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Cisplatin is a common chemotherapeutic drug that has been used to treat of numerous
tumors, including testicular, lung, bladder, ovarian, liver and head and neck cancers. Although
clinical chemotherapy based on cisplatin has shown a remarkable therapeutic effect, the
resistance to cisplatin becomes increasingly obvious as a patient uses it for a prolonged
period. It not only affects the prognosis of these tumors, but also causes the recurrence of
cancer and decreases the overall survival rate. The development of cisplatin resistance involves
several mechanisms, including DNA damage repair, ATP-binding cassette (ABC) transporter,
autophagy, cancer stem cells (CSCs), epithelial–mesenchymal transition (EMT), and other
related signaling pathways. Interestingly, thesemechanisms have been found to be influenced
by circular RNAs (circRNAs) to regulate tumor proliferation, invasion, chemosensitivity, and
other biological behaviors in the tumor microenvironment (TME). In recent years, circRNAs in
cisplatin resistance in tumors, especially lung cancer and gastric cancer, have gradually drawn
peoples’ attention. This review summarizes recent studies on the functions and mechanisms
of circRNAs in cisplatin resistance. We emphasize that circRNA can be used as a promising
target gene to improve drug resistance and therapeutic efficacy.
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INTRODUCTION

Cisplatin
Dr. Rosenborg accidentally discovered cisplatin in 1965 and predicted that it could inhibit cancer cell
division (Rosenberg et al., 1965). About 50 years ago, cisplatin was approved by the US Food and
Drug Administration (FDA) for the treatment of testicular cancer (Kartalou and Essigmann, 2001).
Thereafter, cisplatin has become a common chemotherapeutic drug for numerous tumors, including
testicular, lung, bladder, ovarian, liver, and head and neck cancers (Dasari and Tchounwou, 2014). It
has numerous anticancer mechanisms. It is generally believed to interact with the nucleophilic N7
locus of purine base on DNA; as a result, DNA is damaged, and related signaling pathways are
activated, thereby causing tumor cell apoptosis (Dasari and Tchounwou, 2014; Rocha et al., 2018;
Ghosh, 2019) (Figure 1). With the continuous application of cisplatin in the chemotherapy of
various tumors, its clinical efficacy has been found to be unsatisfactory. Cisplatin often develops
resistance as patients use it for a prolonged period (Cocetta et al., 2019). Therefore, the cisplatin
resistance mechanism of tumors has been widely studied to improve the survival rate and long-term
prognosis of patients. For example, the accumulation of cisplatin and DNA compounds should be
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reduced by increasing the efflux or inhibiting the influx, lowering
the toxicity of cisplatin with antioxidants (e.g., glutathione),
enhancing DNA repair and DNA methylation, changing
membrane protein transport, and activating or inactivating
epithelial–mesenchymal transition (EMT) and other related
pathways (Shen et al., 2012; Amable, 2016). Cisplatin
resistance is also associated with cancer stem cells (CSCs). In
addition, J.A.Ferreira et al. emphasized the functions of protein
glycosylation in drug resistance (Ferreira et al., 2016). Besides,
autophagy can promote the apoptosis of multidrug-resistant
(MDR) cells, improve drug sensitivity, and protect cancer cells
from the toxicity of chemotherapy drugs (Li et al., 2017). In recent
years, increasing evidence has shown that the exocrine vesicles
secreted from tumor cells can change the tumor
microenvironment consequently, tumor growth is facilitated,
and the resistance of chemotherapeutic drugs is promoted

(Chiarugi and Cirri, 2016). Multiple mechanisms play roles in
cisplatin resistance. These mechanisms are elaborated later.

Circular RNAs (circRNAs)
Noncoding RNAs (NcRNAs) can be divided into microRNAs
(miRNAs), lncRNAs, and circRNAs (Iorio and Croce, 2017).
CircRNAs were first discovered from a plant virus 40 years ago
(Sanger et al., 1976). They have become a new hotspot in RNA
research. CircRNAs are covalently closed-loop RNA molecules,
which can splice the pre-RNA encoded by the coding gene
through the interaction between reverse splicing and canonical
splicing (Chen and Yang, 2015; Belousova et al., 2018). CircRNAs
can be divided into three types, namely, exonic circRNAs, circular
intron circRNAs, and exon–intron circRNAs (Meng et al., 2017)
(Figure 2). They have no polyadenylation tail with 5′–3′ polarity
(Chen and Yang, 2015). In mammals, circRNAs act as a sponge of

FIGURE 1 | Molecular formula of cisplatin is Cl2H4N2Pt. DNA damage was caused by integrating cisplatin with the nucleophilic N7 locus of a purine base in a
double-helix DNA.

