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EEIEHB Amendments from Version 1

This new version has benefited from all useful comments

and criticism of the reviewers. We have tried to answer and
contemplate all of the comments. The main modifications in
this new version offer clarification in the Introduction and in the
Method Sections. We have improved Figure 3 and added a
suitable legend to Figure 4A, and two references requested by
R1. We have also improved the English of the entire manuscript.
Unfortunately, we have not been able to give a satisfactory

a response as we would like, to the last point raised by R2.
However, we believe that even so, our proposal can help to
inspire other researchers to design better methods.

Any further responses from the reviewers can be found at the
end of the article

Introduction

Multicellular organisms show throughout their development
a crescent cellular heterogeneity, distributed and organ-
ized in different organs and tissues. This spatial heterogeneity
has been explored using different techniques, such as immu-
nohistochemistry and single-molecule fluorescence in situ
hybridization (FISH)'. These approaches allow quantification
of gene expression in many cells but, unfortunately, these tech-
niques can currently be assayed only over a small number of
genes. The selection of these genes introduces a bias that lim-
its the power of these studies. With the advent of emergent
methods in genomics, it has become possible to assess the
transcriptomic profile of complex tissues with unprecedented
resolution, thereby allowing insights into complex processes such
as: differentiation trajectories, cell fate decisions, and spatial
relationships. In this sense, high-throughput single-cell RNA-seq
(sc-RNA-seq) is becoming an established experimental
technique’. The protocol of this technique includes the initial
step of sample collection, during which solid tissue dissociation
results in single cells. Removing cells from their native context
results in the loss of spatial information. However, this information
can be crucial when the goal is to study the molecular
composition of individual cells in the context of spatial location,
for example, in the context of primary cancer cells research’.
Fortunately, some progress has been made to overcome
limitations of spatial information loss associated to this tech-
nique. Computational methods, based on Principal Component
Analysis, are able to partially recover the spatial structure of
gene expression patterns’. More recently, several computa-
tional techniques coupled to in situ RNA patterns facilitate
this reconstruction with better resolution®.

In order to catalyze research on computational methods for
the spatial reconstruction of single-cell gene expression data, a
crowd-sourced competition was designed by the DREAM Con-
sortium in collaboration with Nikos Karaiskos and Nikolaus
Rajewsky from Max Delbruck Institute. Using sc-RNA-seq
data from Rajewsky Lab, published in 7, and the expression pat-
terns of driver genes as an expression reference atlas, three
main subchallenges were designed. The particular aim was
to predict the position of 1297 cells in the 3039 Drosophila
melanogaster embryonic locations, or bins, for one half of
an embryo in stage 6 (pre-gastrulation), based on scR-NAseq
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data. The prediction of the 1297 cell positions must be done
using a limited number of genes selected from a pool of 84
expression patterns used as a reference atlas. In subchallenge
1 the prediction must be performed using 60 driver genes out of
84 genes, in subchallenge 2 using a subset of any expres-
sion patterns from 40 genes out of the 84, and in subchallenge
3 using a subset of any expression patterns from only 20
driver genes. The selection of the subset of genes used for the
prediction poses an additional and interesting problem. In this
paper we present a procedure for solving the cell-position
problem posed in the DREAM SCTC. This -challenge
consists of predicting the positions of individual cells, based on
an expression reference atlas and a small set of genes reported in
single-cell studies.

Methods

DREAM challenge data

Expression patterns used as a reference atlas correspond to 84
driver genes obtained from in situ hybridization experiments;
the data correspond to The Berkeley Drosophila Transcrip-
tion Network Project (BDTNP)®. This gene expression data set
is listed in the file bdtnp.csv at DVEX server. One half of the
Drosophila embryo has 3039 cells locations, each location is
specified by three coordinates (x, y and z) (geometry.txt at
DVEX). Thus, the reference database consists of an expression
matrix of 84 genes (columns) quantified across the 3039 embry-
onic locations (rows). These data were next binarized’, sorted
in the same order of cell location, and listed in an additional file
(binarized_bdtnp.csv at DVEX server). The single-cell RNA
sequencing data is provided as a matrix with 8924 genes as rows,
and 1297 cells as columns. These data are divided by the
total number of counts for that cell, in this step a pseu-
docount is added. The normalized values are obtained by
taking the logarithm of the total counts. The normalized values
are also binarized, i.e. a given gene is ON (OFF) if the nor-
malized values are above (below) of a quantile value. Based
on a distance minimization criterion, the quantile value was
chosen as 0.23. The short sequences for each of the 1297 cells
in the raw and normalized data are the barcodes of individual
cells. Both normalized as well as binarized data were provided
by the DREAM Challenge.

