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Abstract

Arsenic is a ubiquitous contaminant and a toxic metalloid which presents two main redox states in nature: arsenite [AsIII]
and arsenate [AsV]. Arsenic resistance in Synechocystis sp. strain PCC 6803 is mediated by the arsBHC operon and two
additional arsenate reductases encoded by the arsI1 and arsI2 genes. Here we describe the genome-wide responses to the
presence of arsenate and arsenite in wild type and mutants in the arsenic resistance system. Both forms of arsenic produced
similar responses in the wild type strain, including induction of several stress related genes and repression of energy
generation processes. These responses were transient in the wild type strain but maintained in time in an arsB mutant
strain, which lacks the arsenite transporter. In contrast, the responses observed in a strain lacking all arsenate reductases
were somewhat different and included lower induction of genes involved in metal homeostasis and Fe-S cluster biogenesis,
suggesting that these two processes are targeted by arsenite in the wild type strain. Finally, analysis of the arsR mutant
strain revealed that ArsR seems to only control 5 genes in the genome. Furthermore, the arsR mutant strain exhibited
hypersentivity to nickel, copper and cadmium and this phenotype was suppressed by mutation in arsB but not in arsC gene
suggesting that overexpression of arsB is detrimental in the presence of these metals in the media.
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Introduction

Arsenic is an ubiquitous toxic metalloid and a human

carcinogen that causes serious health problems in many places

of the world where arsenic contents in drinking water are well over

the recommended limits [1]. Arsenic is present in two biologically

active forms, arsenate [AsV] and arsenite [AsIII], depending of the

redox potential of the environment. Arsenate is a phosphate

analog, enters the cells through phosphate transporters and its

toxicity is mediated by replacing phosphate in essential biochem-

ical reactions such as oxidative phosphorylation and glycolysis

[2,3,4,5]. The resulting arseno-compounds are extremely labile

and hydrolyze spontaneously at milliseconds rates making them

unable to be used by living organisms [2,3,4,5,6]. On the other

hand, arsenite enters the cell through aquaglyceroporins and

exerts its toxicity through binding to dithiols, forming arsenothiols

that perturb protein function and that ultimately generate reactive

oxygen species (ROS) [7,8,9,10]. Because of the high affinity for

sulfur, arsenite is able to bind to the main redox buffer in the cells,

glutathione (GSH) forming AsIII-GSH2 and depletes its pool [11],

thus contributing to ROS generation. Furthermore, phytochela-

tins, which are GSH polymers (n = 2–16), are well known to

contribute to arsenite resistance [12]. Recently, it has been shown

that arsenite is able to inhibit protein folding and induce protein

aggregates interfering with normal cell function [13,14,15].

Despite being toxic, arsenic is also used by some microorganisms

as electron acceptor in an anaerobic respiratory chain, electron

donor to grow chemo-lithotrophically, and even for anoxigenic

photosynthesis [16,17]. Furthermore, it has been postulated that

arsenic played an important role during early life on earth before

appearance of oxygen [18,19].

Because of the wide use and distribution of arsenic compounds,

arsenic resistance is wide spread among living organisms. Many

resistance systems consist in reduction of arsenate to arsenite

followed by export of the latter outside the cell or its transport to

the vacuole. Arsenate reduction to arsenite is catalyzed by arsenate

reductase, an enzymatic activity carried out by at least three non-

related families. These reductases use the thioredoxin, glutar-

edoxin or mycoredoxin systems as electron donors

[20,21,22,23,24,25,26]. Arsenite export is mediated by two

families of proteins: ArsB proteins, that are present only in

bacteria [27], and Acr3 proteins, which are more widely

distributed in different organisms including bacteria, fungi and

plants [28,29]). Another detoxification system that is present from

bacteria to animals is arsenic methylation, which conjugates

arsenic to methyl groups and can lead to formation of arsenic

volatile species [30,31]. Recently, it has been shown that bacteria

are able to survive high arsenate concentrations by a mechanism

involving rRNA degradation and selection of a subpopulation that

is resistant to arsenate. This mechanism seems to account for the

growth of the highly resistant Halomonas GFAJ-1 in media

containing arsenate and lacking phosphate [32,33].

In cyanobacteria arsenic metabolism and resistance is best

understood in the model cyanobacterium Synechocystis sp. PCC
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6803 (hereafter referred to simply as Synechocystis). The main

arsenic resistance mechanism is mediated by an operon of three

genes (arsBHC) that is regulated by an unlinked arsR homolog [24].

The operon includes an Acr3 arsenite transporter gene, arsB, an

arsH homolog that codes for a FMN-quinone reductase without a

clear function in arsenic resistance [24,34], and an arsenate

reductase gene, arsC, which codes for a new type of hybrid

arsenate reductase that although related to thioredoxin dependent

ones, use the glutathione/glutaredoxin system for reduction

[21,22,23]. At least two other resistance determinants have been

described in Synechocystis: an additional arsenate reductase from the

E. coli family (encoded by two nearly identical genes arsI1 and arsI2

genes; [23]) and an arsenite methylase gene arsM [35]. ArsI is only

essential for arsenic resistance in the absence of ArsC, probably

due to its low level of expression [23]. The role of ArsM in

resistance has not been tested in vivo, but E. coli strains carrying

arsM genes from different cyanobacteria are more resistant to

arsenite. Furthermore, ArsM is able to methylate arsenite to the

volatile trimethylarsine [TMA(III)] using S-adenosyl methionine

and glutathione as methyl donors in vitro [35].

