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Abstract

Cyanuric acid is a common environmental contaminant and a metabolic intermediate in the

catabolism of s-triazine compounds, including atrazine and other herbicides. Cyanuric acid

is catabolized via a number of bacterial pathways, including one first identified in Pseudomo-

nas sp. strain ADP, which is encoded by a single, five-gene operon (atzDGEHF) found on a

self-transmissible plasmid. The discovery of two of the five genes (atzG and atzH) was

reported in 2018 and although the function of atzG was determined, the role of atzH was

unclear. Here, we present the first in vitro reconstruction of the complete, five-protein cyan-

uric acid catabolism pathway, which indicates that AtzH may be an amidase responsible for

converting 1,3-dicarboxyurea (the AtzE product) to allophanate (the AtzF substrate). We

have solved the AtzH structure (a DUF3225 protein from the NTF2 superfamily) and used it

to predict the substrate-binding pocket. Site-directed mutagenesis experiments suggest

that two residues (Tyr22 and Arg46) are needed for catalysis. We also show that atzH

homologs are commonly found in Proteobacteria associated with homologs of the atzG and

atzE genes. The genetic context of these atzG-atzE-atzH clusters imply that they have a

role in the catabolism of nitrogenous compounds. Moreover, their presence in many

genomes in the absence of homologs of atzD and atzF suggests that the atzG-atzE-atzH

cluster may pre-date the evolution of the cyanuric acid catabolism operon.

Introduction

The symmetrical triazine cyanuric acid (1,3,5-triazine-2,4,6-triol) is a common anthropogenic

compound that is used in the synthesis of a variety of disinfectants (e.g., trichlorocyanuric

acid) and herbicides (e.g., atrazine). It is catabolized and used as a nitrogen source by a number
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of bacteria and can be mineralized to carbon dioxide and ammonia [1]. Cyanuric acid is also a

common intermediate in the bacterial metabolism of other s-triazine compounds such as mel-

amine, atrazine and simazine [1].

There are at least two pathways for the mineralization of cyanuric acid, a biuret-dependent

pathway first described in Rhizobium leguminosarum bv. viciae 3841 (Fig 1A) [2,3], and a

1-carboxybiuret-dependent pathway observed in Pseudomonas sp. strain ADP (Fig 1B) [4,5].

The Rhizobium leguminosarum bv. viciae 3841 pathway employs cyanuric acid amidohydro-

lase (E.C. 3.5.2.15)[2,6,7] to ring-open cyanuric acid and the product (1-carboxybiuret) then

undergoes solvent-mediated hydrolysis under physiological conditions to form biuret. Biuret

is deaminated by biuret amidohydrolase (E.C. 3.5.1.84) to form allophanate and ammonia.

The genes encoding the cyanuric acid hydrolase (E.C. 3.5.2.15) and biuret hydrolase (E.C.

3.5.1.84) are co-located on a large plasmid and may form an operon (although this has not

been demonstrated). The fate of allophanate produced in this pathway remains unknown,

although there are several genes in the Rhizobium leguminosarum bv. viciae 3841 genome that

could degrade allophanate or its autohydrolysis product, urea [2,3].

The Pseudomonas sp. strain ADP cyanuric acid mineralization pathway is encoded by a sin-

gle, five-gene operon: atzDGEHF [8]. The atzG and atzH genes were discovered recently and

have been shown to encode proteins that are functionally expressed in Pseudomonas sp. strain

ADP [8]. AtzG is non-catalytic and forms an obligate heterotetramer with the 1-carboxybiuret

amidohydrolase, AtzE. In the absence of AtzG, AtzE is not soluble. The AtzEG complex is

thought to have evolved from the GatCA component of the bacterial transamidosome (Gat-

CAB) [8]. Like the Rhizobium leguminosarum bv. viciae 3841 pathway, Pseudomonas sp. strain

ADP also ring opens cyanuric acid using cyanuric acid amidohydrolase (AtzD) [7,9]. In this

pathway, it is 1-carboxybiuret that is deaminated by the next enzymatic step, which is catalyzed

Fig 1. Bacterial cyanuric acid catabolism. A. The 1-carboxbiuret-dependent pathway first described in Pseudomonas sp. ADP; and, B. the biuret-

dependent degradation pathway described in Rhizobium leguminosarum bv. viciae 3841. Compounds in square brackets are unstable under

physiological conditions: the terminal amides hydrolyze to liberate CO2.

https://doi.org/10.1371/journal.pone.0206949.g001
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by 1-carboxybiuret amidohydrolase (AtzE) to form 1,3-dicarboxyurea [8]. 1,3-Dicarboxyurea

must then undergo a single decarboxylation step to deliver allophanate to AtzF, which is again

deaminated to ultimately produce ammonia and carbon dioxide [10–13].