Selection of the gene sets
In order to select the gene sets to be used in each subchallenge, we
take into account two criteria:

(i) Genes that have complementary expression patterns
across the single-cell population. It is well known that
many genes are co-expressed, that is, their expres-
sion profiles are highly correlated. This correlation
introduces a degree of redundancy in the expression
matrix, which frequently is reduced by clustering those
genes with similar expression profiles. This step allows
us to identify genes with complementary expression
patterns.

(i) Genes with expression levels broadly distributed across
the single-cell population. This step is performed
in order to select one gene per cluster. Those genes with
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many null expression values over a large part of the
population are discarded, because they are associated
with distributions with a large peak at zero.

To accomplish these criteria, we first perform an agglomera-
tive clustering procedure over the expression matrix compris-
ing the 84 genes (the same genes as the available in the in situ
expression data) over the 1297 cells). We cluster genes with
similar expression profiles across the cells, by means of using
the Euclidean distance over the normalized gene expression lev-
els, and the Unweighted Pair Group Method with Arithmetic
Mean (UPGMA) as a linkage method. Then, we cut the dendo-
gram tree into 20, 40, or 60 groups depending on the subchal-
lenge. Next, we need to select only one gene per cluster. This
selection is performed based on the criterion of the broadest
distribution. To this end, for each gene within a given cluster
we compute the frequency distribution p, where p, denotes the
frequency of occurrence of expression levels within the bin i.
Here, we set the bin size equal to 0.125. After that, we
compute the associated entropy #=-Ypmnp. Then, we select
the gene with the greatest entropy in each cluster, i.e. the
gene within the cluster with the broadest expression distribu-
tion across the single-cell population. This selection procedure
is performed with the R script named preprocessing.r, which
uses the function selgen. R, both available at Zenodo (see Data
availability). To assess this method for the gene selection, we
compare the prediction performance obtained with the set of
20 genes selected in this way with the results obtained with
different sets of genes sampled at random. For comparison, we
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consider the Mathews correlation coefficient (MCC)’ between
the 1297 cells and the 3039 bins. Then, the ten better scored
bins are selected as putative position for each cell. As the true
positions of the cells are not available, we take the bin with the
highest MCC, obtained with the set that include all 84 genes,
as the bin associated with the true position. Thus, we count
cells with the ten best scores containing the true position as
cells whose positions are well predicted. The percentage of the
well-predicted positions will be our measure of the performance.
Figure 1 depicts the histogram of percentage of cells with
well-predicted positions, obtained with 200 sets of 20 ran-
domly selected genes. In all cases, this percentage is quite
lower than that obtained with 20 genes selected as indicated
above, which is 33.46%.

We use this procedure to select an additional set of 100 genes
from the 8924 genes measured by the single-cell technique,
but excluding the genes from the 84 reference gene set. These
100 genes will be used in further steps during the iterative
procedure, and will be denoted as the outgroup set hereafter.
The 20, 40 and 60 selected genes used for each cell location
prediction task are listed in Table S1 (see Extended data); we
also include the outgroup set of genes.