Here we describe the global genomic responses to both arsenate

and arsenite in wild type (WT) Synechocystis and mutants affected in

the arsenic resistance system. Both treatments induced a very

similar response in WT cells, probably due to the highly efficient

arsenate reduction mechanism that converts all arsenate into

arsenite. Nevertheless, analysis of the responses on a SARS12

strain (that lacks all arsenate reductases) showed a differential

regulation of genes involved in metal homeostasis, Fe-S cluster

biogenesis and anabolic pathways. The SARSB strain (that lacks

the arsB arsenite transporter) showed a response similar to the WT

strain after 1h. However, this response was sustained in time in the

SARSB strain, and transient in the WT strain, and probably

reflects the inability of the SARSB strain to detoxify arsenite. On

the other hand, the mutant strain lacking the arsR gene (the

SARSR strain), which expresses the arsBHC operon at high levels,

did not respond to arsenite and was resistant to both arsenite and

arsenate. Surprisingly the SARSR strain also presented sensitivity

to nickel, cadmium and copper in the media. This sensitivity

depends on the presence of the arsB gene, suggesting that

overexpression of ArsB leads to altered permeability to metals.

Results and Discussion

Responses to arsenate and arsenite are highly correlated
in wild type Synechocystis
In order to characterize the physiological responses to the

presence of arsenic in Synechocystis we have performed genome-

wide analysis of gene expression in response to both arsenite and

arsenate. WT cells were exposed to 1 mM arsenite or 50 mM

arsenate for 1 h, RNA was extracted and hybridized to Agilent

15K one-color arrays; control samples from untreated cells were

also used for microarray hybridization. These concentrations and

sampling times were chosen as they produced growth inhibition

without compromising cell viability and showed maximal induc-

tion for the arsBHC operon [23,24]. Four independent biological

replicates were performed and Limma was used (2.5 fold-change

and P,0.01) in order to identify differentially expressed genes. For

the arsenate treatment cells were grown in low phosphate media

before arsenate addition (containing only 15% of the normal

phosphate which is ,30 mM) in order to detect growth inhibition

by arsenate in the WT strain [23,24]. Hence, differential

expression between BG11C (which is phosphate-replete and

contains 200 mM of phosphate) and low phosphate BG11C

(30 mM phosphate) was also analyzed. Under this experimental

conditions there were no genes differentially expressed (Figure S1

in File S1). In contrast, addition of arsenite significantly changed

expression of 421 genes (179 induced, 242 repressed; Figure 1A;

Table S1) whereas arsenate changed expression of 580 genes (266

induced; 314 repressed; Figure 1B; Table S1) when compared to

control conditions. Although the number of genes was slightly

different the responses were highly correlated (Figure 1C;

R2= 0.98). These highly correlated responses are probably due

to the presence of a highly effective arsenate reduction mechanism

in Synechocystis, which has three arsenate reductase genes. Two of

these genes (arsI1 and arsI2) are expressed constitutively while the

third one (arsC) is rapidly induced after arsenate addition and the

combined action of these three enzymes likely leads to a quick

reduction of intracellular arsenate to arsenite [23,24]. In order to

further identify cellular processes that changed after the arsenic

treatments, gene set enrichment analysis was performed using gene

lists extracted from cyanobase functional categories, GO terms

and literature hand-curated gene lists using GSEA (see material

and methods and supplementary materials). In agreement with the

data presented above both treatments significantly induced or

repressed almost identical gene sets (Table S2).

Stress response. The main response to both treatments was

the induction of a general stress response that included repression

of growth related genes, such as translation related processes (see

Tables S1 and S2) or energy generation systems (Photosynthesis,

ATP synthetase and Respiration; Table S2), and induction of

genes that are also up-regulated in other stresses which includes

functional categories such as chaperones, drug and analog

sensitivity and protein degradation (Table S2). Regulation of

growth or stress related groups of genes have been described as

part of the Core Transcriptional Response (CTR), because they

are usually regulated in response to different stress conditions [36].

As shown in Figure 1A and B CTR genes (colored in yellow for

genes up-regulated in most conditions and in blue for genes down-

regulated) are away from the diagonal showing their change in

expression after both treatments. This response has been proposed

to be controlled by several regulatory genes including Hik33,

Hik34, PerR, Rre1, Rre31 and SigB [36]. sigB, hik34 and perR

genes were all induced by the arsenic treatments (Table S1),

suggesting that the regulatory network acting in response to a

general stress was activated.

Chaperones and proteases constituted one group of induced

genes (Figure 1D; Tables S1 and S2), with only a few genes from

this list not induced. Although some of the chaperone genes like

dnaK2, htpG or hspA have been described to be up-regulated after

several stress conditions [37,38,39,40,41,42], a general induction

of this group has not been previously described. Recently, it has

been shown that arsenite is able to inhibit nascent protein folding

both in vitro and in vivo in yeast [13,14,15] and Archea [15]. These

results suggest that in Synechocystis arsenite is also able to cause

protein damage and that chaperones and proteases are induced in

order to repair or degrade these damaged proteins. In fact, a

similar response has been observed in yeast and a bacterium, in

which arsenite induces expression of chaperones and the

proteosome in order to refold and/or degrade protein aggregates

[43,44,45,46]. Moreover, yeast mutants defective in the chaper-

onin TRiC complex or proteosome regulation are more sensitive

to arsenite, suggesting that refolding and degradation of misfolded

proteins are essential for survival after arsenite stress [15,43,44].

Induction of several genes coding for proteins involved in redox

scavenging like trxQ (slr0233), 2cys-prx (sll0755), prxII (sll1621), gpx1

(slr1171) and sodB (slr1516) was observed. In addition several gene

lists extracted from microarray experiments interrogating oxida-

tive stress were also enriched in the GSEA analysis (Tables S1 and

Arsenic Resistance in Cyanobacteria
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S2; Figure 2C–E). This supports that arsenic (probably arsenite)

generates ROS and that CTR regulation could be mediated by

ROS [36]. Furthermore, in Pseudomonas and yeast, several mutants

affected in oxidative stress responses or its regulation are sensitive

to arsenite [47,48,49,50,51]. This data strongly suggests that the

oxidative stress response is essential for survival under arsenic

stress. Moreover, a similar response was also observed in

Synechocystis after cadmium addition, suggesting that both non-

biologically active metals have a similar effect on cells [52]. This is

further supported by the enrichment of cadmium induced gene

lists in the GSEA analysis (Table S2). Both arsenic and cadmium

share a strong affinity for thiol binding and this could explain why

they have similar effects in cells as they would interfere with similar

set of proteins.