FIGURE 2 | Classification of circRNA. Based on the composition, circRNAs are classified as exonic circRNAs (ecircRNAs), circular intron circRNAs (ciRNAs), and
exon–intron circRNAs (EIciRNAs).
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miRNAs or combine with RNA-related proteins to form
complexes to regulate gene expression and act as a gene
regulator (Han et al., 2018). Some circRNAs can modulate
gene transcription through RNA polymerase II in the gene
promoter region. In addition, CircRNAs can also negatively
regulate classical splicing through the interaction of the
splicing factor muscleblind (MBL) (Su et al., 2019a). Recent
studies have shown that circRNAs play an important role in
the treatment of nervous system diseases, vascular diseases, and
tumors (Qu et al., 2015). CircRNAs can be used as a biomarker of
various cancers. They regulate tumor proliferation, invasion,
chemosensitivity, and other biological behaviors by sponging
miRNA or directly targeting a gene. Similar to lncRNAs,
circRNAs and miRNAs also form a competing endogenous
RNA (ceRNA) network (Su et al., 2019a; Verduci et al., 2019).
The expression of circRNAs in tumor cells may be upregulated or
downregulated compared with that in the surrounding normal
tissues. Its effect may trigger tumor cells to respond positively or
negatively to chemotherapeutic drugs.

Studies have gradually explored the regulatory effect of
circRNAs on cisplatin resistance. This review summarizes
recent studies on the functions and mechanisms of circRNAs
in cisplatin resistance.

Mechanisms
CeRNA net
CeRNA is an abbreviation of competing endogenous RNAs (Qi
et al., 2015). CeRNAs comprise lncRNAs, circRNAs, protein-
coding RNAs, tRNAs, rRNAs, and pseudogene RNAs (Qu et al.,
2015). Theoretically, most ceRNAs have miRNA reaction
elements (MREs). CeRNAs with the same MREs in single cells
can regulate the transcription and translation of parental RNA by
targeting the same or similar miRNA (An et al., 2017). The
formation of a ceRNA network needs three basic conditions.
First, a ceRNA should have a high expression level so that it is not
affected by and interfered with the inhibition of downstream

miRNAs on target genes. Second, only when the number of MREs
is sufficient, circRNA can perform its biological function. The
distribution and concentration of ceRNAs and miRNAs will also
affect the ceRNA network. Third, different MREs have various
effects on ceRNAs and miRNAs, which play a major role in
ceRNA NET. Different circRNAs can bind to the same miRNA,
but the nucleotide compositions of MREs may be partially
different (Zhang et al., 2019) (Figure 3). In recent years, the
studies on the mechanism of circRNA in cisplatin resistance are
mostly based on the ceRNA network.

Autophagy
Autophagy is a process through which starvation-induced
lysosomes capture and degrade intracellular proteins and
organelles and recycle intracellular components to maintain
survival and metabolism (Amaravadi et al., 2016). Autophagy
can be divided into macroautophagy, microautophagy, and
concomitant factor-mediated autophagy (Guo et al., 2018).
Macroautophagy is the most studied and classic form; in this
process, autophagosomes transfer degraded substrates to
lysosomes in the cytosol (Feng et al., 2014) (Figure 4). About
30 genes have been identified as autophagy-related genes (ATGs)
in genetic analogues of many mammals and yeasts (Klionsky,
2012). For example, the deletion of Beclin-1, a mammalian gene
of yeast ATG6, can promote tumorigenesis and support
autophagy to inhibit tumor development (Qu et al., 2003).
LC3 is an ubiquitin-like protein that combines with
phosphatidylethanolamine (PE) to form a compound. This
compound can interact with an ATG12-ATG5-ATG16L1
complex to confer the LC3–PE compound with the ability to
produce an E3-like activity and participate in autophagy substrate
degradation (Ichimiya et al., 2020). Autophagy disorders can lead
to many diseases, such as Alzheimer’s disease, microbial
infections, cardiomyopathy, diabetes, and even cancers (Levine
and Kroemer, 2008; Sridhar et al., 2012).At early stages,
autophagy is considered to inhibit cancer occurrence.

FIGURE 3 | Regulatory mechanism of circRNA as ceRNA. CircRNA is cut off from a precursor RNA to sponge miRNA, block the expression of an miRNA-targeted
gene (mRNA) in cells, and form a circRNA–miRNA–mRNA network. It has the same role in exosomes secreted by cells. Each miRNA can form a silent complex with an
Argonaute (AGO) protein. An miRNA pairs with a target transcript, and the AGO protein promotes either target instability or transcriptional suppression.
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However, at late stages, autophagy is the mechanism that
promotes tumor cell survival. Autophagy plays a two-way
regulation in tumor cells; thus, it has attracted considerable
attention in tumor research (Sridhar et al., 2012). Many
studies have also investigated the mechanism of autophagy in
tumor chemoresistance. These studies have found that autophagy
also plays a two-way role in the regulation of antitumor drugs. In
the case of MDR, autophagy may be activated as a protective
mechanism to protect tumor cells from the toxicity of
chemotherapeutic drugs. However, autophagy can also induce
tumor cells to die. Therefore, in this respect, autophagy can
promote the sensitivity of chemotherapeutic drugs (Li et al.,
2017). Most research results have shown that autophagy can
promote cisplatin resistance in tumor cells. Studies have yet to
determine whether autophagy can promote tumor cell apoptosis
and the chemotherapeutic sensitivity of tumor cells remains
unknown.