Several of the metabolic intermediates in the 1-carboxybiuret-dependent pathway are

unstable under physiological conditions: 1-carboxybiuret forms biuret and CO2, 1,3-dicarbox-

yurea and allophanate both form urea and CO2, and dicarboxyammonia (from allophanate

deamination) forms ammonia and CO2. Pseudomonas sp. strain ADP is unable to degrade

biuret or urea, and these solvent-mediated reactions effectively form metabolic ‘dead-ends’

[2,10]. Presumably, the enzyme-catalyzed reactions have rates that are sufficient to avoid this

outcome, effectively using the enzyme-mediated rate enhancement to control which hydroly-

ses occur. In this context, it is perhaps counter-intuitive that the conversion of 1,3-dicarbox-

yurea to allophanate would be uncontrolled, which would potentially lead to urea

accumulation via the solvent-mediated process; however, to date no enzyme has been identi-

fied that catalyzes this step [8].

Previously, proteomic analysis had demonstrated that AtzH is expressed from the cyanuric

acid catabolism operon. However, its function had not been explored in previous studies [8].

Herein, we present the structure of AtzH and explore its potential function.

Methods and materials

Cloning and mutagenesis

The AtzH gene, coding for the protein WP_006390399.1 (KSW21442.1), was cloned directly

from Pseudomonas sp. strain ADP genomic DNA with appropriate primers (5’ to 3’: CGACGA
CATATGCTCGAGATGCAAATTAATCTACC and TGCTGCGAGCTCCCTAGGTCAGGAAACG
GGC), before being subcloned into the NdeI and BamHI sites of the pETcc2 [9], which enabled

production of AtzH with an N-terminal hexa-his-tag with thrombin cleavage site (S1 Fig).

Cloning of the other genes used in this work has been described elsewhere [9,12,13].

The AtzF Ser189Ala variant and fourteen variants of AtzH (Tyr22Ala, Tyr22Phe, Arg46Ala,

Arg46Lys, Arg63Ala, Arg63Lys, Arg66Ala, Arg66Lys, Arg73Ala, Arg73Lys, Arg96Ala,

Arg96Lys, Gln106Ala, Gln108Ala) were produced using the QuikChange Lightning Multi

Site-Directed mutagenesis kit from Agilent Technologies (Santa Clara, CA) with the muta-

genic primers listed in S1 Table.

Heterologous protein expression and purification

The expression vectors were used to transform Escherichia coli BL21 (λDE3) cells (Invitrogen).

Bacteria were grown on Luria-Bertani (LB) medium containing ampicillin 100 μg/mL for the

pETcc2 constructs or chloramphenicol 34 μg/mL for the pACYCDuet-1 construct (used to co-

express AtzE and AtzG). Cells were grown with shaking at 200 rpm at 28˚C. Protein expression

was induced at an OD600 of 0.8 by addition of isopropyl-β–D-1-thiogalactopyranoside (IPTG;

1 mM final concentration).

Cells were harvested 24 hours after induction by centrifugation at 5000 x g for 15 minutes

using an Aventi J-E centrifuge (Beckman Coulter, Indianapolis, USA), resuspended in lysis

buffer (25 mM potassium phosphate, 5 mM imidazole, pH 7.5) and lysed by passage through a

Microfluidics homogenizer M-110P (Massachusetts, USA) five times at 15000 PSI. The lysis

was followed by centrifugation at 18000 x g for 45 minutes to pellet the cellular debris, and the

soluble fraction was used for further purification.

The soluble fraction was syringe filtered through a 0.22 μm filter (Merck Millipore, USA).

The His6-tagged proteins were isolated from the filtrate using a 5 mL Ni-NTA HisTrap HP
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(Healthcare Life Sciences) with an imidazole gradient from 5 mM to 500 mM over 10 column

volumes (CV). SDS-PAGE gel analysis was performed to assess the purity of the fractions.

Fractions containing AtzH were pooled and concentrated to 8 mg/mL for crystallography

using an Amicon Ultra-15 centrifugal filter unit. Finally, size exclusion chromatography was

performed using a 130 mL column packed with Superdex 76 preparation grade resin (GE

Healthcare Life Sciences), equilibrated with 25 mM HEPES and 200 mM NaCl, pH 7.5, over

1.5 CV.

All chromatography steps were performed using an ÄKTA purifier UPC 10 (GE Healthcare

Life Sciences).