Arsenic related genes. The most highly induced genes in

the genome after both arsenate or arsenite addition were the

arsBHC operon, with arsB being induced 15486196 and

12266357, arsH 6766240 and 5216173 and arsC 4476110

and 318697 times for arsenate and arsenite, respectively. These

values are consistent with the strong polarity previously described

by us for this operon; [24]. Unfortunately, arsI probes were not

included in our array design and therefore we analyzed its

expression by qRT-PCR. arsI (it is not possible to distinguish

between them as they are 99% identical) was not induced by

arsenate or arsenite, was expressed at low levels and not regulated

by ArsR ([23] and Figure S2 and S7 in File S1). The expression

profiles of the three arsenate reductase genes correlate with their

roles in arsenic detoxification in vivo, as mutants in arsC are much

more sensitive to arsenic than mutants in arsI [23]. In contrast to

what has been described, the arsM (slr0303) gene was not induced

by treatments with arsenite or arsenate in any of the strains

analyzed, perhaps because growth conditions and incubation times

were completely different to those reported previously [35].

Finally, the effects of mutation in arsM have not been analyzed

in vivo, but it is unlikely that it will significantly contribute to arsenic

resistance in short term treatments because accumulation of

methylated species of arsenic occurred only after long periods of

arsenic exposure [35]. This suggests that arsenic methylation could

be a mechanism of adaptation to chronic exposure to arsenic.

Phosphate has a prominent role in protecting cells from arsenic

toxicity, especially from arsenate, which enters the cells through

phosphate transporters and acts as a phosphate analog

[2,53,54,55,56]. In fact, in Synechocystis a reduction in phosphate

concentration in the media is essential to detect growth inhibition

Figure 1. Global responses to arsenic in wild type Synechocystis cells. A. Scatter plot showing comparison between expression profiles of WT
cells treated with 1 mM arsenite for 1 h (y axis) and untreated cells (x axis). Data represent the average signal of four independent hybridizations. CTR
(Core Transcriptional Response) up-regulated genes are colored in yellow, CTR down-regulated genes in blue and the arsBHC operon in red. B. Scatter
plot showing comparison between expression profiles of WT cells grown in low phosphate media treated with 50 mM arsenate for 1 h (y axis) and
untreated cells grown in low phosphate media (x axis). C. Scatter plot showing comparison between expression profiles of WT cells grown in low
phosphate media treated with 50 mM arsenate for 1 h (y axis) and cells grown in BG11C treated with 1 mM arsenite for 1 h (x axis). D. Box plot
showing ratios of treated vs. untreated cells of the categories cited in the main text.
doi:10.1371/journal.pone.0096826.g001
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by addition of arsenate, even in mutants affected in arsenate

resistance [23,24]. Phosphate transport genes were repressed by

both arsenite and arsenate (Figure 1D and Figure S2 in File S1;

Tables S1 and S2), suggesting that cells responded to arsenic

preventing further acquisition of arsenate after both treatments. In

other bacteria the low affinity phosphate transport system is

Figure 2. SARSB strain shows a sustained stress response. A. Growth of WT and SARSB strains in different arsenite concentrations.
Exponentially growing cells of WT (filled symbols) and SARSB (open symbols) were diluted to 0.5 mg chl ml21 in media containing 100 mM arsenite
(squares), 50 mM arsenite (diamonds) or without added arsenite (triangles). Growth was monitored following chlorophyll concentration. B. Scatter
plot showing comparison between expression profiles of SARSB (y axis) and WT (x axis) treated with 1 mM arsenite for 1 h. Data represents the
average signal of two hybridizations for SARSB and four hybridizations for WT. CTR up-regulated genes are colored in yellow, CTR down-regulated
genes in blue and the arsBHC operon in red. C. Northen blot analysis of prxII, prxQ1, 2cys-prx, trxQ and grxC expression in response to 1 mM arsenite
treatment in WT and SARSB strains. Total RNA was isolated from WT or SARSB cells grown in BG11C medium after addition of arsenite 1 mM. Samples
were taken at the indicated times. The filters were subsequently hybridized with prxII, prxQ1, 2cys-prx, trxQ, grxC and rnpB probes. D. Quantification of
relative mRNA levels of prxQ1 (circles), trxQ (squares) and grxC (diamonds) in response to 1 mM arsenite treatment in the WT (filled symbols) and the
SARSB (open symbols) strains. Radioactive signals of three independent experiments for each strain were quantified and averaged. RNA levels were
normalized with the rnpB signal in all strains. Plots of relative mRNA levels vs.time were drawn; error bars represent SE. E. Quantification of relative
mRNA levels of prxII (squares) and 2cys-prx (circles) in response to 1 mM arsenite treatment in the WT (filled symbols) and SARSB (open symbols)
strains. Radioactive signals of three independent experiments for each strain were quantified and averaged. RNA levels were normalized with the
rnpB signal in all strains. Plots of relative mRNA levels vs. time were drawn; error bars represent SE.
doi:10.1371/journal.pone.0096826.g002
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repressed by arsenate but the high affinity transport system is

induced in several bacteria [45,46,57,58]. This pattern of

expression prevents incorporation of arsenate into the cells

because the high affinity systems generally have a better

discrimination towards phosphate [54]. Synechocystis (and most

cyanobacteria) present two high affinity transport systems for

phosphate (pst-1 and pst-2) but no low affinity transport system

[59]. The pst-1 system (that includes sphXpstS1C1A1B1B19operon)

is expressed at higher levels than the pst-2 system (pstS2C2A2B2

operon) under phosphate repleted conditions, although both of

them are induced in response to phosphate starvation [59]. The

absence of low affinity phosphate transport system and the

presence of two high affinity transport systems could explain the

high resistance to arsenate in Synechocystis, a situation that is similar

to the recently described highly arsenate resistant Halomonas GAFJ-

1, which also presents two high affinity phosphate transport

systems [54,60]. In Halomonas GAFJ-1 the genes coding for

phosphate transport systems are induced by phosphate starvation

but its expression is not affected by arsenate [54]. The specificity of

Synechocystis’ transporters has not been tested in vitro, but in vivo

more than 3000 fold difference in arsenate over phosphate

concentration is needed to observe a negative effect in growth

[23,24], suggesting that the specificity for phosphate could be in

this range. Repression of phosphate transport genes in Synechocystis

is not simply a consequence of the activation of a general stress

response since these genes are induced by other stress treatments

such as high light and nitrogen starvation [59].