ATP-Binding Cassette (ABC) Transporter
ATP-binding cassette (ABC) transporters were discovered in the
1970s. They are energy-dependent transport systems of substrate-
binding proteins (SBPs), which are activated by ATP hydrolysis
(Theodoulou and Kerr, 2015). They can transport the solutes
from the inside to the outside of cells (Figure 5). To date, 48
members of the ABC transporter protein family have been
identified according to the sequence and structure of the ABC

domain, and they are divided into seven A–G families. The ABC
transporters can be mainly divided into three categories, namely,
importers (prokaryotes), exporters (eukaryotes and prokaryotes),
and ABCs repaired and translated by DNA. In short, importers
import all kinds of molecules, whereas exporters export them
(Paolini et al., 2015). Therefore, they influence the
pharmacokinetics of chemotherapy (Paolini et al., 2015).
Therefore, they influence the pharmacokinetics of
chemotherapy. An ABC transporter identifies a series of
antitumor drugs without structural correlation in cancer cells
and transfers them outside the cell by using the energy of ATP
hydrolysis (Stefan, 2019). Multidrug resistance protein 1 (MDR1)
is also called P-glycoprotein. Its gene is known as ABCB1. The
gene of breast cancer resistance protein (BCRP) is called ABCG2.
The gene of multidrug resistance-related protein 1 (MRP1) is
ABCC1. These three proteins are the most important ABC
transporters in the mechanism of chemotherapeutic drug
resistance in tumors (Hellsberg et al., 2015). CircRNA induces
cisplatin resistance by regulating the expression of ABC
transporter-related genes.

Cancer Stem Cells (CSCs)
Cancer stem cells (CSCs) are pluripotent tumor cells derived from
normal stem cells, which have a self-renewal ability and a strong
differentiation potential (Ajani et al., 2015; Lathia and Liu, 2017).
The concept of CSCs has been widely recognized in the last

FIGURE 4 | Macroautophagy. Through macroautophagy, substances in solute are transported to lysosomes via the autophagosome of a bilayer lipid.
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decade, and CSCs are related to the growth and development of
most malignant tumors (Chen et al., 2017). However, CSCs are
generally insensitive to chemotherapeutic drugs. Although tumor

cell chemoresistance occurs frequently, CSCs seem to be
particularly resistant to chemotherapy. This resistance is due
to the slower cell cycle of CSCs than that of many cancer cells

FIGURE 5 | MDR1 drug transport mechanism. NBDs are nucleotide-binding domains. The substrate enters inside the protein. ATP binds to the binding site of
NBD. ATP releases energy to change the conformation of transmembrane proteins and releases drugs out of the cell membrane. Subsequently, the next ATP is
hydrolyzed to restore protein conformation. The above process is repeated.

FIGURE 6 | CSCs regulate drug resistance-related signaling pathways. TGF-β, transforming growth factor-β; Wnt/β-catenin; Hh, Hedgehog: Notch; FGFR,
fibroblast growth factor receptor; andMEK,mitogen-activated protein kinase. Multiple signaling pathways promote the transformation of tumor cells to CSCs to maintain
the features of CSCs or promote the growth and proliferation of CSCs.
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targeted by chemotherapeutic drugs; their division speed is also
not as fast as that of normal cells (Chang, 2016). CSCs are located
in a special environment composed of fibroblasts and endothelial
cells, mesenchymal cells, and immune cells. This environment is
called a niche. Adjacent cells maintain CSCs through related
signaling pathways and promote the endogenous drug resistance
of CSCs (Prieto-Vila et al., 2017). Experiments have
demonstrated that chemotherapy and radiotherapy can
increase the quantity of CSCs and make tumor cells transform
into CSCs (Chang, 2016). Moreover, several mechanisms,
including EMT and ABC transporter, and signaling pathways
including the Wnt pathway, participate in the drug resistance of
CSCs. They are introduced in the following sections (Prieto-Vila
et al., 2017). Therefore, to explore the role of CSCs in cisplatin
resistance in tumors, pathways including fibroblast growth factor
receptor (FGFR) or transforming growth factor-β (TGF-β)
should be investigated to explore the role of CSCs in cisplatin
resistance in tumors (Robey et al., 2018) (Figure 6). In discussing
the role of circRNAs in cisplatin resistance, studies on the
interaction of multiple mechanisms, including CSCs, are
presented to discuss the role of circRNAs in cisplatin resistance.