Differential Scanning Fluorimetry (DSF)

Initially, buffer screening by DSF was performed on the wild-type protein–thirteen different

combinations of salt/buffer at different pHs were tested in triplicate (Buffer screen 9 protocol)

[14]. Protein was tested at 8 mg/mL in gel filtration buffer; 300 nL protein was diluted into

19.4 μL of each buffer, and 300 nL of a 1:20 dilution of sypro orange (Sigma S5692) was added.

The temperature was increased from 20 to 100˚C in increments of 0.5˚/ 5 sec. This gave a Tm

of 55.8 +/- 0.1˚C in the gel filtration HEPES buffer. A slight improvement was seen when the

protein was in 50 mM Tris pH 8, 200 mM NaCl (Tm of 57.1 +/- 0.1˚C). The fourteen mutants

were also tested for stability using DSF. Each sample was diluted to 1 mg/mL in 50 mM

HEPES pH 7.5, 200 mM NaCl, and 1 μL of protein was added to 19 μL of mix of 4 mL 50 mM

HEPES pH 7.5, 200 mM NaCl, 2.5 μL Sypro Dye. Each variant was run in 6-fold replicates,

and compared to the wild-type protein which was included as a control (under these condi-

tions the wild type protein had a Tm of 55.0 +/- 0.1˚C). A complete table of the results is shown

in S2 Table.

Crystallography

Purified AtzH at 8 mg/mL protein was used to set up a PCT test (Pre-Crystallization Test

[15]), and immediately showed microcrystal formation in the PEG based condition of the

PCT. The protein was diluted to 4 mg/mL and then set up in 3 initial PEG-rich screens (shot-

gun, PACT and C3_3; conditions available from c6.csiro.au [16]), in SD2 sitting drop plates

(Molecular Dimensions, UK) with an equal volume of crystallant (150 nL protein plus 150 nL

reservoir) at 20˚C. Crystals appeared overnight in many conditions. Further PEG based

screens (C3_1->C3_4, Morpheus_C3) were also set up, with the protein at 4 mg/mL with and

without added thrombin. Crystals continued to appear in many PEG-based conditions for up

to 3 weeks after setting up the plates. The AtzH wild-type protein and the variants were also set

up in co-crystallization trials with the PPDi inhibitor. 1 μL of a 40 mM solution of the inhibitor

in protein buffer (50 mM HEPES, 200 mM NaCl pH 7.5) was added to 40 μL of the 4 mg/mL

protein. The variants were each set up in two screens (Shotgun, C3_3) at 4 mg/mL (if accessi-

ble) with and without added inhibitor and incubated at 20˚C. The mutants in general crystal-

lized poorly, and only a few variants gave crystals suitable for harvesting. Crystals were

cryoprotected with addition of glycerol to a final concentration of 20% and cryo-cooled in liq-

uid nitrogen prior to data collection. Crystals used in data collection were harvested directly

from the screening plates.

The native AtzH P1 crystal form crystal was harvested from a 300 nL drop consisting of a

1:1 ratio of protein and reservoir, where the reservoir consisted of 200 mM ammonium acetate,

30% PEG 4000 and 100 mM sodium acetate buffer pH 5.0. The native C2221 crystal form was

harvested from a 300 nL drop consisting of a 1:1 ratio of protein and reservoir, where the
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reservoir contained 20% PEG 6000, 2.5% v/v tert-butanol with 100 mM sodium citrate buffer

at pH 5.5.

The R73K mutant (which crystallized in space group P21) was harvested from a 300 nL

drop consisting of a 1:1 ratio of protein/inhibitor and reservoir, where the reservoir contained

0.2 M diammonium tartrate, 20% w/v PEG 3350. Data sets were obtained at the Australian

Synchrotron beamline MX2 using a Dectris Eiger 16M detector and a full 360 degrees of data

were taken. The data were indexed using DIALS [17–21], scaled using Aimless [22] and the

original structure solution was determined by molecular replacement using Phaser [20,21]

with PDB code 2RCD as the model, after sequence alignment with Clustal-Omega and prun-

ing using Chainsaw [23,24] to give an appropriate starting model. The model was rebuilt man-

ually using Coot [25] and refined using Refmac [24,26].

In silico substrate docking was done using Accelrys Discovery Studio (v4.1). The Define

and Edit Binding Site program was used to identify cavities in AtzH. Models of 1,3-dicarbox-

yurea were prepared using the same client in doubly protonated, deprotonated and singly pro-

tonated states and docked into the cavity identified previously using the CDOCKER program

with default parameters.