Another protein that has been shown to be involved in arsenic

resistance in other organisms is aquaporin. Aquaporins mediate

non specific uptake of arsenite and mutants in the corresponding

genes are usually arsenite resistant [7,8,9,10,61]. The only gene

coding for this protein in Synechocystis (aqpZ; slr2057) was repressed

after both arsenate and arsenite (10 fold in arsenate and 6 fold in

arsenite; Table S1). This repression would probably minimize

arsenite uptake. A similar response is also observed in plants

treated with either arsenate or arsenite in which some of the

aquagliceroporins genes from the Nod26-like (NIP subfamily)

subfamily, are repressed. This family of transporters has been

suggested to be responsible for arsenite transport in roots

[62,63,64].

Sulfur and glutathione metabolism genes. Sulfur metab-

olism genes have been shown to be induced after arsenic

treatments in bacteria [58,65], yeast [44,51,66] and plants

[63,67,68]. These genes include sulfate transport, sulfur assimila-

tion and cysteine synthesis genes, which are needed in order to

increase GSH contents. GSH is essential for arsenic resistance in

many organisms, although several mechanisms have been

described. In E. coli, yeast, plants and Synechocystis GSH is essential

for arsenate reductase activity [20,21,23,69,70,71,72,73]. In

budding yeast GSH is also conjugated to arsenite and this

complex is sequestered in the vacuole, while in fission yeast and

plants GSH is used to synthesize phytochelatin (PC) which binds

arsenite and prevents its toxicity [12,62]. In all cases GSH pools

are reduced as a consequence of arsenic treatments therefore

contributing to generate oxidative stress. In Anabaena sp. PCC

7120, a filamentous cyanobacterium that synthesizes PC, both pcs

(the gene coding for PC syntase) mRNA and PC contents increases

in response to arsenate and glutathione reductase activity is also

induced [74]. In contrast, genes related to sulfur metabolism did

not change its expression (Figure 1D) after arsenate or arsenite

treatments in Synechocystis, even though GSH is essential for

arsenate reduction and resistance [21,22,23]. Furthermore,

Synechocystis genome lacks a gene coding for a canonical GSH

reductase, and no NADPH-dependent GSH reductase activity is

detected in crude extracts ([75,76] and our unpublished observa-

tions).

Metal metabolism genes. Besides arsenic resistance genes,

several other genes related to metal metabolism were also induced

by both arsenate and arsenite treatments. Most of these genes are

clustered together in Synechocystis’ genome (Tables S1 and S2).

These genes are involved in Ni, Zn, Co and Cu resistance

[77,78,79,80,81]. Interestingly, only the genes under the control of

intracellular metal sensors (nrsD, ziaT, corT) were induced

[77,78,79,80]. This data suggests that arsenic (probably arsenite)

can bind to the metal binding sites of these cytosolic metal sensors

and affect their activity. In agreement with these, the genes coding

for the two copper importing ATPases (pacS and ctaA) and the

copper chaperone (atx1) were also induced (Table S1). The

regulatory circuits for these three copper-related genes are

unknown but they are expected to be under the control of an

intracellular metalloregulator. This protein should be able to

detect internal copper levels and therefore should be susceptible to

be bound by arsenic (arsenite).

SARSB shows a sustained response to arsenite
The expression profiles of the arsB mutant (the SARSB strain)

that is sensitive to both arsenate and arsenite [24] was also

analysed in both untreated and treated conditions. In untreated

conditions, the arsBHC operon was expressed at higher levels in

the SARSB than in the WT strain (Figure S3 in File S1), probably

due to the constitutive promoter present in the CK1 cassette used

for the arsB disruption, but no other genes were differentially

expressed. Furthermore, the gene expression profile of the SARSB

strain after the treatment with 1 mM arsenite, a concentration that

completely inhibits growth of this strain (Figure 2A, Figure S4A in

File S1 and [24]), was very similar to the gene expression profile of

the WT strain (Figure 2B, R= 0.93). The only differentially

expressed genes were the arsBHC operon, which under this

condition was expressed at lower levels in the SARSB strain than

in the WT strain. This is also probably due to the CK1 cassette

used for SARSB construction, which interferes with transcription

from the arsBHC promoter. In order to further analyze the

expression profile of this strain, expression of several redox genes

was analyzed after arsenite treatment for 24 h both in the WT and

the SARSB strains. Thioredoxins and glutaredoxins genes

(especially trxQ and grxC) were induced transiently in the WT

strain, while this induction was maintained in the SARSB strain

for at least 24 h (Figure 2C and 2D; Figure S5 in File S1). Similar

effects were observed when peroxiredoxin genes were analyzed.

Out of the 5 peroxiredoxin genes present in Synechocystis, only

sll0755 (2cys-prx), slr0242 (prxQ1) and sll1621 (prxII) were transiently

induced by arsenite in the WT strain, but again their expression

was maintained in the SARSB strain (Figure 2C and 2E and

Figure S5 in File S1). This data suggests that arsenite alters the

redox state of the cells causing oxidative stress in WT cells. This

alteration of the redox state is transient in WT cells, which return

to basal levels after 2 h, while is maintained in the SARSB strain.

This strain lacks ArsB to export arsenite, therefore arsenite

accumulation probably leads to induction of oxidative stress. The

mechanism by which arsenite generates oxidative stress is not

clear, but it has been proposed that arsenite binds dithiols

(inhibiting many redox reactive proteins such as thioredoxins or

glutaredoxins), it depletes GSH pools and inhibits protein folding.