Exosomes
Exosomes are nanosized bilayer vesicles composed of
extracellular lipids, which contain some biomolecules, such as
lipids, proteins, and nucleic acids. Exosomes were first believed to
exclude useless cellular components; later, they were found to be
involved in many physiological and pathological processes, even
cancers (He et al., 2018). In addition, primary tumor biomarkers
are transferred by exosomes to distant organs to achieve tumor
metastasis (García-Olmo et al., 1999). These molecular markers
include miRNAs, lncRNAs, and circRNAs. Thus, the effect of
exosomes on tumors should be further studied. The drug
resistance of exosomes in tumors has been extensively studied.
Exosomes can promote tumor drug resistance through the
following ways: firstly, exocrine molecular substances can
compete with some anticancer chemotherapeutic drugs and
bind to oncogenic targets to produce drug resistance;
Secondly, exosomes transfer the drug resistance of drug-
resistant cells to sensitive cells; Thirdly, tumor cells secrete
chemotherapeutic drugs outside cells through exosomes
(Zhang et al., 2018a). This principle applies to cisplatin
resistance in tumor cells. CircRNAs secreted by exosomes
promote related tumor cells to produce resistance to
chemotherapeutic drugs. Similarly, circRNAs secreted by
exosomes can regulate other targeted genes or other pathways,
such as CSCs andWnt, to regulate the biological characteristics of
tumor cells.

DNA Damage Repair
Chemotherapeutic drugs, such as cisplatin, can damage the DNA.
Accordingly, a mechanism called DNA damage repair (DDR)
maintains the stability of DNA (including DNA in cancer cells) in
our body. These damages are repaired through many methods,
including nucleotide excision repair (NER), mismatch repair,
base excision repair, and homology-directed repair (Gavande
et al., 2016). The key genes encoding DNA damage response

and DNA repair include BRCA1 and BRCA2 germline mutation,
which leads to cancer susceptibility syndrome. The exposure of
these tissues to carcinogens makes them more likely to become
cancerous (Brown et al., 2017). In terms of drug resistance,
excision repair cross-complementing (ERCC1) forms an
ERCC1–XPF enzyme complex, which can repair the DNA
damage caused by chemotherapeutic drugs via NER. ERCC1
overexpression is negatively correlated with the clinical
outcome of platinum therapy (Zheng, 2017). Therefore,
ERCC1 can be used as an indicator of cisplatin resistance,
indicating that it plays a role in DNA repair (Huang et al.,
2019a). DNA polymerase ζ plays a role in the microhomology-
mediated repair of break-induced replication. REV3L is the
largest catalytic subunit in DNA polymerase ζ, indicating that
it also participates in DNA repair (Martin and Wood, 2019).
Therefore, REV3L overexpression regulated by circRNAs can
promote cisplatin resistance (Pang et al., 2020).

Epithelial–Mesenchymal Transition
The lineage transition between epithelial and mesenchymal cells
shows that polarized epithelial cells lose their adhesion properties
and obtain a mesenchymal phenotype; this process is called EMT
(Chen et al., 2017). The role of EMT in tumor drug resistance has
been gradually recognized and explored. In the mouse model of
Fischer et al., cyclophosphamide treatment significantly reduces
the amount of primary epithelial tumors, but the amount of
tumor cells with a positive EMT is not significantly reduced. This
finding indicates that EMT may be involved in the formation of
drug resistance, including TGF and other factors in an EMT-
mediated signaling pathway (Du and Shim, 2016). In colon
cancer cells, TGF-β upregulation can promote EMT and
Adriamycin resistance (Li et al., 2015). As mentioned before,
CSCs can interact with EMT to regulate the biological
characteristics of tumors. They are related to multiple
pathways. Similarly, EMT also includes TGF-β, Notch, Wnt,
KRAS, and phosphatidylinositol 3-kinase (PI3K) pathways
(Singh et al., 2018) (Figure 7).

Signaling Pathways
Wnt Signaling Pathway
The Wnt signaling pathway is involved in the embryonic
development and homeostasis of normal adults and many
normal processes. The human Wnt protein family contains 19
glycoproteins. This signaling pathway is not only involved in the
proliferation, renewal, and survival of normal human cells but
also implicated in diabetes, Parkinson’s disease, and cancers
(Duchartre et al., 2016). The Wnt signaling pathway can be
roughly divided into two categories, namely, β-catenin-
dependent classical type and nonclassical type. The β-catenin-
dependent classical pathway is the most frequently studied
pathway. APC mutations in CRC have been discovered for
many years. A study on human CRC specimens and mouse
models has found that different types of APC mutations can
activate different Wnt/β-catenin classical pathways to promote
tumor formation and proliferation (Zhan et al., 2017). The Wnt
signaling pathway is necessary for most stem cells, including
normal tissue stem cells or tumor stem cells (Nusse and Clevers,
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2017). It also plays a role in tumor invasion and metastasis and
related chemoresistance.

