify future global
warming4.

Observed methane seepage from the upper continental slope of
northwestern Svalbard at ~ 400 m water depth has been attrib-
uted to gas hydrate dissociation induced by warming of ambient
bottom waters and postulated as the onset stage of this future
trend7. Numerical modeling studies support this hypothesis since
numerous seepage sites are located at the up-dip limit of the gas
hydrate stability zone where a moderate rise in ambient bottom
water temperature would induce hydrate decomposition9. How-
ever, gas hydrates have never been sampled from the upper slope
margin off northwest Svalbard, and dating of authigenic carbo-
nates associated with the methane seeps reveals that seepage has
been active for at least 3000 years8. Moreover, methane seepage is
also known to prevail at depths shallower than the hydrate sta-
bility zone10, 11 and a hydrate-bearing seep area south of Svalbard
shows limited influence from short-term ocean warming12.
Hence, methane seepage from the seafloor may not originate
from dissociating gas hydrates but from free gas that migrates to
the seafloor along high-permeability stratigraphic or structural
conduits10.

Here, we present the first geochemical data that unequivocally
confirm gas hydrate dissociation in sediments cored off Western
Svalbard. We find remnant freshwater from hydrate dissociation
that was formed over the last 8000 years when isostatic rebound

induced by the deglaciation of the Barents Sea ice sheet outpaced
eustatic sea-level rise. Furthermore, we find that seafloor methane
seepage subsequently increased because the permeability of
sediments was enhanced by the decay of hydrates that previously
clogged the pore space, thereby enhancing methane release from
underlying geological reservoirs.

Results
Sampling. During R/V MARIA S. MERIAN cruise MSM57 in
August 2016, sediment cores were recovered using the MARUM-
MeBo70 drill-rig and a conventional gravity corer (GC) at the
upper slope off northwestern Svalbard where numerous gas flares
were previously identified (Fig. 1)11. A micro-temperature logger
(MTL, Antares type 1854) was modified to fit into the core pilot
tube to measure in situ formation temperature during MeBo
deployments. The cores were analyzed for porosity while dis-
solved chloride and sulfate concentrations were determined in
pore fluids separated from the bulk sediment (as outlined in the
methods section).

Sediment and pore water composition. Sediments in the
recovered cores are mixed hemipelagic to glaciomarine deposits
composed of a wide range of grain sizes from clay to sand with
variable amounts of gravel to pebble-sized rocks. They were
deposited by ice-rafting and/or as glacial debris flows associated
with nearby trough-mouth-fan deposition13 and bottom current
activity14 on the upper slope during the Late Pleistocene. Our
measurements indicate a down-core temperature increase asso-
ciated with a geothermal gradient of 45–50 °C km−1 and a general
decline in porosity, dissolved chloride and sulfate with sediment
depth (Fig. 2). Porosity profiles reflect compaction and random
grain size variations with low-porosity sections dominated by
sand/boulder intervals and high-porosity layers associated with
significant clay/silt contents. Sulfate is removed from the pore
water by microbial sulfate reduction and the anaerobic oxidation
of methane (AOM). Elevated sulfate concentrations below 5m
sediment depth detected in cores GeoB21632-1 and GeoB21639-1
are probably artifacts caused by the intrusion of sulfate-bearing
seawater that was employed as drilling fluid and penetrated into
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Fig. 1 Location of coring sites and gas flares. Gas flares (blue dots) were identified during a previous cruise11. Locations are listed in Supplementary Table 1
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permeable sediment layers. Dissolved inorganic carbon is
strongly depleted in 13C at the base of the sulfate-bearing zone
(Supplementary Fig. 1). The significant negative δ13C values
(−40‰) are driven by AOM15 rather than the degradation
of organic matter16. The down-core increase towards positive
δ13C-DIC values (up to + 17‰) may reflect active methanogen-
esis via CO2 reduction leaving behind a residual dissolved inor-
ganic carbon (DIC) pool enriched in 13C15. The isotopic
composition of methane at the base of the cores (−53‰) is
characteristic for biogenic gas containing a small but significant
admixture of thermogenic methane from deeper sources17. It is
similar to the isotopic composition of gas seeping from the
seabed11, 16 and gas bound in methane hydrates sampled at 890 m
water depth18.