Enzyme assays

Reaction rates were monitored by detecting the production of ammonium in μmoles per sec-

ond using the glutamate dehydrogenase GDH-coupled assay, described previously [3]. GDH

catalyzes the NADH-dependent amination of alpha-ketoglutarate. Ammonia production was

followed using the decrease of absorbance by UV spectrophotometry at 340 nm, due to the oxi-

dation of NADH by GDH. 1.25 U of GDH was used in a 250 μL reaction volume, the final con-

centrations of alpha-ketoglutarate and NADH were 3.5 mM and 0.2 mM, respectively. The

buffer was 25 mM potassium phosphate, pH 8.5. Cyanuric acid hydrolysis by AtzD was fol-

lowed by UV spectrophotometry at 214 nm [13]. In all the reaction mixes, 12 μM of AtzD,

0.17 μM of AtzE, 0.17 μM AtzF and 3.3 μM of AtzH or its variants were used in presence of 1

mM of cyanuric acid.

Results and discussion

Structural characterization of the Pseudomonas sp. strain ADP AtzH

We obtained the X-ray crystal structure of the AtzH. His6-tagged AtzH was produced in E. coli
and purified, yielding 5 mg of AtzH per 1 L of culture. Size exclusion chromatography per-

formed on AtzH after removal of the his-tag, suggested that the native protein had a molecular

mass of ~ 29 kDa, consistent with a dimer (2 x 14,655 kDa) (S2 Fig). Differential Scanning

Fluorimetry (DSF) was used to estimate the stability of the protein and showed that the native

protein had a Tm of 57.2˚C. Well diffracting crystals of AtzH grew readily, and two different

space groups were observed: P1 and C2221. X-ray diffraction data were collected for both.

The structure of AtzH was solved by molecular replacement, using the structure of a func-

tionally uncharacterized protein from Pectobacterium atrosepticum strain SCRI 1043 (PDB

accession number: 2RCD) [27] as the model. 2RCD is 56% identical to AtzH and there is a 1.0

Å rmsd between Cα atoms when superposing the structures (x-ray data are in Table 1). The

structures exhibit minor differences at the N- and C-termini and in some loop regions (includ-

ing the loop with weak density in AtzH, residues 66 to 73). Additionally, 2RCD has a dimer in

the asymmetric unit, which mirrors the dimer seen in AtzH where two, six-stranded β-sheets

sit face-on at an angle to form the interface. One long helix and two short helices sit on the out-

side of this interface and the overall dimer structure is very compact (Fig 2). Analysis with
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PISA [28] gives an interfacial surface area of almost 3,200 Å2 (or about 29% of the total surface

area of the protein).

AtzH belongs to NTF2-fold superfamily, which contains 38 protein families [29], including

the AtzH family: DUF3225 (DUF: domain of unknown function). Proteins of the NTF2 super-

family fulfil a number of functions, including enzymatic functions such as limonene-1,2-epox-

ide hydrolase, scytalone dehydratase, δ5-3-ketosteroid isomerase and polyketide cyclase [30–

33] and non-enzymatic roles including nuclear transport and bacterial secretion [34–39].

Among the 170 protein structures belonging to NTF2-fold superfamily available on the PBD

database, 24 are assigned as DUF3225 [40]; no DUF3225 protein had been functionally charac-

terized prior to this study.

A physiological role for AtzH

We investigated the effect of AtzH on the cyanuric acid catabolic pathway by reconstituting

the complete cyanuric acid mineralization pathway in vitro using purified enzymes; i.e., AtzD,

AtzEG and AtzF with and without AtzH. Inclusion of AtzH led to an increased rate of ammo-

nia production from cyanuric acid by the pathway (Fig 3C). This is consistent with an

Table 1. Crystal structure parameters.

6BJU

Wild-type

6C6G

Wild-type

6D63

Arg73Lys

Data collection

Space group P1 C2221 P21

Cell dimensions

a, b, c (Å) 51.8, 51.8, 59.7 71.5, 75.0, 96.2 99.7, 74.7, 103.6

α, β, γ (˚) 99.8, 102.2, 92.5 90, 90, 90 90, 96.7, 90

Resolution (Å) 1.64 (1.67–1.64) 1.80 (1.84–1.80) 2.30 (2.35–2.30)

Rmerge 0.087 (0.674) 0.159 (1.581) 0.267 (1.402)

Rpim 0.054 (0.412) 0.045 (0.438) 0.109 (0.561)

I / σI 7.8 (1.9) 11.2 (2.2) 6.6 (1.6)

CC1/2 0.995 (0.733) 0.998 (0.837) 0.986 (0.761)

Completeness (%) 97.2 (95.3) 100 (100) 100 (100)

Redundancy 3.6 (3.7) 13.3 (13.7) 6.9 (7.1)