All these mechanisms will ultimately generate ROS and therefore

activate an oxidative stress response as observed in our results

(Figure 1). In fact, induction of the redox genes was only noticed

after 30 min (Figure 2C), while these genes are induced earlier

after H2O2 or high light treatments [40,42,82,83]. In contrast, the

Arsenic Resistance in Cyanobacteria
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arsBHC operon was already induced at earlier times [24],

suggesting that arsenite causes an oxidative stress only when it

accumulates in the cell. The sustained oxidative stress response in

the SARSB strain indicates that this strain accumulates arsenite,

causing a permanent damage that ultimately kills the cells.

SARS12 shows a different expression profile in response
to arsenate
In order to study the specific effect of arsenate in gene

expression, a strain lacking all the arsenate reductases genes

(SARS12 strain) was used. This strain was treated with 50 mM

arsenate and its expression profile was compared to the WT

treated with 50 mM arsenate. Under control conditions there were

no genes differentially expressed between SARS12 and WT cells

other than arsC (Table S3; Figure S3 in File S1). In contrast to

what was observed in the SARSB strain treated with arsenite, the

profile of the SARS12 strain treated with arsenate was much more

different from the WT profile (Figure 3B; Tables S3 and S4).

Despite the fact that the SARS12 strain is highly sensitive to

arsenate and lacks all known enzymatic arsenate reduction

mechanisms (Figure 3A, Figure S4 in File S1 and [24]), the

arsBHC operon (400 fold for arsB) was induced in response to

arsenate in the SARS12 strain (Table S3). The arsBHC operon is

repressed by ArsR, which only respond to reduced forms of

metalloids [24]. Therefore, this suggests that arsenate could be

reduced in vivo by a system independent of ArsC and ArsI (which

are absent in SARS12). In Arabidopsis and human cell lines a

similar effect has been also observed and it was proposed that

arsenate could be reduced non-enzymatically by mono or dithiols

or unspecifically by other enzymes [71,84]. Alternatively, traces of

arsenite could be contained in the arsenate salt, which was used at

high concentration (50 mM final concentration) and therefore

even small arsenite contamination could be enough to induce

arsBHC expression.

GSEA analysis in this mutant identified several groups of genes

that were differentially expressed between WT and SARS12

strains treated with arsenate (Table S4). Several of the lists

extracted from the literature related to oxidative stress were

enriched in SARS12 when compared with WT. These include

genes induced by H2O2, and those controlled by Hik34 and Hik33

histidine kinases [83], suggesting that the stress response was

activated at higher levels than in WT under this condition

(Figure 3C). Despite this, many of the energy generation related

gene lists (PSI, PSII, PBS or ATP synthase), which are repressed

after many stress treatment including arsenic treatment, were not

differentially expressed (Figure 3C) in the SARS12 strain.

One group of genes that was enriched in the SARS12 strain was

high light induced genes (Table S4), which included hliA, hliB, hliC,

isiA and nblA. All these genes are repressed by RpaB [85,86], the

response regulator coded by the gene downstream of arsC. This

raised the possibility that rpaB mRNA levels could be affected in

the SARS12 strain causing the up-regulation these genes. In fact

rpaB expression levels were lower in the SARS12 strain than in the

WT strain in the microarray analysis (induction is 4.3 in SARS12

vs. 16.48 in WT). In order to confirm these results rpaB expression

was analyzed in the WT an SARS12 strains by northern blot and

RT-PCR. In the WT strain rpaB was co-transcribed with slr0948

in untreated samples and together with arsBHC (and slr0948) in

response to arsenite (Figure 3D and Figures S2 and S6 in File S1).

In contrast, in the SARS12 strain rpaB was not induced by arsenite

and it was not co-transcribed with the arsBHC operon (Figure 3D).

This lower level could be caused because the insertion of the C.K1

cassette in arsC could have a polar effect in rpaB transcription. In

Synechococcus sp. PCC 7942 RpaB activity is negatively regulated by

phosphorylation by NblS, which is the homolog of Hik33. As

Hik33 controlled genes were enriched (induced) in the SARS12

strain when compared to WT in the GSEA analysis (see above),

this suggests that Hik33-RpaB signaling pathway was suppressed

after arsenate addition. Even more, sigD which is under the control

of the Hik33-RpaA (Rre31) [83,87], was also induced at much

higher level in the SARS12 strain (23 fold) than in the WT (1.7

and 5 fold in arsenate or arsenite, respectively). The genes under

SigD control have not been identified in a genome-wide scale,

although some of the genes that are induced after high light (hli

genes, psbA2 and psbA3) treatment were less induced in a mutant

lacking sigD [88,89,90]. These genes were also induced at higher

levels in SARS12 (see above) reinforcing the idea that SigD was

activated after arsenate treatment in SARS12. Furthermore, rpoD3

(the homolog of sigD) is repressed by RpaB in Synechococcus sp PCC

7942 [91,92] suggesting that regulation of sigD gene could be also

mediated by RpaB in Synechocystis.

Another group of genes that were repressed in SARS12 when

compared to WT were metal transport genes. This group of genes

includes Ni, Co, Zn and Cu resistance systems, which were

induced after both arsenate and arsenite treatments in WT. Of

these only those regulated by cytosolic metalloregulators were

induced in WT (less induced in SARS12) suggesting (Figure 3C)

that arsenic affects intracellular metal sensing. In this regard, the

effect observed in WT cells after both treatments was most

probably mediated by arsenite, which is expected to be

accumulated at much lower levels in SARS12 than in WT cells,

explaining the higher induction of these genes in WT. Finally,

genes involved in Fe-S cluster assembly were induced at lower

levels in SARS12 than in WT, despite a higher induction of

oxidative stress response in the mutant (Figure 3C). These results

suggest that arsenite could target these cofactors directly in vivo and

that the reduced amounts of arsenite accumulated in the mutant

partially prevent the damage to Fe-S clusters.