Dissolved chloride decreases significantly with sediment depth
(Fig. 2). None of the drill cores contained gas hydrates and
measurements with an infrared camera conducted within 1 h after
core retrieval showed no negative temperature anomaly indicative
for endothermic gas hydrate dissociation19. The in situ tempera-
ture measurements clearly show that methane hydrate was not
stable in the cores taken at 391 m water depth, whereas at 404 m
only the uppermost sediment section was located within the gas
hydrate stability zone during the time of sampling (Fig. 3)20.
Hence, we conclude that the observed chloride depletion is not an
artifact caused by gas hydrate dissociation upon core retrieval but
rather indicates in situ admixture of freshwater. The isotopic
composition (δ18O, δ2H) of the pore fluids and their lithium and
boron content (Supplementary Figs. 2 and 3) indicate that the
freshwater indeed originates from gas hydrate dissociation21 that
occurred when temperatures increased to their present level and/
or the pressure was reduced by a marine regression (Supplemen-
tary Discussion).

Discussion
Using a transport-reaction model (details in methods section) we
investigate potential scenarios of hydrate dissociation that are
consistent with the geochemical variations observed within the
boreholes. The 400 m deep seabed at the continental margin off
northwestern Svalbard is primarily influenced by North Atlantic
water22. The temperature of this relatively warm bottom water is
highly variable and affected by the strength of the Atlantic inflow
via the European Nordic Seas into the Arctic Ocean23. Tem-
perature measurements conducted in the area over the last 30
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years indicate mean summer values (May–October) of 2.7 °C at
400 m water depth with an interannual variability of± 1 °C7.
Summer temperatures have increased by 1 °C over the last 30
years7. However, a 60-year record of bottom water summer
temperatures off northwestern Svalbard at 360–400 m water
depths reveals a cooling trend from 1950 to 1980 followed by a
temperature rise until 201022. Hence, it is unclear whether the
bottom water warming observed during the last decades is due to
natural variability23 or anthropogenic forcing. Continuous tem-
perature monitoring at 390 m water depth over a period of almost
2 years reveals strong seasonality, with minimum temperatures of
2–2.5 °C during May to June, maximum temperatures of 3.5–4 °C
during November to December, and a mean annual temperature
of 2.9± 0.5 °C for the year 20118. Considering these observations,
we conducted a series of model experiments to investigate the
response of hydrates at the seabed in 391 m water depth to
ambient bottom water warming.

Specifically, we model the evolution of a hydrate layer
extending from 10 meters below the seafloor (mbsf) to the base of
the hydrate stability zone located at 28 mbsf for an initial bottom
water temperature of 2 °C and a geothermal gradient of 45 °C km
−1 (Fig. 4b). The model was forced by a linear ambient tem-
perature increase from 2 °C in 1980 to 3 °C in 2010 superimposed
over the observed seasonal cycle (Fig. 4a). Model results
demonstrate that the conduction of heat through the sediment
column (Fig. 4c) induced melting at the base of the hydrate
stability zone as shown by the chloride depletion at 28 mbsf
(Fig. 4d). However, the modeled chloride depletion is much
smaller than that observed because hydrate melting in the mod-
eled scenario is limited by slow heat conduction and mitigated by
the endothermic dissociation reaction9. Additional model
experiments conducted under alternative initial hydrate

distributions also critically fail to reproduce freshening over the
scales observed in our core data (Supplementary Fig. 4). Essen-
tially, the modeling demonstrates that more time and energy are
required to yield the down-core pore water freshening. Hence, we
conclude that the observed chloride depletion has not been
produced by bottom water warming during the past three
decades.