Scoring functions

In order to predict the position of a given single cell, we use a
score approach based on two similarity measures between the
sc-RNA-seq data, and the reference atlas. One of these measures
is the MCC computed between the binarized expression profiles,
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Figure 1. Performance of the gene selection procedure. Histogram of the performance obtained with 20 genes selected at random (yellow).
The performance obtained with the set of 20 genes selected by the proposed method is indicated with a black arrow.
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as proposed in 7. The MCC will be used in the initial step to
assign putative bin positions for each single cell, and then
to predict the spatial expression profile of the outgroup set
of genes. The other measure is the overlap between the normal-
ized expression vector of the single cells, and the projected vec-
tor corresponding to the predicted spatial expression profile. This
vectorial space corresponds to the one spanned by the outgroup
u- »
]y,
where u is the profile vector of the single cell, and v is the vec-

>

set of genes only. The overlap is defined by: cos(6)=

tor obtained by projecting the profile vector of the predicted
profile on the subspace spanned by the non-null components
of the profile vector u, as illustrated in Figure 2. The scoring
functions are performed by the R script named functions.r,
available at Zenodo (see Data availability).

Results

The proposed procedure is schematically illustrated in Figure 3.
In the first step we select the set of N genes from the 84 driver
genes to be used in the prediction, using the method described
in Selection of the gene sets section. We also select an
additional 100 genes (outgroup set of genes) from all genes
measured in the sc-RNA seqexperiment, but excluding the driver
genes. The name of the genes used are listed in Extended data:
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Table S1. Then, using the binarized expression data of the
selected genes, we compute the MCC (measure 1) for each bina-
rized single-cell vector against the 3039 binarized vectors asso-
ciated with each positional bin of the reference atlas (BDTNP).
By means of the MCC-based score, we predict the single-cell
positions and build the putative expression patterns of the out-
group set of genes. In this sense, the expression level of gen g
at the bin position 7 is given by the weighted average of the
normalized gene expression across 10 putative positions
corresponding to that bin, being the Weight*proportional to
the associated MCC. Mathematically, ef :ch

are the MCC-based scores of the single cell j against posi-
tion i, and ef are the expression levels of gene g recorded in the
individual cells j. The asterisk in the summation indicates
that the 10 first better scored cells positions are included. The
predicted expression patterns of the outgroup set of genes
computed in this manner are used to compute the overlap
(measure 2) with the corresponding expression level of each one
of the 1297 single cells. Finally, using the measure 1 and the
measure 2 we compute a composed score S, defined as § = w *
¢ + w, * o, where ¢ is MCC-based score, o is the overlap-based
score, and w, and w, are the respective weights. The score S is
used to predict positions and improve the predicted expression
patterns of the outgroup set of genes in each iteration. The last

8
;€j» where ¢,

reference
vector v

single-cell
vector u

Figure 2. Overlap-based score. Low-dimensional representation of the angle between the expression vector u, and the projected expression

vector Vp.

Page 4 of 14



sc-RNAseq
data

Gene selection

F1000Research 2020, 8:1775 Last updated: 14 APR 2020

Step 1

algorithm

Select the Select 100
N genes set 0oG
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patterns (BDTNP) 1297 single cells
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¢ Step 4
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using measure 1
+ measure 2
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patterns of OG Computing
b 4

measure 2

NSG: N selected genes
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Figure 3. Flow diagram of the proposed method. Step 1: The set of N genes and the additional 100 outgroup genes are selected from
the sc-RNAseq data. Step 2: Using the binarized expression data of the N selected genes we compute measure 1 for the1297 single-cell
vectors against the 3039 binarized vectors of the reference atlas. Step 3: We predict the single-cell positions using the positions of the 10
better scored cells. Step 4: We build the putative expression patterns of the outgroup set of genes and we compute measure 2 against the
expression level of 1297 single-cells. Step 5: By means of using the composed score S, the predicted expression patterns of the outgroup
set of genes is improved in each iteration. The last two steps are repeated (2 or 3 times).

two steps are repeated (2 or 3 times), as indicated in Figure 3
with dashed arrows.