KRAS
The KRAS pathway is involved in the formation of cisplatin
resistance. KRAS is the most common mutation of the RAS gene,
which plays a key role in the occurrence of malignant tumors
(Chen et al., 2019a). KRAS is a signaling pathway that regulates
cell proliferation, apoptosis, and other biological activities
through linear sensing signal molecules from the cell
membrane to the nucleus (Liu et al., 2019). It also participates
in cell cycle.When working against cancers, it can promote tumor
cells to go into the S phase from the G1 phase and prevent cell
apoptosis induced by remaining at the G0 phase (Nussinov et al.,
2017). Therefore, KRAS activation can prevent cell apoptosis
induced by cisplatin and other chemotherapeutic drugs.

Phosphatidylinositol 3-Kinase
PI3K regulates the signal transduction of human insulin and the
proliferation and survival of cells. In addition, the mutated PI3K
pathway controls the growth and proliferation of cancer cells
(Lien et al., 2017). Epidermal growth factor receptor (EGFR) is a
receptor tyrosine kinase that can phosphorylate downstream
signaling molecules. EGFR activation can trigger multiple
downstream signal transduction pathways. The PI3K/Akt/

mTOR pathway is one of the classical pathways. It regulates
cell division, migration, proliferation, and differentiation (Li et al.,
2016). CC-chemokine ligand 2 (CCL2) secreted from tumor-
associated macrophages promotes tamoxifen resistance by
activating the PI3K pathway (Li et al., 2020a). Therefore, the
mechanism of the PI3K pathway in chemotherapy resistance in
tumors has attracted increasing attention.

Manymechanisms regulate the cisplatin resistance of circRNA
in several cancers (Figure 8). We discuss these mechanisms in
several kinds of cancer in the following sections.

Cisplatin Resistance in Cancer
Lung Cancer
Lung cancer is the leading cause of death in men and the second
leading cause of death in women worldwide (Torre et al., 2016).
Many studies have investigated the efficacy of chemotherapy after
lung cancer surgery, and some of them have proven the benefits of
cisplatin-based neoadjuvant chemotherapy (Nagasaka and
Gadgeel, 2018). (Figure 9).

CeRNA NET has been extensively studied in the drug
resistance of lung cancer cells. Circ_0072083 could enhance
the resistance of non-small cell lung cancer (NSCLC) to
cisplatin via the miR-545-3p/CBLL1 axis. MiR-545-3p could
significantly inhibit the proliferation, cell cycle, and invasion
of NSCLC cells and promote cisplatin-induced apoptosis (Li

FIGURE 7 | Mechanisms of EMT-related pathways. Mechanisms of EMT-related pathways include the most classical pathway, that is, TGF-β regulates the
expression of a downstream cell attachment gene to lower by activating the Smad complex. Other pathways that can maintain and promote EMT include PI3K/Akt, Wnt,
Hippo, and Notch.

Frontiers in Pharmacology | www.frontiersin.org September 2021 | Volume 12 | Article 7093247

Mu et al. circRNA in Cisplatin Resistance

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


et al., 2020b). The expression of circ_0007385 in NSCLC tissues
and cell lines was higher than that in adjacent normal tissues, and
this finding was associated with low overall survival (OS) rate.
Circ_0007385 could regulate the high expression of HMGB1 in
lung cancer tissues by sponging miR-519d-3p, so as to promote
the proliferation, invasion, and cisplatin resistance of tumors (Ye
et al., 2020).

As early as 2017, circ-ABCB10 has been reported to promote
the proliferation and invasion of breast cancer cells by sponging
miR-1271 (Liang et al., 2017). The knockdown of circ-ABCB10
expression could upregulate the sensitivity of miR-556-3p to
cisplatin in lung cancer cells, whereas upregulating AK4 could
reverse this phenomenon (Wu et al., 2020). CircAKT3 was
revealed to inhibit the homeostasis of glycolysis through miR-
516-5P/STAT3 to increase the cisplatin resistance of lung cancer
cells (Xu et al., 2020a). Yu Dong et al. had reported that the
expression of circ_0076305 was upregulated in drug-resistant
NSCLC. Circ_0076305 could enhance the STAT3 expression by
sponging miR-296-5P and the resistance of NSCLC to cisplatin
(Dong et al., 2019). Western blot analysis showed that
upregulating circ_0076305 could improve the protein
expression of P-GP (MDR1) and MRP1. As mentioned before,
MDR1 and MRP1 are ABC transporters. The ABC transporter
has also been reported to be involved in lung cancer. CircPVT1, a

ceRNA of miR-145-5p, could regulate the expression of ABCC1
and lower the sensitivity of pulmonary adenocarcinoma to
pemetrexed and cisplatin (Zheng and Xu, 2020). Huasong Lu
et al. detected the specimens of patients with NSCLC through
PCR and found that the expression of circPVT1in the drug-
resistant group was higher than that in the drug-sensitivity group
when patients were treated with a combination of cisplatin and
gemcitabine. The high expression of circPVT1 was also associated
with the survival rate of patients (Lu et al., 2020a).