Refinement 2 dimers 1 dimer 6 dimers

Resolution (Å) 50.5–1.64 37.5–1.80 50.1–2.30

Unique reflections 67,428 23,104 64,253

Rwork / Rfree 19.9 / 22.8 16.2 / 20.6 24.9 / 28.7

No. atoms 4538 2307 12,009

Protein 4029 2110 11,791

Inhibitor n/a n/a 30

Water 509 178 288

B-factors (Å2) 21.6 26.2 25.3

Protein 21.7 26.6 26.4

Inhibitor n/a n/a 40.9

Water 31.4 31.1 17.2

R.m.s deviations

Bond lengths (Å) 0.020 0.017 0.011

Bond angles (˚) 1.856 1.677 1.363

Note: Values in parenthesis are for the highest resolution shell.

https://doi.org/10.1371/journal.pone.0206949.t001
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enzymatic role for AtzH, potentially fulfilling the role of a decarboxylating 1,3-dicarboxyurea

amidohydrolase. Unfortunately, both the substrate and product for the putative AtzH-medi-

ated reaction are unstable under the conditions required for enzyme function (i.e., aqueous

buffer at physiological pH) and so the reaction could not be followed directly. However, it was

possible to probe the role of AtzH by varying the composition of the in vitro pathway.

The AtzD substrate (cyanuric acid) is stable and its hydrolysis easily followed by measuring

the reduction in absorbance at 214 nm caused by AtzD-mediated ring-opening [9]. It was

therefore possible to directly test the influence of AtzH on this step of the pathway by incubat-

ing AtzD and its substrate in the presence or absence of AtzH, and AtzH did not influence the

rate of this step (Fig 3A). The influence of AtzH on the AtzEG-catalyzed reaction was also

investigated (Fig 3B). The substrate for AtzEG (1-carboxybiuret) is unstable and was therefore

produced in situ via AtzD-mediated ring opening of cyanuric acid. One product of the AtzEG

reaction is ammonia, which was used to determine the rate of the reaction through a GDH-

coupled assay. In vitro cascades containing AtzD and AtzEG evolved ammonia from cyanuric

acid at the same rate whether or not AtzH was included in the incubation (Fig 3B).

These observations suggest that the AtzH-dependent increase in the rate of ammonia pro-

duction from the pathway was also AtzF-dependent; i.e., AtzH likely increases the rate at

Fig 2. The AtzH structure. A) The AtzH monomer with the seven-stranded anti-parallel β-sheet highlighted in yellow

and the three helices are shown in red; B) The AtzH dimer with the two protomers interacting through the β-sheet

secondary structure with the helices sitting on the outside. The two anti-parallel β-sheets sit at an approximate 30

degree angle to each other.

https://doi.org/10.1371/journal.pone.0206949.g002
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which AtzF produces ammonia, possibly by increasing the rate at which allophanate is fed to

AtzF. To further investigate this, an in vitro pathway comprised of AtzD, AtzEG and a variant

of AtzF that lacked the active-site nucleophile (AtzF Ser189Ala) was also tested. In this reac-

tion, the presence of AtzH also failed to improve the rate of ammonia production (Fig 3D),

confirming that the AtzH-mediated effect observed in the fully reconstituted pathway is

dependent on the presence of active AtzF. These observations imply that AtzH is either

increasing the rate of allophanate production from 1,3-dicarboxyurea, or enhancing the activ-

ity of AtzF itself.

Fig 3. Impact of AtzH on the rate of the cyanuric acid pathway in vitro. A) Rate of cyanuric acid (CA) degradation in

presence of AtzD with/without AtzH; B) Rate of ammonia production when CA is put in presence of AtzD and AtzEG

with/without AtzH; C) Rate of ammonia production when CA is put in presence of AtzD, AtzEG and AtzF with/without

AtzH; D) Rate of ammonia production when CA is put in presence of AtzD, AtzEG and an inactive variant of AtzF

Ser189Ala with/without AtzH; E) Rate of ammonia production when biuret is put in presence of BiuH and AtzF with/

without AtzH. ��� indicates a significant difference between the rate measured in the presence of AtzH and the rate

measured without the AtzH (pval< 0.005, measured by Student’s t-test; n = 3).

https://doi.org/10.1371/journal.pone.0206949.g003
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To test whether AtzH increases the catalytic activity of AtzF, an alternative in vitro pathway

was tested in which biuret was incubated with the biuret amidohydrolase BiuH [2] and AtzF.