The above scheme is applied to the subchallenges with 20,
40 and 60 genes using different weight values. First of all, we
apply the procedure to the subchallenge 3. Using the 20 genes
we compute the MCC for every cell-bin combination. The
first iteration of this scoring procedure leads to a performance
of 33.5% in assigning the putative positions to each single
cell. By means of using the 20 highest coefficients, we predict
the expression patterns of the outgroup set of genes. Then, we
compute a scoring measure composed of two terms: the MCC
computed in the first step (with a weight w = 0.7), and the
previously-defined overlap between the expression vector
of each single cell and the projected expression vector of
the reference atlas, being both vectors composed of the 100
outgroup genes (with a weight w, = 0.3). The score combin-
ing both measures is then used to predict the positions of each
single cell, which leads to a performance of 36% in the second
iteration, and 38% in the third iteration. Further iteration steps

do not produce any additional improvement. Figure 4A depicts
the performance evolution of the procedure using this gene set.

In order to select the set of 60 genes to be used in subchallenge
1, from the 84 genes available in the reference atlas, we per-
form the above-mentioned agglomerative clustering procedure.
Then, the 60 genes with the greatest entropy within each clus-
ter are selected. The names of the resulting genes are listed in
the first column of Extended data: Table S1. As a first step, we
compute the MCC for each binarized single-cell vector, and
the corresponding 3039 binarized vectors associated with each
positional bin of the reference atlas. By means of using the
20 highest MCC for each cell (N = 20), we compute the puta-
tive expression patterns of the outgroup set of genes. In this
case, the used scoring measure was composed by MCC with a
weight of 0.90; and the overlap of the single-cell expression pro-
files and the 3039 positions of the predicted expression patterns
obtained in the previous step, with a weight of 0.10. After
two iterations the performance obtained is 95.4%. Figure 4B
shows the predicted expression pattern of the ffz gene obtained
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Figure 4. Prediction performance. Panel A: Performance obtained by means of using the iterative procedure with 20 genes. Panel B:
Predicted expression pattern of the ftz gene obtained with 60 genes after two iteration steps. The expression level of each nuclei is given in
white-red scale. Gray nuclei correspond to positional bins without prediction.

using the set of 60 genes. The same procedure is used to
predict the positions of single cells by considering a set of
40 genes. Again, these genes are selected as described in
Methods. The names of the resulting genes are listed in the
second column of Extended data: Table S1. In this case, the
performance obtained reaches 71.4%.

Discussion

We present three innovations that could represent improve-
ments in regard to the original proposal’. One of these inno-
vations is the method for selecting the set of genes to be used
as reference in the cell-positions prediction task. This set of
genes is a good starting point in the presented strategy for posi-
tion prediction, although we have not explored this method
in depth. For example, the Jaccard distance'’ could be used in
the clustering procedure instead of the Euclidean distance. We
noticed that MCC can overestimate false negatives due to the
fact that sc-RNA-seq are not able to record expression of many
genes. This results in profiles with many zeros, even in cases of
moderate expression levels. For that reason, our second pro-
posed innovation is an alternative way to make the comparison

between profiles, as we used in subchallenge 3. Last but not
least, the third innovation is the iterative procedure, which
improves the performance of any of the alternative strategies
presented here. In addition, we noticed that the iterative pro-
cedure does not necessarily converge to the correct solution,
may be due to error propagation on the predicted patterns.

Data availability

Underlying data

Challenge documentation, including the detailed description of
the Challenge design, overall results, scoring scripts, can be found
at:  http://www.synapse.org/#!Synapse:syn15665609/wiki. Data
for this Challenge can be downloaded from http://shiny.mdc-berlin.
de/DVEX/.

Zenodo: Prediction of cell position using single-cell transcrip-
tomic data: an iterative procedure, https://doi.org/10.5281/
zenodo.34700619'.

This project contains
the methods.

code and documentation underlying
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Data are available under the terms of the Creative Commons
Zero “No rights reserved” data waiver (CCO 1.0 Public domain
dedication).

Extended data

Zenodo: Prediction of cell position using single-cell transcrip-
tomic data: an iterative procedure, https://doi.org/10.5281/
zenodo.3470061".

This project contains the following extended data:
e Table S1: Selected genes: first, second and third columns
list the name of genes used in the subchallenges 1, 2 and

F1000Research 2020, 8:1775 Last updated: 14 APR 2020

3, respectively. The last column lists the names of the
outgroup genes.