Few studies have focused on exosomes in lung cancer. Circ-
CPA4 may regulate PD-L1 by activating the miRNA of let-7 to
promote the proliferation, invasion, EMT, and cisplatin
resistance of lung cancer cells. Circ-CPA4 knockdown could
lower the expression of cyclin D1 and Bcl-2 and reduce the
tumorigenesis in mice during heterotransplantation. Some
studies had shown that exosomes of NSCLC containing PD-L1
could form immune escape by increasing the mRNA levels of
stem cell-related signal and inactivating CD8 T cells in order to
enhance cisplatin resistance (Hong et al., 2020). Anti-PD-1/PD-
L1 has been widely used to treat solid tumors, but its curative
effect is unsatisfactory (Lei et al., 2020). Therefore, PD-1/PD-L1
blocking reagent can be used in combination with cisplatin and
other chemotherapeutic drugs. Na Shao et al. demonstrated that
exosomal circ_PIP5K1A could promote cisplatin resistance by

FIGURE 8 | Cisplatin resistance mechanism.

Frontiers in Pharmacology | www.frontiersin.org September 2021 | Volume 12 | Article 7093248

Mu et al. circRNA in Cisplatin Resistance

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


targeting miR-101 and consequently modulating ABCC1
expression in NSCLC (Shao et al., 2021).

Some studies have investigated the role of EMT-related genes
in tumor drug resistance. Chen et al. revealed that the level of
circ_0000079 (CiR79) in patients with NSCLC, especially those
who were resistant to cisplatin, was significantly decreased. Low
circ_0000079 levels were correlated with a low OS rate.
Circ_0000079 could block the formation of the FXR1/PRCKI
complex by combining with FXR1 to inhibit cell invasion and
improve the chemosensitivity of NSCLC. FXR1/PRKCI-
mediated glycogen synthesizes kinase 3β and activator
protein-1 phosphorylation to inhibit a snail protein level
(Chen et al., 2020a). Except NSCLC, FXR1 is related to poor
prognosis in some cancers, including ovarian cancer, breast
cancer, and head and neck squamous carcinoma. It is related to
the PKC expression and the iota and epithelial transition
(Raheja and Gandhi, 2016). The snail gene plays an

important role in EMT in tumors and the proliferation of
tumor cells (Chen et al., 2020a).

In the previous description of circ-CPA4, stem cells are
mentioned. The role of CSCs in the cisplatin resistance of lung
cancer cannot be ignored. The circRNA CDR1as/miR-641/
HOXA9 axis could regulate the apoptosis of stem cells and
enhance cisplatin resistance in NSCLC. In cisplatin-resistant
NSCLC cells, the overexpression of circRNA CDR1as had
been reported to increase the mRNA levels of stem cell signals
(SOX2, OCT4, and Nanog). This phenomenon could be reversed
by upregulating miR-641 and downregulating HOXA9 (Zhao
et al., 2020).

Autophagy helps tumor cells respond to intracellular and
environmental stresses, such as hypoxia, malnutrition, and
cancer chemotherapy. Autophagy inhibition can improve the
therapeutic effect of patients with advanced cancers (Amaravadi
et al., 2019). The role of the ceRNA network in regulating tumor

FIGURE 9 | Cisplatin resistance mechanism of circRNA in lung cancer. So far, 16 circRNAs have been studied in lung cancer. The mechanisms of cisplatin
resistance in these articles include the most common ceRNA NET, exosomes, PI3K pathway, autophagy, ABC transporter, DDR (NER), and CSCs. Three circRNAs,
namely, hsa_circ_0096157, hsa_circ_0046264, and CircAMARCA5, play roles in cisplatin resistance in lung cancer. However, their specific mechanisms have not been
explored.
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autophagy in chemoresistance has been confirmed.
Hsa_circ_0085131 could be used as a ceRNA of miR-654-5P
to release ATP7, which could enhance the autophagy and
cisplatin resistance of lung cancer cells (Kong, 2020).

DDR can be completed by NER. Hsa_circ_0001946 in
NSCLC cells was downregulated, and it could inhibit cell
proliferation, invasion, and migration. The downregulation
of hsa_circ_0001946 could activate the NER signaling
pathway and reduce the sensitivity of cisplatin (Huang
et al., 2019b). In addition, the expression of circRNA
PRMT5 in cisplatin-resistant NSCLC had been revealed to
lower its sensitivity to cisplatin. Moreover, the inhibition on
the sensitivity of NSCLC to cisplatin was recovered through
miR-4458 inhibition or REV3L upregulation by silencing
circRNA PRMT5 (Pang et al., 2020). Therefore, studying
the REV3L upstream genes in cisplatin resistance is of
great significance.