Surface temperatures at <200 m water depth peaked during the
early Holocene (8–11 ka) throughout the Nordic seas including
the area off northwestern Svalbard24–26. This thermal optimum
was followed by slow cooling resulting in constantly low tem-
peratures over the last few thousand years26. It is not known
whether these surface trends also apply to bottom waters in our
study area. A sediment core taken at 327 m water depth yields a
trend similar to that at the surface when benthic foraminiferal
δ18O data are used to reconstruct ambient bottom water tem-
peratures26. However, a well-calibrated benthic transfer function
applied to the same core does not show the early Holocene
maximum but indicates that bottom water temperatures were
constant over the entire Holocene26. Nevertheless, we applied our
model to investigate whether gas hydrate dissociation possibly
induced by the early Holocene optimum might explain the
observed chloride depletion (Supplementary Fig. 5). Subsurface
temperatures (100–200 m) and bottom water temperatures (327
m) calculated from foraminiferal δ18O26 were employed to define
the model forcing. Bottom water temperatures were assumed to
rise from an initial value of 2.15 °C at 13 ka to a maximum of 4.8 °
C during the early Holocene. A hydrate layer extending from 16
meters below seafloor (mbsf) to 20 mbsf was assumed as the
initial condition. The simulations showed that the entire layer was
dissociated at 10.7 ka because of the heat that penetrated into the
sediment from above. The resulting chloride minimum was
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erased by molecular diffusion within a few thousand years.
Hence, it is unlikely that the observed pore water anomaly was
created by gas hydrate dissociation during the early Holocene.

Relative sea-level data from Prins Karls Forland27 and north-
western Svalbard28 clearly document a marine regression during
the Holocene, with a resulting drop in hydrostatic pressure that
could have induced gas hydrate dissociation. Our drill sites at the
upper continental slope are located ~ 50 km west of the coastal
sites where major changes in relative sea-level have been recor-
ded28. The upper slope was probably not covered by a grounded
glacial ice sheet. However, the northwestern rim of the ice sheet
was located on the adjacent shelf break at a distance of only 5–10
km from the upper slope drill sites during Late Glacial Maximum
conditions29. Considering the mechanical coupling between the
continental shelf and upper slope, it follows that the upper slope
experienced considerable isostatic depression during glacial con-
ditions and subsequent uplift after ice sheet retreat. We use

output from an isostatically coupled ice sheet model of the retreat
of the Barents Sea ice sheet30 to constrain the postglacial rebound
history in our study area on the upper continental slope off Prins
Karls Forland (Supplementary Fig. 6). Relative sea-level change
(Fig. 5a) was calculated from seabed uplift and eustatic sea-level31

and applied as forcing for our sediment model to investigate
whether the chloride depletion observed in the slope cores can be
better explained by isostatic rebound.

Model experiments were conducted for 391 and 404 m water
depth under a wide range of initial gas hydrate saturations to
determine the optimal scenario depicted in Figs. 2 and 5. The
experiments commence at 8 ka when the relative sea-level was 12
m higher than present and the model is forced by a decline in
hydrostatic pressure determined from relative sea-level change
(Fig. 5a). It is initially assumed that a gas hydrate-bearing sedi-
ment layer is present at the base of the gas hydrate stability zone
(Fig. 5c, d) and that the chloride excluded during hydrate
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accumulation has previously diffused away. The subsequent
decline in hydrostatic pressure induces an upward movement of
the hydrate stability zone and hydrate dissociation at its base.
Dissolved chloride concentrations decrease because dissociating
hydrates release freshwater into the pore space (Fig. 5e, f). The
upward displacement of the stability zone and the corresponding
hydrate dissociation are mitigated by a coeval decline in salinity
and temperature induced by the dissociation process itself that
consumes heat and releases freshwater into the pore space32. Even
though gas hydrates are stabilized by these negative feedback
mechanisms, the dissociation front migrates upward and the
hydrate layer is eroded from the bottom until the ongoing
reduction of hydrostatic pressure induces complete dissociation
of the hydrate layer. The resulting chloride minimum is sig-
nificantly broadened over time through molecular diffusion. The
final dissolved sulfate profile is controlled by upward diffusion of
dissolved methane that consumes sulfate via AOM33 (Fig. 5b).
Dissolved methane in deep sediments is saturated with respect to
free gas because gaseous methane fills part of the pore space
initially occupied by gas hydrates at the end of the simulation.