Data are available under the terms of the Creative Commons
Zero “No rights reserved” data waiver (CCO 1.0 Public domain
dedication).
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Alonso et al propose a nice idea for solving the gene to position problem posed in the DREAM single cell
transcriptomics challenge, but at the end fall short while finding ways to improve their pipeline. The
explanations of why they used such approach are also scarce. Although maybe obvious, it would be
important that they explain why they chose genes with maximum entropy. why 100 outgroup genes, how
the values of w1 and w2 were selected and why doing a 2 step optimization. Overall the rationale of their
approach should be summarized in a couple of sentences in order to make it clearer, unfortunately the
diagram does not clarify the rationale either. Also, given that this criteria did not improve significantly while
iterating, they should have tried other selection criteria such as high expression level, or maybe other
metrics such as the ones proposed in the challenge. Maybe trying to optimize the position and the gene
expression correlation as interlocked steps is the source of the problem. Some discussion regarding this
should be added.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Computational biology and systems biology
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I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however | have significant
reservations, as outlined above.

Luis Diambra, Universidad Nacional de La Plata, La Plata, Argentina

Alonso et al propose a nice idea for solving the gene to position problem posed in the DREAM
single cell transcriptomics challenge, but at the end fall short while finding ways to improve their
pipeline.

Response: We would like to thank the Referee 2 for reviewing our paper, and for his positive
comments. Below we gives him a point by point response for all his comments.

The explanations of why they used such approach are also scarce. Although maybe obvious,

it would be important that they explain why they chose genes with maximum entropy.

why 100 outgroup genes,

how the values of w1 and w2 were selected

and why doing a 2 step optimization.

Response: The approach for our gene set selection has two steps. We agree that these

steps have not been justified in our previous version. Now we have added a rationale for our
procedure. It is well known that many genes co-express, that is, their expression profiles are highly
correlated. This correlation introduces a degree of redundancy in the expression matrix, which is
oftenly reduced by clustering those genes with similar expression profiles. We assume that the
genes within each cluster would not provide much more information than just one in this group.
Since the challenge requires choosing a small set of genes, we must choose one gene that
represents each cluster. The question is then, which one?

This selection is made with the second criterion, which discards those genes with many null values
of expression over a large part of the population, because they are associated with

distributions with a large peak at zero. Of course, one could also use a criterion that selects the
gene with higher expression level, as you proposed (see last response). Regarding the number of
genes used as the outgroup genes, we did not make any computation to determine this number, or
to answer if there is an optimal number of genes. We just chose a number of genes greater than
the 86 genes, which seems to be good enough for the correct prediction of the cell positions.
Regarding the values of w1 and w2, unfortunately we cannot imagine other method to determine
w1 and w2 different from the brute force. In this sense, we began our study with a value of 0.5 for
each weight. That gave quite bad results. Then, we increased the weight w1 and decreased w2 by
0.10 at each step, obteining improvements in the performance, until we reached the weights shown
in the paper. We did not try to find the better weitghs. Initially, we assumed that an iterative
procedure could be a kind of self-consistent method that would lead to an improvement in
performance at every step. Unfortunately, that was not verified. The iterative procedure improved
the performance only in the first steps. For this resubmission, we have made several modifications
and performed perdictions, testing other hypotheses. However, we did not manage to substantially
improve our own results (see the last point).

Overall the rationale of their approach should be summarized in a couple of sentences in order to
make it clearer, unfortunately the diagram does not clarify the rationale either.
Response: We have remade the diagram of Fig. 3, and we have added a short description to each
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step in the legend of this figure.

Also, given that this criteria did not improve significantly while iterating, they should have tried other
selection criteria such as high expression level, or maybe other metrics such as the ones proposed
in the challenge. Maybe trying to optimize the position and the gene expression correlation as
interlocked steps is the source of the problem. Some discussion regarding this should be added.