Yuqiang Mao et al. found that circRNA CDR1as could
enhance the pemetrexed and cisplatin resistance of lung
adenocarcinoma in neoadjuvant chemotherapy through the
EGFR/PI3K signaling pathway. Western blot analysis shows
that the expression of EGFR and PI3K proteins in drug-
resistant cell lines increases. In addition, the silencing of

circRNA CDR1as could lead to the sensitivity of lung cancer
cells to chemotherapeutic drugs. This effect can be blocked by
upregulating EGFR (Mao and Xu, 2020). Huasong Lu et al. also
reported that hsa_circ_0096157 could regulate the cisplatin
resistance of NSCLC by regulating cell proliferation, apoptosis,
and cell cycle (Lu et al., 2020b). The expression of circ-SMARC5
was found to reduce the proliferation of NSCLC and improve its
chemosensitivity to cisplatin and gemcitabine (Tong, 2020). Liu
et al. found that the expression of hsa_circ_0046264 in lung
cancer was significantly upregulated, and this upregulation was
associated with tumor proliferation, invasion, and stage. The
expression of hsa-circ_0046264 was high in cisplatin-resistant
cell lines (Liu et al., 2020a). The cisplatin resistance mechanism of
these circRNAs has not been discussed and should be further
studied.

Gastric Cancer
GC is the fifth-most common cancer in the world. Generally,
most patients are diagnosed with GC at an advanced stage.
Systemic chemotherapy is still the main treatment for patients
with advanced GC (Wagner et al., 2017). Cisplatin is commonly
used in clinical chemotherapy. Some chemotherapy regimens,
including docetaxel, cisplatin, and 5-fluorouracil, have been

FIGURE 10 | Cisplatin resistance mechanism of circRNA in GC. At present, 11 circRNAs are found to be related to cisplatin resistance in GC. The mechanisms
involved include ceRNA NET, exosomes, autophagy, and DNA damage and repair.
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proven to be effective in the treatment of GC (Li et al., 2019a).
(Figure 10).

Many studies have investigated the effect of circRNAs on the
cisplatin resistance of GC, and most of them are based on the
ceRNA network. Minghui Xue et al. reported that the expression
of hsa_circ_0081143 in GC cells was upregulated, which was
related to the proliferation, invasion, and metastasis of tumors.
Hsa_circ_0081143 can also enhance the cisplatin resistance of
GC cells via the miR-646/CDK6 pathway (Xue et al., 2019a).
Circ_0110805 was overexpressed in cisplatin-resistant GC tissues
or cells. Cisplatin resistance could be enhanced through the miR-
299-3P/ENDOPDI axis (Yang et al., 2020a). The ceRNA network
for circRNA /miR-646/ miR-299-3P should be further studied.

Lower OS rate, recurrence-free survival, and cisplatin
resistance rate were associated with high circ_0026359 levels.
Circ_0026359 could enhance the cisplatin resistance of GC via the
miR-1200/POLD4 pathway (Zhang et al., 2020a). CircRNA
0001785 was shown to promote the proliferation of
osteosarcoma and inhibit its apoptosis through the miR-1200/
HOXB2 axis (Li et al., 2019b). Therefore, we should explore
whether circRNA 0001785 also has a chemotherapy mechanism,
including cisplatin resistance, in osteosarcoma or GC. Xiao Xu
Huang et al. first found that circFN1 could improve the survival
rate and cisplatin resistance of GC cells by sponging miR-182-5p;
thus, it could be used as a new therapeutic target for cisplatin-
resistant patients with GC (Huang et al., 2020). Cheng Yang et al.
had found that circFN1 could promote the resistance of liver
cancer cells to sorafenib (Yang et al., 2020b). Quantitative reverse
transcription PCR (qRT-PCR) showed that the expression level of
circRNA CCD66 in GC tissues was higher than that in normal
tissues, especially in cisplatin-resistant cell lines. In terms of the
mechanism, circRNACCD66 could inhibit apoptosis by targeting
the miR-618/BCL2 axis (Zhang et al., 2020b). Recently, circRNA
CCD66 had been found to promote the resistance of CRC to
oxaliplatin by regulating autophagy (Lin et al., 2020).
CircDONSON was upregulated in GC cells. The transfection
of si-circDONSON could lower the IC50 value of DDP,
indicating that circDONSON could promote cisplatin
resistance of GC. Studies had shown that circDONSON
inhibited apoptosis and cisplatin resistance by sponging miR-
802 (Liu et al., 2020b).