In these model experiments, ambient bottom water tempera-
ture is maintained at a constant value of 2.5 °C until 0.1 ka when
the temperature is allowed to rise exponentially to attain its
modern value of 3.0 °C (Supplementary Fig. 7). Bottom water
heating at the end of the simulation period is required to attain a
final temperature profile consistent with the data (Fig. 2). How-
ever, we note that the heating applied over the last 100 years of
the experiment resulted in no further dissociation because
hydrates were already fully decomposed by seabed uplift and
pressure reduction prior to this final episode of warming.

According to our transport-reaction model, most of the dis-
sociated methane hydrate inventory (5483 mol m−2) was released
as free gas into the water column (4944 mol m−2) at 391 m water
depth. The remaining portion was dissolved in pore fluids and
consumed by AOM. The calculated methane release corresponds
to an annual mean flux of 0.6 mol m−2 yr−1 averaged over the
model time-period. This gas flux should be regarded as a max-
imum estimate because the model does not consider the dis-
solution of gas bubbles in surface sediments. During the summer
of 2012, a mean methane gas bubble flux of 1–13 mol m−2 yr−1

was measured in our study area (Fig. 1)11. These fluxes that are
fed by a sub-seabed methane gas reservoir8, 10 exceed the fluxes
that were induced by postglacial gas hydrate dissociation by an
order of magnitude (Fig. 6). We propose that gas flow from the
deep reservoir would have been largely blocked in the past by the

gas hydrate layer that explains our observed chloride profiles.
Within this 4 m thick layer, over 60% of the pore space was
occupied by gas hydrate prior to the onset of dissociation
(Fig. 5c). Such high saturations can reduce sediment permeability
by up to two orders of magnitude34, 35. Hence, geologically
derived gas fluxes into the water column are higher on the shelf
and upper continental slope but decrease in deeper waters where
hydrates are stable and provide a barrier to ongoing
seepage10, 36, 37. This down-slope trend has been attributed to the
sealing of permeable sediments by gas hydrate formation36. It has
also been proposed that a portion of the gas flow is not perma-
nently blocked but diverted up-slope until it reaches the up-dip
limit of the hydrate stability zone where it seeps into the ocean7.

Our analysis of sediment cores of Western Svalbard unam-
biguously confirms that retreat of the Barents Sea ice sheet led to
offshore gas hydrate dissociation, a process that has been widely
speculated upon from modeling and geological
observations3, 5, 38–41 but up until now, has remained unproven.
Furthermore, combined modeling and geochemical analysis
reveals that methane hydrates at the up-dip limit of the hydrate
stability zone decomposed via postglacial isostatic rebound in
contrast to previous hypotheses that invoke anthropogenic bot-
tom water warming7, 9. Our data and model results also show that
gas hydrates are not in themselves a significant source for gas
release at the seabed. Rather, they act as a dynamic seal that
blocks fluid-flow pathways for gas migration from deep geological
reservoirs. Previous estimates of seafloor methane emissions by
ongoing and future gas hydrate decomposition consider gas
released from hydrates but ignore the potentially more significant
increase in flux from underlying gas reservoirs upon hydrate
dissociation6, 23, 42. Hence, the impact of future seabed methane
fluxes on global environmental change may yet be under-
estimated, and further research is required to quantify the flux
from deep natural gas reservoirs amplified by deterioration of the
overlying hydrate seal.