Response: We have evaluated the performance of the approach by considering several
modifications. In particular, those proposed by the referee:

1.- We selected the genes with higher expression levels within each cluster, instead of the genes
with broadest level

distribution. This gene selection strategy gave similar results to the one presented in the original
version.

2.- We used the metrics based only on MCC, instead of the combination of two metrics.

In this case, the predicted expression patterns computed in the first iteration are used to compute
the MCC of the of the outgroup genes with the corresponding expression level of each one of the
1297 single cells. Finally, we computed a composed score S, defined as S =w1* ¢ + w2* o,
where ¢ is MCC score computed in the first step (with the 20 genes), and o is the MCC score
computed

with the outgroup set of genes, and w1 and w2 are the respective weights. We do not understand
the reasons why subsequent iterations do not improve performance, significantly. However, we
believe that the predicted expression pattern of the outgroup set of genes could be used to
improve, in subsequent steps, any other method with better performance than the one we have
proposed.

Competing Interests: No competing interests were disclosed.

Reviewer Report 24 October 2019
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© 2019 Da Silva R. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

?  Roosevelt Alves Da Silva
Fisica, Universidade Federal de Goias, Jatai, Brazil

In their manuscript entitled “Prediction of cell position using single-cell transcriptomic data: an iterative
procedure ” Alonso et al. apply a method to predict the cell position combining single-cell transcriptomic
data with a reference atlas. The study is submitted as part of the SCTC DREAM Challenge, which aims to
evaluate different algorithms for this prediction task using 20, 40 or 60 genes as reference. The authors
test their approach on SCTC challenge data-sets. They have three improvements on a method previously
published (ref 7'): gene selection, a new scoring function, and an iterative procedure for improve the
predictions. The paper is generally well-written, with a concise description of the problem and challenge.
However it has room for improvement, especially in the manner information is presented. My criticisms
are related to the clarification of details | thought to be missing from Methods and Results sections.
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Major comments:
1. | suggest to authors to add a sentence that help to reader to understand the aim of the paper in the
Introduction.

2. The fluxogram of Fig.3 seems has not a initial point. Why? | suggest to authors divide the
procedure in layers. Also authors must give a description in the legend of this figure.

3. Panel A of Fig. 4 has not legend, please add one.
Minor comments:
1. The description of acronyms MCC is duplicated. The author must introduce it in the first time that it
is mentioned.

2. Please, add adequate references for Mathews correlation coefficient (in Methods) and for Jaccard
distance (in Discussion).

References
1. Karaiskos N, Wahle P, Alles J, Boltengagen A, et al.: TheDrosophila embryo at single-cell
transcriptome resolution. Science. 2017; 358 (6360): 194-199 Publisher Full Text

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Biological physics, computational science, protein structures.

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however | have significant
reservations, as outlined above.

Author Response 31 Mar 2020
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Luis Diambra, Universidad Nacional de La Plata, La Plata, Argentina

Response: We would like to thank Referee 1 for reviewing our paper, and for his/her positive
comments.
Below, we give him/her a point by point response for all his/her comments.

Major comments:

| suggest to authors to add a sentence that help to reader to understand the aim of the paper in the
Introduction.

Response: We agree. We have added two sentences at the end of the Introduction in order to
clarify the aim of our work.

The fluxogram of Fig.3 seems has not a initial point. Why? | suggest to authors divide the
procedure in layers. Also authors must give a description in the legend of this figure.
Response: In this new version of the manuscript we have added a description to Fig. 3, and
modified its initial point and the layers in order to make them clearer.

Panel A of Fig. 4 has not legend, please add one.
Response: In this new version of the manuscript we have added a legend to Fig. 4A.

Minor comments:

The description of acronyms MCC is duplicated. The author must introduce it in the first time that it
is mentioned.
Response: The referee is correct, we have already fixed it.

Please, add adequate references for Mathews correlation coefficient (in Methods)

and for Jaccard distance (in Discussion).

Response: We have added two new references: ref10: 10.1016/0005-2795(75)90109-9 and
ref11:

10.1038/234034a0, respectively.

Competing Interests: No competing interests were disclosed.
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