BiuH produces allophanate directly, and so an increase in the rate of ammonia production in

this pathway would indicate that AtzH is an allosteric activator of AtzF. However, the presence

of AtzH made no measurable difference to the rate of ammonia production (Fig 3E), suggest-

ing that AtzH does not ‘activate’ AtzF. The simplest explanation for these observations is that

AtzH mediates the decarboxylation of 1,3-dicarboxyurea, the product from AtzEG, to form

allophanate, the substrate for AtzF.

Defining the active site of AtzH

The AtzH active site was sought by examining the X-ray structure. As 1,3-dicarboxyurea is

unstable, it was not possible to produce crystals of AtzH in its presence. However, an in silico
docking simulation between the X-ray crystal structure of the AtzH dimer and 1,3-dicarbox-

yurea elucidated a potential active site (Fig 4A and 4B). The putative substrate bound with good

complementarity to an arginine-rich pocket comprised of Tyr22, Arg46, Arg63, Arg66, Arg73,

Phe94, Arg96, Gln106 and Gln108 (Fig 4A and 4B). The arginine residues form an extensive

hydrogen bonding network with the carbonyl oxygens of 1,3-dicarboxyurea. Tyr22 is positioned

within 3 Å of the carbonyl carbon of one of the two terminal carboxylic acids, and Arg46 is

within hydrogen-bonding distance of the hydroxyl group of Tyr22. Tyr22 and Arg46 are there-

fore well positioned to form a catalytic dyad, albeit one of atypical composition.

Guided by the results of the docking experiment, fourteen variants of AtzH were produced:

Tyr22Ala, Tyr22Phe, Arg46Ala, Arg46Lys, Arg63Ala, Arg63Lys, Arg66Ala, Arg66Lys,

Arg73Ala, Arg73Lys, Arg96Ala, Arg96Lys, Gln106Ala, Gln108Ala (S1 Table). All of the vari-

ants were correctly folded, as assessed by DSF (S2 Table). Furthermore, X-ray structures of the

R73K variant (PDB: 6D63) was also obtained and closely resembled the wild-type enzyme

(PDB: 6BJT, 6BJU) except for the intended amino acid substitution. The AtzH variants were

added to in vitro pathways comprised of AtzD, AtzEG and AtzF and incubated with cyanuric

acid. Five of the variants (Tyr22Ala, Tyr22Phe, Arg46A, Arg46Lys and Arg63Lys) were found

to enhance the rate of ammonia production, albeit to a significantly lower extent than the

wild-type AtzH (Fig 5). The loss of function of Arg63Lys, but not of Arg63Ala, may suggest

that Arg63 does not have a catalytic role. However, AtzH Tyr22Ala/Phe was indistinguishable

from the AtzH-free cascade (Fig 5). The Arg46Ala and Arg46Lys variants both increased the

rate of ammonia production by the cascade, but to a lesser degree than that of the wild-type

AtzH (Fig 5). This may suggest that Tyr22 is the catalytic amino acid residue in AtzH, possibly

acting as a proton donor (consistent with the catalytic role of tyrosine in other enzymes) [41],

with Arg46 fulfilling a non-critical function As the substrate analog binds between Arg46 and

Tyr22, it seems unlikely that Arg46 has a role in activating Tyr22 (noting that the substrate

analog may not adopt exactly the same conformation as the bound substrate). However, this

positioning of the active site residues relative to the bound analog is similar to that of the cata-

lytic residues in inverting β-glycosidases that use an acid-base catalytic mechanism [42], and it

is plausible that that a similar mechanism may be used here. Further work is needed to test this

hypothesis.

The wild-type and variants were co-crystallized with 1,3-dicarboxyacetone, a stable struc-

tural analogue of 1,3-dicarboxyurea. In the AtzH Arg73Lys structure (PDB 6D63) 1,3-dicar-

boxyacetone was found to occupy the predicted active site of AtzH in a subset of the

protomers (25%), indicating that this pocket is accessible by 1,3-dicarboxyurea-like small mol-

ecules (Fig 4C and 4D). The hydrogen bonding network is largely as predicted for 1,3-dicar-

boxyurea, and Tyr22 is well positioned as the catalytic residue.
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Fig 4. Substrate and substrate analog binding by AtzH. A-B) Simulated binding of 1,3-dicarboxyurea (yellow) by AtzH.