ArsR controls expression of arsBHCrpaBslr0948 operon
and sll0914
We have previously reported that arsBHC operon is regulated by

ArsR which is encoded by an unlinked gene [24]. In order to

identify genes regulated by ArsR we have performed expression

profiling of SARSR in both control conditions and after arsenite

addition. Statistical analysis identified only 5 genes that were

differentially expressed in SARSR vs. WT control cells. These

included the arsBHC operon, as expected, but also the gene that is

downstream to it, rpaB, and the gene that is upstream of arsB but in

the opposite strand, sll0914 (Figure 4A; Table S5). rpaB was

expressed as a dicistronic mRNA (,1600 pb) together with

slr0948 (the gene located downstream to rpaB and co-transcribed

also when analysed by RT-PCR; see Figures 3D, 4B and

Figure S6 in File S1) in control cells. In contrast, it was expressed

as a polycistronic mRNA (arsBHCrpaBslr0948; ,4000 pb) in

response to arsenic treatment in WT (Figure 4B and Figure S6

in File S1). In the SARSR strain the arsBHC was expressed

constitutively and as an operon with rpaB and slr0948 (Figure 4B

and Figure S8 in File S1). This data suggests that the intergenic

region between arsC and rpaB lacks a transcriptional terminator

strong enough to prevent read through from the arsBHC operon.

The other gene under ArsR control was sll0914, which codes for a

protein with a lipase/esterase domain. Expression of sll0914 was

analyzed by northern blot but no signal was detected in either WT

or in SARSR. Therefore, sll0914 expression was analyzed by

qRT-PCR. sll0914 was found to be expressed at low levels with

similar Ct values to arsI using the same cDNA samples.

Furthermore, its expression was induced by arsenite in the WT

Arsenic Resistance in Cyanobacteria
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strain (Table S1) and constitutive (and higher than in the

untreated WT strain) in the SARSR strain (Figure S8 in File S1).

These results corroborated that sll0914 is regulated by ArsR. To

further clarify its role in arsenic resistance mutants in this gene

were constructed in WT, SARSB and SARSR strains. All these

mutant strains were as resistant as WT, SARSB or SARSR

parental strains to arsenic (Figure S7 in File S1). Therefore, the

role of Sll0914 in arsenic resistance is not clear, although its

homology to lipases/esterases suggests that it could be involved in

phospholipid degradation, releasing its phosphate component,

which could protect against arsenate toxicity.

Analysis of the transcriptional profile of the SARSR strain after

arsenite treatment indicated that SARSR strain did not induce a

major reorganization of gene expression in response to arsenite as

observed in the WT strain (Figures 1A and 4C). In fact, there were

no genes differentially regulated between treated and untreated

SARSR samples using our statistic test. This probably reflects that

the high levels of expression of arsBHC operon in the SARSR

strain allowed this strain to completely detoxify arsenite (exporting

it outside the cells) in a short period of time and thus avoiding the

stress response caused by arsenite. The fact that the SARSR strain

did not show any stress response after arsenite treatment, lead us to

re-evaluate its phenotype in response to arsenite. We have

previously shown that SARSR and WT strains were similarly

resistant to 1 mM arsenite in solid media but we did not check

higher concentrations due to growth inhibition in our assay

conditions. In order to test if the SARSR strain was resistant to

arsenic, its growth in the presence of arsenate and arsenite was

tested in liquid media (Figure 4D and E). The SARSR strain was

more resistant to both arsenate and arsenite in the media than the

WT strain. The SARSR strain was able to grow in the presence of

5 mM arsenite, while the WT strain was already affected by 3 mM

arsenite and completely arrested at 5 mM arsenite (Figure 4D and

Figure S4C in File S1). A similar behavior has been shown in

Shewanella sp. ANA-3 arsR2 and arsR1 mutants which showed a

reduced lag phase when inoculated in arsenite containing media

Figure 3. The SARS12 strain shows a different response to the WT strain. A. Growth of WT and SARS12 strains in the presence of different
arsenate concentrations. Exponentially growing cells of WT (filled symbols) and SARS12 (open symbols) were diluted to 0.5 mg chl ml21 in low
phosphate media containing 100 mM arsenate (triangles), 50 mM arsenate (diamonds) or without added arsenate (squares). Growth was monitored
following increase in chlorophyll concentration. B. Scatter plot showing comparison between expression profiles of SARS12 (y axis) and WT (x axis)
treated with 50 mM arsenate for 1 h. Data represent the average signal of two hybridizations for SARS12 and four hybridizations for WT. CTR up-
regulated genes are colored in yellow, CTR down-regulated genes in blue and the arsBHC operon in red. C. Box plot showing ratios of treated vs.
untreated of the categories cited in the main text in the WT and SARS12 strains. D. Northen blot analysis of rpaB expression in response to 50 mM
arsenate treatment in the WT and SARS12 strains. Total RNA was isolated from WT or SARS12 cells grown in low phosphate medium after addition of
50 mM arsenate. Samples were taken at the indicated times. The filters were hybridized with rpaB and subsequently stripped and re-hybridized with
an rnpB gene probe as a control.
doi:10.1371/journal.pone.0096826.g003
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[93]. In contrast, the SARSR strain presented a small, but

consistent, delay in growth after inoculation in the presence of

100 mM of arsenate (Figure 4E and Figure S4D in File S1),

although they reached higher final OD and chlorophyll content.