Methods
Analytics. Sediment samples recovered by MeBo drilling and gravity coring were
transferred into the vessel’s cold lab where a squeezer equipped with 0.2 µm filters
was employed to separate pore fluids, applying argon pressures of 1–5 bar. Pore
fluids were analyzed for chloride in the on-board laboratory applying argento-
metric titration as described at http://www.geomar.de/en/research/fb2/fb2-mg/
benthic-biogeochemistry/mg-analytik/. Sub-samples were taken and preserved for
later on-shore analyses. Ion-chromatography (IC) was employed to determine
anion concentrations (Cl−, SO4

2−), whereas inductively coupled plasma atomic
emission spectroscopy (optical ICP) was used to determine dissolved metal con-
centrations (lithium, boron). Dissolved chloride was determined by titration and
IC. These two independent methods produced almost the same concentrations
deviating in most cases by <1%. Chloride concentrations reported hereafter refer to
the mean of these two measurements. IC measurements revealed that some of the
pore water samples were contaminated by seawater employed as drilling fluid.
Sulfate concentrations were used to correct for seawater admixture using the fol-
lowing two-component mixing equation:

CPW ¼ CM � CSW � fSW
1� fSW

ð1Þ

where CPW is the in situ pore water concentration, CM the concentration measured
in samples affected by seawater admixture, CSW the concentration in seawater, and
fSW the fraction of seawater in the sample. The seawater fraction (fSW) was cal-
culated as:

fSW ¼ CS�M

CS�SW
ð2Þ

where CS-M is the sulfate concentration measured in seawater-affected samples and
CS-SW is the sulfate concentration in seawater used as drilling fluid (CS-SW = 28.93
mM). This approach was applied to samples taken below the sulfate penetration
depth only, because it assumes that the original pore water contains no sulfate.
Figure 2 shows the corrected chloride concentrations. Severely contaminated
samples containing more than 10 mM sulfate were discarded.

About 5 ml of wet sediment were collected at each sampled sediment depth for
the analysis of sediment porosity. Porosity was determined as volume of pore water
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Fig. 6 Methane gas fluxes from sediments into the overlying bottom water.
Modeled fluxes induced by gas hydrate dissociation at 391 and 404m over
the last eight thousand years are compared to the area-averaged range of
methane gas fluxes measured at active seeps (vertical bar) in our study
area (Fig. 1)11
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per volume of wet sediment by weight difference before and after freeze-drying
assuming a dry density of 2.5 g cm−3 and a pore water density of 1.023 g cm−3.

Stable oxygen and hydrogen isotope ratios (18O/16O, 2H/1H) of water were
analyzed by an automated equilibration unit in continuous flow mode (Gasbench
2) coupled to a Delta plus XP isotope ratio mass spectrometer (Thermo Fisher
Scientific). Isotopic ratios are reported in δ-notation in parts per thousand (‰)
relative to the VSMOW standard. Samples were measured in duplicates and the
reported value is the mean value. External reproducibility based on repeated
analyses of a control sample was better than 0.1 and 1‰ for δ18O and δ2H,
respectively. Stable carbon isotope ratios (13C/12C) of dissolved CH4 (“headspace
technique”) and DIC were determined by GC-isotope ratio mass spectrometry.
Stable carbon isotopic ratios are reported in δ-notation in ‰ relative to the V-PDB
standard (mean of at least two analytical replicates). Standard deviations of
triplicate stable isotope measurements were <0.5‰.

Geochemical modeling. A simple numerical model was set up to evaluate the pore
water data. It uses concepts developed in previous transport-reaction models35, 43.
The model calculates fractions of bulk volume occupied by pore water, methane
gas, methane hydrate, and sediment grains. It considers that gas hydrates and gas
bubbles fill the pore space without supporting the grain structure such that the
porosity is not affected by hydrate dissociation. Steady state compaction is con-
sidered and the resulting exponential down-core decrease in porosity is prescribed
with measured porosity data. Moreover, it is assumed that the excess pressure and
volume created by hydrate dissociation induces rapid gas bubble ascent and gas
seepage at the sediment surface as observed in the study area. Fluid flow is ignored
and gas transport is treated as a non-local process that removes gas from the
sediment column directly into the overlying water column to conserve the total
sediment volume and maintain hydrostatic pressure in the sediment column. Phase
densities change with sediment depth but are assumed to be constant over time.
The model simulates temperature, and the dissolved components chloride, sulfate
and methane, the endothermic dissociation of gas hydrate into freshwater and free
gas, the dissolution of gas hydrates and gas bubbles in ambient pore fluid and
AOM. Dissolved chloride is an inert tracer that is transported in the water phase by
molecular diffusion only, whereas dissolved sulfate and methane are consumed by
AOM. Mass balance equations for the three phases hydrate, gas, and pore water are
formulated as:

∂ ρH � fH
∂ t

¼ �MH � RM þ RHDð Þ ð3Þ

∂ ρG � fG
∂ t

¼ MG � RM � RGD � REXð Þ ð4Þ

∂ ρW � fW
∂ t

¼ þnHW �MH2O � RM þMH � RHD þMG � RGD ð5Þ

where fi (i =H, G, W) are the fractions of bulk sediment volume occupied by
methane hydrate (H), methane gas (G), and pore water (W), ρi are the corre-
sponding phase densities, MH, MG, and MH2O are the molar masses of methane
hydrate (MH = nHW MH2O +MG), methane gas (MG = 16 g mol−1) and water
(MH2O = 18 g mol−1), nHW is the number of water molecules per molecule of
hydrate (nHW = 6), RM is the molar rate of hydrate dissociation, RHD the rate of
hydrate dissolution, RGD the methane gas dissolution rate, and REX the rate of gas
bubble expulsion.

The mass balance for dissolved chloride is formulated as:

∂ fW � CCl

∂ t
¼ ∂

∂ z
fW � DCl � ∂CCl

∂ z

� �
ð6Þ

where CCl is the concentration of dissolved chloride in the water phase and DCl is
the effective diffusion coefficient of dissolved chloride in the pore volume occupied
by water. Archie’s law is applied to consider the effects of tortuosity on molecular
diffusion in porous media. Thus, DCl is calculated as:

DCl ¼ DMCl

f 1�m
W

ð7Þ

where DMCl is the molecular diffusion coefficients of chloride in seawater and m
takes a value of 244. Mass balance equations for dissolved methane and sulfate are
defined correspondingly:

∂ fW � CCH4

∂ t
¼ ∂

∂ z
fW � DCH4 � ∂CCH4

∂ z

� �
þ RGD þ RHD�fW � RAOM ð8Þ

∂ fW � CSO4

∂ t
¼ ∂

∂ z
fW � DSO4 � ∂CSO4

∂ z

� �
� fW � RAOM ð9Þ

where RAOM is the rate of anaerobic methane oxidation while DCH4 and DSO4 are
the diffusion coefficients of methane and sulfate in pore water. The molecular
diffusion coefficients are calculated as function of sediment temperature45.

Reaction rates and concentrations of dissolved tracers are given in molar units.
Concentrations and rates of anaerobic methane oxidation (RAOM) refer to the pore
water volume while the rates of hydrate dissolution (RHD), gas bubble dissolution
(RGD), hydrate dissociation (RM), and gas expulsion (REX) are formulated with
respect to the bulk sediment volume.

The following energy equation is employed to simulate heat flow considering
heat consumption during hydrate melting and multiphase conduction43, 46:

∂
∂ t

CV � Tð Þ ¼ ∂
∂ z

K0 � ∂T∂ z
� �

� rT � RM ð10Þ

where T is temperature, CV is the volumetric thermal heat capacity of the solid-
water-hydrate-gas mixture, K0 is the effective thermal conductivity and rT is the
energy consumption during hydrate dissociation (53.8 × 103 J mol−1). K0 and CV

are defined as:

K0 ¼ KfS
S � KfH

H � KfW
W � KfG

G ð11Þ

CV ¼ fS � CS þ fH � CH þ fW � CW þ fG � CG ð12Þ

where the thermal conductivities and heat capacities of the individual phases are
assumed to be constant over depth and time (CS = 0.78 J cm−3 K−1, CW = 4.31 J cm
−3 K−1, CH = 1.82 J cm−3 K−1, CG = 2.23 J cm−3 K−1, KS = 1.58 × 106 J cm−1 K−1 yr−1,
KW = 1.83 × 105 J cm−1 K−1 yr−1, KH = 1.61 × 105 J cm−1 K−1 yr−1, KG = 1.01 × 104 J
cm−1 K−1 yr−1).