Amino acids residues involved in binding 1,3-dicarboxyurea are shown as green sticks; C-D) X-ray structure of AtzH

Arg73Lys co-crystalized with the substrate analog 1,3 dicarboxyacetone (pink). The distance between Tyr22 and the carbon

of the carboxyl group is<3 Å; E) Polder map (3 sigma density contour) of 1,3 dicarboxyacetone bound to the AtzH

Arg73Lys variant.

https://doi.org/10.1371/journal.pone.0206949.g004
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AtzH homologs in other bacterial genomes

AtzH is the first DUF3225 family protein that has been shown to possess a catabolic function,

likely decarboxylating the product of AtzEG-mediated deamination of 1-carboxybiuret as part

of the cyanuric acid mineralization pathway. Homologs of the other members of the pathway

are found in different metabolic contexts: the AtzD homolog barbiturase participates in pyrim-

idine catabolism [43], the AtzEG homologs GatCA are involved with acyl-tRNA metabolism

[44] and the AtzF homolog allophanate hydrolase is used in urea catabolism [45]. We were

therefore interested to investigate whether AtzH homologs may also participate in alternative

metabolic contexts.

A thorough search of microbial genomes in the GenBank database revealed more than

thirty examples of genomes containing homologs of atzG, atzE, and atzH organized as a single

gene cluster with the same organization as that of the Pseudomonas sp. strain ADP cyanuric

acid catabolism operon (Fig 6). Perhaps surprisingly, the atzG-atzE-atzH clusters were rarely

associated with atzD or atzF homologs.

The most common arrangement, found in species of Enterobacteriaceae (Pectobacterium,

Serratia, Enterobacter, Klebsiella, Kosakonia, Pantoea, Yersinia and Erwinia), has the atzG-

atzE-atzH cluster immediately downstream of a gene predicted to encode γ-glutamyl transfer-

ase (ggt, E.C. 2.3.2.2). In these genomes, the ggt-atzG-atzE-atzH cluster is found downstream

and on the opposite strand from a gene cluster encoding a LysR-family regulator, an ABC

transporter, a transaminase and an allantoate amidohydrolase. The overall genetic organiza-

tion of these clusters is similar to that of the cyanuric acid catabolism operon of Pseudomonas
sp. strain ADP, albeit lacking atzF and with atzD replaced by ggt. (Fig 6B, S3 Fig)

γ-Glutamyl transferase, which also acts as glutathione hydrolase (E.C. 3.4.19.13), is respon-

sible for the amide hydrolysis of glutathione to produce L-glutamate and L-cysteinylglycine

(Fig 7). Further, the substrate for allantoate hydrolase, an enzyme found encoded in close

proximity to the Enterobacteriaceae atzG-atzE-atzH clusters described here, contains two

Fig 5. Impact of the presence of AtzH variants on the ammonium production rate of the in vitro cyanuric acid

catabolism pathway. The rates of ammonia production by the cyanuric acid catabolism pathway (AtzD, AtzEG and

AtzF) reconstituted in vitro with no AtzH (white), wild-type AtzH (striped) or an AtzH variant (gray) are shown. ���

indicates an ammonia production rate that is significantly different from a reaction in the presence of wild-type AtzH

(pval< 0.005, measured by Student’s t-test; n = 3).

https://doi.org/10.1371/journal.pone.0206949.g005
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Fig 6. Representative genomic organization of atzG-atzE-atzE clusters in Proteobacteria. The organization of gene regions that contain the atzG-
atzE-atzH clusters from A) Pseudomonas sp. strain ADP and, B-D) three bacteria that illustrate the most common genomic organizations associated

with the cluster are shown. A comprehensive version is available (S3 Fig).

https://doi.org/10.1371/journal.pone.0206949.g006

Fig 7. Hydrolyses catalyzed by enzymes encoded by genes associated with atzG-atzE-atzH clusters. A-B) Reactions

performed by a gamma-glutamyltransferase (GGT) and C) an allantoate hydrolase. Ureido and amide groups are shown in

colors.

https://doi.org/10.1371/journal.pone.0206949.g007
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ureido groups (Fig 7) [46]. It is possible that atzG-atzE-atzH clusters form components of cata-

bolic pathways in which the substrates possess amide groups.

There are also gene clusters found in β-proteobacter from the orders Comamonadacaea (Rho-
doferax and Variovorax) and Burkholderiales (Rhizobacter, Leptothrix, Methylibium and Rhizo-
biales) that contain an allophanate hydrolase encoding gene. In all cases, the allophanate hydrolase

gene is upstream of the atzG-atzE-atzH cluster and encoded on the same strand; in about half of

the genomes there are genes encoding an ABC transporter separating the allophanate gene from

the atzG-atzE-atzH cluster. Downstream, and encoded on the same strand as these atzG-atzE-
atzH clusters, are genes encoding ABC transporters and amidase enzymes. This may indicate that

these clusters are for the uptake and catabolism of nitrogenous compounds. (Fig 6C, S3 Fig)