These results suggest that over-expression of the arsBHC operon in

the presence of high amounts of arsenate might be detrimental,

but has a beneficial effect when arsenate concentration decreases

Figure 4. ArsR only controls expression of sll0914 and arsBHCrpaBsll0947 operon. A. Scatter plot showing comparison between expression
profiles of SARSR (y axis) and WT (x axis) in untreated samples. Data represents the average signal of two hybridizations for SARSR and four
hybridizations for WT. In red are colored genes that are differentially regulated in the SARSR strain. B. Northern blot analysis of arsB and rpaB
expression in response to 1 mM arsenite treatment in the WT and SARSR strains. Total RNA was isolated from WT or SARSR cells grown in BG11C at
the indicated times after arsenite addition. The filters were subsequently hybridized with arsB and rpaB and rnpB probes. C. Scatter plot showing
comparison between expression profiles of the SARSR strain treated with 1 mM arsenite for 1 h (y axis) and untreated (x axis). Data represents the
average signal of two hybridizations. CTR up-regulated genes are colored in yellow, CTR down-regulated genes in blue and the arsBHC operon in red.
D. Growth of the WT and SARSR strains in the presence of different arsenite concentrations. Exponentially growing cells of WT (filled symbols) and
SARSR (open symbols) were diluted to 0.5 mg chl ml21 in BG11C containing 3 mM arsenite (triangles), 5 mM of arsenite (circles) or without added
arsenate (squares). Growth was monitored following increase in chlorophyll concentration. E. Growth of the WT and SARSR strains in the presence of
arsenate. Exponentially growing cells of the WT (diamonds) and SARSR (squares) strains were diluted to 0.5 mg chl ml21 in low phosphate media
containing 100 mM of arsenate (. Growth was monitored following chlorophyll concentration; data represent average of 3 independent experiments
and error bars represent SE.
doi:10.1371/journal.pone.0096826.g004
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(and probably arsenite accumulates in the media; Figure 4D and

Figure S4D in File S1).

Over expression of arsB confers metal sensitivity
The arsBHC operon has also been reported to be induced by the

presence of other metals in the media in other microarray

experiments [52]. Furthermore, arsC mutants have been described

to be sensitive to Cd [52]. In order to clarify the role of the arsBHC

operon in metal homeostasis the sensitivity of the mutants in these

genes to the presence of different metals in the media was

analyzed. While the SARSB and SARSH strains were as resistant

as the WT to Ni, Cu and Cd, the SARSR strain was sensitive to

the presence of the three metals (Figure 5A). The only genes that

showed differential expression in the SARSR strain were

arsBHCrpaBslr0948, suggesting that over-expression of any of these

genes could be involved in this sensitivity. arsB codes for a Acr3

family of arsenite transporters and hence its over expression could

alter membrane permeability to metals. Another possibility is that

altered levels of other transcripts (arsH, arsC or rpaB) in the SARSR

strain could affect metal sensitivity. In order to test these two

possibilities we constructed double mutants in arsR and arsB

(SARSRB) or arsR and arsH (SARSRH) and tested their sensitivity

to metals in the media. rpaB expression levels were also checked in

these strains. While double mutants in arsH and arsR (SARSRH

strain) have a phenotype identical to single mutants in arsR respect

to metal sensitivity, mutants in arsB and arsR (SARSRB strain)

restored resistance to metals similar to single mutants in arsB

(SARSB strain) and WT (Figure 5A). On the other hand, SARSB,

SARSH, SARSRB and SARSRH strains presented similar levels

of rpaB transcript levels that were lower than in the SARSR strain

(Figure 5B). These results suggest that the metal sensitivity

phenotype of the SARSR strain is mediated by arsB overexpres-

sion (that probably will include ArsB accumulation) and not by

altered rpaB transcript levels. arsR mutation in E. coli is toxic due to

over expression of arsDBC but experiments were carried out in LB

media which is rich in metals and therefore the effect could be also

mediated by specific metals. Even though E. coli ArsB and

Synechocystis ArsB belong to non-related families of proteins, it is

possible that high levels of expression of these membrane proteins,

in arsR mutant strains, could impair membrane permeability.

Conclusions

In summary we have shown that arsenate and arsenite

produced similar genome-wide responses in Synechocystis sp. PCC

6803. These responses are dominated by a strong stress response,

which included induction of the redox scavenging system and

chaperones and repression of photosynthesis and growth related

genes. This response is very similar in a mutant lacking the arsB

gene, which is unable to detoxify arsenite, but is maintained for a

longer time while is transient in the wild type strain. In contrast a

mutant in all arsenate reductases (the SARS12 strain) showed a

different response that included lower induction of metal resistance

genes and Fe-S cluster biogenesis genes, suggesting that arsenite

targets these processes in the WT strain. Moreover, the SARS12

strain expressed the rpaB gene at lower levels and presented higher

expression levels of some of the RpaB repressed genes. Finally, the

mutant strain lacking ArsR repressor (the SARSR strain) did not

respond to arsenite, probably because it overexpressed ArsB, and

was more resistant to arsenite than the WT strain. In contrast, the

SARSR strain presented hypersensitivity to nickel, copper and

cadmium which was lost in double mutants also lacking arsB.

These suggested that overexpression of ArsB alters the membrane

permeability to metals.

Material and Methods

Strains and growth conditions
Synechocystis strains used in this work are listed in Table S1. All

these strains were grown photoautotrophically in BG11 medium

[94] supplemented with 1 g L21 NaHCO3 (BG11C) at 30uC
under continuous illumination (50 mE m22 s21) and bubbled with

a stream of 1% (v/v) CO2 in air. For plate cultures, medium were

supplemented with 1% (w/v) agar. Kanamycin, chloramphenicol

and spectinomycin were added to a final concentration of 50 mg
mL21, 20 mg mL21 and 5 mg mL21, respectively. In the BG11C

low-phosphate medium, the concentration of K2HPO4 was

reduced to 30 mM. 1 mM of NaAsO2 or 50 mM of Na2HAsO4,

5 mM NiSO4, 5 mM CuSO4, or 3 mM CdSO4 were added when

required.

All experiments were performed using cultures from the mid-

logarithmic phase (3 to 5 mg chlorophyll ml21). Synechocystis strains

and their relevant genotypes are described in Table 1. E. coli

DH5a cells were grown in Luria broth medium and supplemented

with 100 mg ml21 ampicillin, 50 mg ml21 kanamycin, 20 mg ml21

chloramphenicol and 100 mg ml21 spectinomycin when required.