Molar rates of hydrate dissociation (RM), gas hydrate dissolution (RHD), and gas
bubble dissolution (RGD) are defined as46, 47:

RM ¼ kM � fH � ρH
MH

�Max 1� PHY

PD
; 0

� �
ð13Þ

RHD ¼ kHD � fH � ρH
MH

�Max 1� CCH4

CCH4�H
; 0

� �
ð14Þ

RGD ¼ kGD � fG � ρG
MG

�Max 1� CCH4

CCH4�G
; 0

� �
ð15Þ

where kM, kHD, and kGD are kinetic constants (in yr−1), PD is the dissociation
pressure of hydrate, CCH4-H is the concentration of dissolved methane at
equilibrium with methane hydrate, and CCH4-G the concentration of dissolved
methane at equilibrium with methane gas. According to these rate definitions,
hydrates dissociate when PD exceeds the ambient hydrostatic pressure (PHY),
whereas gas hydrate and gas dissolve when the ambient concentration of dissolved
methane (CCH4) is lower than the corresponding equilibrium value. PD is calculated
for each time step as a function of changing sediment temperature and pore water
salinity (dissolved chloride concentration) applying a thermodynamic model20,

whereas PHY is continuously updated considering relative sea-level change. CCH4-H

and CCH4-G are calculated as a function of sediment temperature, salinity, and
hydrostatic pressure20 while the ambient methane concentration is calculated
solving the mass balance equation for dissolved methane. The kinetic constant for
gas hydrate dissociation is set to a sufficiently large value (kM ≥ 2 yr−1) such that the
rate of endothermic hydrate dissociation is limited by heat transfer rather than the
intrinsic kinetic properties of hydrate grains. The kinetic constants for hydrate and
gas dissolution employed in the model (kHD ≥ 1 yr−1, kGD ≥ 1 yr−1) ensure that
dissolved methane attains and maintains equilibrium with gas hydrate and gas in
sediment layers where these phases are present.

The rate of gas expulsion (REX) is governed by the following equation:

REX ¼ kEX � ρG
MG

� fS þ fH þ fG þ fW � 1ð Þ ð16Þ

The kinetic constant kEX is set to a sufficiently large value (≥1 yr−1) such that excess
gas is expelled from the sediment and the total volume of the sediment column is
conserved.

Methane is oxidized by microbial consortia using sulfate as terminal electron
acceptor48:

CH4 þ SO2�
4 ) HCO�

3 þHS� þH2O ð17Þ

The kinetic equation for this microbial reaction is defined as49:

RAOM ¼ kAOM � CCH4 � CSO4

CSO4 þ KSO4
ð18Þ

where kAOM is a kinetic constant and KSO4 is a Monod constant (KSO4 = 1 mM).
The AOM rate is controlled by the concentration of dissolved methane, whereas
dissolved sulfate is only rate-limiting when the sulfate concentration in the pore
water is smaller than 1 mM49. The value chosen for the kinetic constant (kAOM ≥ 1
yr−1) inhibits leakage of dissolved methane through sulfate-bearing surface
sediments.
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Initial gas hydrate contents were defined according to the dissolved chloride
depletion observed in the pore water data, whereas initial gas saturations were set
to zero. The initial temperature profile was defined applying a steady state heat flow
model that considers compaction and the corresponding increase in thermal
conductivity with sediment depth. Initial concentrations of dissolved chloride and
sulfate were set to ambient bottom water values while methane concentrations were
set to equilibrium values with respect to methane gas.