Other Burkholderiales (Bordetella and Achromobacter) possess atzG-atzE and atzH clusters,

but where the cluster also includes genes of unknown function that are annotated by homology

as a transcriptional regulator, a monooxygenase and an FMN-reductase. In these clusters atzH
is located between the genes encoding the monooxygenase and reductase, rather than immedi-

ately downstream of atzG and atzE. Finally, a number of diverse α-, β-, and γ-proteobacteria

(Pseudorhodoplanes, Methylobacterium, Thiomonas, Hydrogenophaga, Comamomonas, Pseu-
domonas, and Halothiobacillus) have atzG-atzE-atzH clusters in unique genetic contexts,

including the cyanuric acid catabolic operon of Pseudomonas sp. strain ADP. (Fig 6D, S3 Fig).

The occurrence of the atzG-atzE-atzH cluster appears to be far more wide-spread than the

cyanuric acid catabolic pathway, and it is frequently associated with genes that may be

involved in the catabolism of diverse nitrogen-containing compounds. However, the genetic

contexts in which atzH-like genes are found provides little further evidence to suggest the spe-

cific function of the AtzH protein.

Conclusion

The data presented here imply that AtzH is a decarboxylating, 1,3-dicarboxyurea amidohydro-

lase. As yet its catalytic mechanism is not known, but our results suggest it involves the action of

Tyr22 and Arg46, and that these amino acid residues are positioned relative to the substrate in a

manner consistent with an acid-base mechanism. AtzH also facilitates the only previously

uncontrolled step in the catabolic pathway, and as such, we believe that we have now identified

the last remaining enzyme in the Pseudomonas sp. strain ADP cyanuric acid catabolism path-

way (Fig 1B). The pathway appears to be dependent on enzymatic steps that outcompete solvent

mediated hydrolysis that would otherwise lead to the accumulation of dead-end metabolites

(biuret and urea). With no endogenous biuret or urea hydrolases, formation of these metabo-

lites effectively prevent access to two of the three nitrogen atoms of the triazine ring.

Unexpectedly, atzG-atzE-atzH -like clusters appear to be relatively common within the Pro-

teobacteria. Given the amidase function of AtzE and proposed amidase activity of AtzH, it is

perhaps unsurprising that the atzG-atzE-atzH-like clusters tend to be associated with genes pre-

dicted to be involved in nitrogen compound metabolism. Previously, we had demonstrated that

atzG and atzE were likely to have co-evolved from components of the bacterial GatCAB (transa-

midosome) complex. Here, we report the discovery of atzG-atzE-atzH-like clusters associated

with diverse genetic contexts and metabolic functions, implying that the formation of the atzG-
atzE-atzH cluster may predate the evolution of the cyanuric acid catabolism operon.

Supporting information

S1 Fig. AtzH protein sequence. The AtzH sequence is shown in black and the supplementary

hexa-his-tag with thrombin cleavage site in red.
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S2 Fig. Purification of heterologous AtzH from E. coli. A. SDS-PAGE analysis of the

fractions 2–11 of the Ni-NTA purification of His6-AtzH (left), UV absorbance trace of the

Ni-NTA purification (right), fractions 7 to 11 were concentrated and further purified; B.

SDS-PAGE analysis of the size exclusion, showing the content of fractions 7–11 (left); UV

absorbance trace of the size exclusion (right). On the traces, the green line in A. represents the

% buffer B, the blue line shows the UV absorbance at 280 nm in arbitrary units; M: molecular

marker, W: whole cell, S: soluble.

(DOCX)

S3 Fig. Genetic organization found flanking atzE homologues in other types of bacteria. A.

Bacteria containing an allantoate hydrolase and glutamyl-transferase enzymes upstream of the

atzG-atzE-atzH segment; B. Bacteria found to be containing an allophanate hydrolase homo-

logue of AtzF found upstream of the atzG-atzE-atzH segment; C. Bacteria containing a non-

adjacent AtzH homologue, located between a monooxygenase and reductase enzymes, down-

stream of the atzG-atzE segment; D. Bacteria presenting the atzG-atzE-atzH cluster within

unique gene organizations. A legend is shown at the top of the figure. Green arrows represents

amidase type enzymes, black and grey tones represent ABC transporters, discontinued dark

blue arrows represent the presence of a LysR type regulator, genes encoding for AtzG, AtzE

and AtzH homologues are shown by orange, yellow and pink arrows and light blue arrows rep-

resent other types of enzymes, respectively. This figure is not to scale.

(DOCX)

S1 Table. Mutagenic primers used for introducing point mutation in AtzH’s sequence.

(DOCX)

S2 Table. DSF of the AtzH variants.
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