Insertional mutagenesis of Synechocystis genes
For the sll0914 insertional mutant, a 1093 bp PCR fragment

was amplified from total genomic DNA using two-step PCR

method, synthesizing overlapping fragments that incorporate a

BamHI restriction site, and was cloned into pGEMT to generate

pSll0914.1. Then, an Sm/Sp cassette was cloned into BamHI site

generating pSll0914.2 plasmid. This plasmid was used to

transform WT, SARSR and SARSB strains. The pARSH2(+)
and pARSB2(+) targeting plasmids [24] were used to transform a

SARSR strain obtaining the SARSRH and SARSRB mutants.

Correct integration and segregation of all mutants were confirmed

by PCR analysis. All the oligonucleotides used for cloning and

insertional mutagenesis are described in Table S6.

RNA isolation, Northern blot analysis, microarray
hibridization and data analysis
Total RNA was isolated from 30 ml samples of Synechocystis

cultures at the mid-exponential growth phase (3 to 5 mg
chlorophyll ml21). Extractions were performed by vortexing cells

in the presence of phenol-chloroform and acid-washed baked glass

beads (0.25–0.3 mm diameter) as previously described [95].

For Northern blotting, 10 ug of total RNA was loaded per lane

and electrophoresed on denaturing formaldehyde-containing 1%

agarose gel. Transfer to nylon membranes (Hybond N-plus, GE

Healthcare), pre-hybridization, hybridization and washes were

performed as recommended by the manufacture. Probes for

Northern blot hybridization were synthesized by PCR using

oligonucleotide pairs: arsC_F–arsC_R, rpaB_F–rpaB_R, and

slr0948_F–slr0948_R, trxA_1-trxA_2, trxB1-trxB2, trxQ_F-

trxQ_R, prxII_F-prxII_R, 1cys-Prx_F-1cys-Prx_R, 2cys-Prx_F-

2cys-Prx_R, prxQ1_F-prxQ1_R, prxQ2_F-prxQ2_R (see Ta-

ble S6) for arsC, rpaB, slr0948, trxA, trxB, trxQ, prxII, 1cysprx, 2cysprx,

prxQ1 and prxQ2, respectively. As a control, in all cases the filters

were stripped and re-probed with a 580-bp HindIII-BamHI probe

from plasmid pAV1100 containing the constitutively expressed

RNase P RNA gene (rnpB) from Synechocystis sp. strain PCC 6803

(Vioque, 1992). DNA probes were 32P labeled with a random-

primer kit (Amersham Biosciences) using [a-32P]dCTP (3,000 Ci/

mmol). Hybridization signals were quantified with a Cyclone

Phosphor System (Packard).

For microarray analysis 0.2 mg of RNA were transformed to

cRNA using Low Input Quick Amp WT Labeling Kit from
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Agilent. cRNA was labeled with Cy3 and labeled cRNA was

applied to 8X15K arrays. Signal intensities for probes were

obtained from the scanned microarray image using Agilent

Technologies’ Feature Extraction software and quantile normal-

ized. Differentially expressed genes were selected using Limma

implemented in One Channel GUI with a p,0.05 and at least 2.5

fold change. Gene groups differentially expressed in different

genotypes were identified using GSEA tool [96] using hand-

compiled gene lists (Table S7) that include functional categories

from cyanobase, GO annotation and literature curated gene list

(see supplementary material). The data discussed in this publica-

tion have been deposited in NCBI’s Gene Expression Omnibus

and are accessible through GEO Series accession number

GSE51383 (http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc =GSE51383).

RT-PCR and qRT-PCR
cDNA were prepared with Quantitech reverse transcriptase kit

from Qiagene using 1 mg RNA treated with TurboDNAse

(Ambion) and following manufacturer’s instructions. 2 ml of cDNA

were used for each PCR reaction. For qRT-PCR, cDNA was

diluted ten-fold and 5 ml were used for each Real-time PCR

reaction which were performed using SensiFAST SYBR Hi-ROX

Kit (BioLine), and the signals were detected on an ABI StepONE

Figure 5. SARSR shows altered resistance to metals. A. Phenotypic characterization of mutants in arsenic resistance genes. Tolerance of the
WT, SARSR, SARSB, SARSH, SARSRB and SARSRH strains to copper, nickel and cadmium was examined. Tenfold serial dilutions of a 1 mg chlorophyll
ml21 cells suspension were spotted onto BG11C supplemented with the indicated metals concentrations. Plates were photographed after 5 days of
growth. B. Northen blot analysis of rpaB expression in response to 1 mM arsenite treatment in WT, SARSR, SARSB, SARSH, SARSRB and SARSRH strains.
Total RNA was isolated from cells grown in BG11C after addition of arsenite 1 mM. Samples were taken at the indicated times. The filters were
hybridized with an rpaB probe and subsequently stripped and re-hybridized with an rnpB gene probe as a control.
doi:10.1371/journal.pone.0096826.g005

Table 1. Synechocystis strains used in this work.

Synechocystis strains Genotype Mutated ORF(s) Source or Study

WT Synechocystis sp. PCC 6803 Lab collection

SARS12 arsC::CK1 arsI1::CC1 DarsI2::VSp slr0946, slr6037, sll5104 [23]

SARSR arsR::CC1 sll1957 [24]

SARSB arsB::CK1 slr0944 [24]

SARSH arsH::CK1 slr0945 [24]

SARSRB arsR::CC1 arsB::Kmr sll1957, slr0944 This study

SARSRH arsR::CC1 arsH::CK1 sll1957, slr0945 This study

sll0914 sll0914::VSp sll0914 This study

SARSR sll0914 arsR::CC1 sll0914::VSp sll1957, sll0914 This study

SARSB sll0914 arsB::CK1 sll0914::VSp slr0944, sll0914 This study

doi:10.1371/journal.pone.0096826.t001
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real time PCR instrument (Applied Biosystems) following manu-

facturer’s instructions. The expression levels of the genes of interest

were normalized to the constitutive rnpB gene. The fold change

was calculated using the DDCt method. The results shown are

from three independent RNA samples. Primers used for the

analysis are indicated in Table S6 and are identified with Q as the

first letter in their names.
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