The upper boundary of the model column is located at the sediment-water
interface while the lower boundary was positioned at 100 mbsf. Hydrate, gas, and
water saturations and dissolved tracer concentrations were maintained at constant
values at the upper and lower boundary throughout the simulation. A constant
gradient, corresponding to the local geothermal gradient, was employed as lower
boundary condition for temperature.

Hydrostatic pressure (PHY) was reduced considering relative sea-level change. A
corresponding PHY change was applied over the entire model column. Gas hydrates
present in the model column were destabilized when the ambient dissociation
pressure (PD) exceeded the applied PHY value. Bottom water temperature was
allowed to increase over the last 100 years of the simulation and the heat was
transferred into the sediment column employing the heat flow model. The
temperature increase induced a rise in PD that led to gas hydrate dissociation if
ambient PHY was smaller than the resulting PD.

The model was set up in MATHEMATICA and solved using finite differences
and the method-of-lines approach as implemented in MATHEMATICA’s solver
for partial differential equations. The model has a resolution of 0.1 m in the top 30
m and a coarser resolution below. Mass balance calculations showed that masses
and energy were conserved within an error smaller than 0.1%.

Ice sheet modeling. The evolution of the Barents Sea ice sheet and associated
isostatic recovery of the Barents Sea continental shelf from the Last Glacial Max-
imum to present day is derived from a suite of model experiments carried out to
reconstruct dynamics of the Eurasian ice sheet complex30, 50, 51. The thermo-
mechanical ice model used is based on a higher-order solution to the equations
governing ice sheet flow and has been verified against benchmark experiments for
higher-order models52, tested against 3D flow observations at an alpine glacier53

and applied to a broad variety of past and present glacier and ice sheet scenarios to
investigate their response to environmental and internal forcing54–57. The model is
coupled to climate using a degree-day parameterization modified to include the
effects of high latitude sublimation under extreme continental conditions50, 58–61.
Model experiments are integrated through time on a finite-difference grid with a
resolution of 10 km, with climate forcing imposed by perturbations in the NGRIP
paleo isotope curve and a global eustatic sea-level curve used to determine ice
flotation and calving losses at marine-terminating margins31. Initial ice extent,
thickness and the loaded topography are inherited from a Mid-Weichselian
(Marine Isotope Stage 4) experiment, allowing sufficient spin-up time for the ice
sheet and isostatic loading to attain a transient equilibrium with the forcing climate
at the point of kick-starting Late Weichselian experiments at 37 ka BP.

Ice thickness, extent, and the timing of advance and retreat have been
constrained extensively throughout the ice complex by a diverse suite of empirical
data, including geomorphological, chronological, and geophysical datasets62–66,
honoring the broad interpretations of ice sheet history inferred from the geological
record. A relatively thick lithosphere of 120 km is predicted throughout the region,
with a relative insensitivity to lower mantle viscosity observed at all sites30. Isostatic
loading is calculated within the ice flow model using the commonly implemented
elastic lithosphere/relaxed asthenosphere scheme67, identified as a reasonable
approach in the absence of a full spherical earth model (Supplementary Fig. 6).
Relative sea-level was calculated as the difference between eustatic sealevel31 and
seabed elevation. Over 10–8 ka, the rapid rise in eustatic sea-level clearly outpaced
the slow postglacial rebound (Supplementary Fig. 6). These trends were reversed
after 8 ka when the global sea-level rise slowed down drastically while the seabed
kept on moving upwards. Hence, relative sea-level reached a maximum at 8 ka.

Data availability. All relevant data are available from the authors. This includes
the pore water (KW), heat flow (MR), porosity, and methane carbon isotope data
(GB, TP), DIC-carbon isotope data (MET) as well as the results and code of the
transport-reaction model (KW) and the results of the ice sheet model (HP).
Positions, descriptions, and photographs of cores are made publicly available
through the PANGAEA information system sustained by the World Data Center
for Marine Environmental Sciences (WDCMARE).
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