Studies have also investigated autophagy in GC. QRT-PCR
showed that the level of circCUL2 in GC tissues significantly
lowered than that in normal tissues. In GC cells overexpressing
circCUL2, the levels of autophagosomes were low. Western blot
analysis showed that BCL-2 expression is similar to the trend of
autophagosomes. CircCUL2 was revealed to regulate the
sensitivity of cisplatin via the miR-142-3P/ROCK2 axis (Peng
et al., 2020). In comparison with chemosensitive cell lines,
downregulateing the expression of circMCTP2 could activate
autophagy in cisplatin-resistant GC cells. The
heterotransplantation model showed the same trend. The
overexpression of circMCTP2 could inhibit autophagy and
enhance cisplatin sensitivity via the miR-99a-5p/MTMR3 axis
(Sun et al., 2020a). Therefore, autophagy can enhance cisplatin
resistance. In terms of the exosomes of GC cells, autophagy is also
involved. In GC, circPVT1 from exosomes could regulate

autophagy through the miR-30A-5P/YAP1 axis and enhance
cisplatin resistance (Yao, 2020). The abnormal expression of
YAP1 in HCC, GC, CRC, and lung cancer is regarded as a
sign of poor prognosis (Shibata et al., 2018). Therefore, the
regulation of the drug resistance of tumor cells through the
ceRNA network should be studied by targeting the YAP1
gene. In addition, the expression of circ_0000260 in cisplatin-
resistant gastric adenocarcinoma tissues and exosomes from the
serum was higher than that in sensitive tumor tissues. A dual-
luciferase experiment had demonstrated that miR-129-5p was the
downstream target gene of circ_0000260, and MMP11 was the
direct target gene of miR-129-5p (Liu et al., 2020c).

The expression of circAKT3 was upregulated in cisplatin-
resistant GC, which had a strong invasive capacity. Through
detecting the levels of caspase-3 and BRCA1, circAKT3 could
inhibit apoptosis and promote DDR. On the basis of miRanda,
RNAhybrid, GeneChip, and other databases, Huang Xiaoxu et al.
revealed that circAKT3 could regulate the expression of PI3KR1
by sponging miR-198 (Huang et al., 2019a). As mentioned above,
circAKT3 may enhance the cisplatin resistance of lung cancer
cells (Xu et al., 2020a). This phenomenon indicates that circAKT3
may be a valuable gene for studying other cancers. However, the
expression of circAKT3 was downregulated in renal clear cell
cancer, thereby reducing its metastatic ability through the miR-
296-3P/E-cadherin signaling pathway (Xue et al., 2019b).
However, the study does not explore the next study on its
antitumor effect.

Bladder Cancer
Bladder cancer is the ninth-most common cancer in the world
(Gong et al., 2020a). Cisplatin-based chemotherapy has been used
to treat muscle-invasive bladder cancer. However, its curative
effect remains unsatisfactory (Schardt et al., 2019). (Figure 11).

The circRNA CDR1as could promote the resistance of lung
cancer to chemotherapeutic drugs (Mao and Xu, 2020; Zhao et al.,
2020). It could also promote the apoptosis and sensitivity of
bladder cancer cells to cisplatin by sponging miR-1270 and
regulating APAF1 (Yuan et al., 2019). Thus, this circRNA
seems to have different roles in different cancers. Therefore,
its role in the pathogenesis and chemoresistance of different
types of cancers should be investigated. The ABC transporter
plays an essential role in the cisplatin resistance of bladder cancer.
On the basis of the GSE92675 database, Pengfeng Gong et al.
found that the upregulation of circ_102336 expression in bladder
cancer tissues and cells was associated with tumor proliferation
and low survival rate. Circ_102336 could also promote the
cisplatin resistance of bladder cancer cells and regulate
apoptosis and ABC transport route by sponging miR-515-5p
(Gong et al., 2020a). CircRNAs could also promote oxaliplatin
resistance in GC by targeting miR-515-5p (Zhong et al., 2020).
The androgen acceptor (AR) represses ADAR2 to enhance the
expression of circFNTA. CircFNTA could enhance cisplatin
resistance of bladder cancer cells through the miR-370-3P/
FNTA pathway and activating the KRAS pathway (Chen et al.,
2020b).

Yinjie Su et al. found that hypoxia could increase the level of
circELP3. They also found that the high expression of circELP3
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could inhibit the apoptosis of cancer cells and promote
cisplatin resistance by targeting tumor stem-like cells (Su
et al., 2019b). Hypoxia could promote the expression of
some ncRNAs, so as to enhance the proliferation of bladder
cancer cells. Under hypoxic condition, the expression of
hsa_circRNA_403658 in bladder cancer was increased, and
hsa_circRNA_403658 activated IDHA-mediated aerobic
glycolysis to promote the proliferation of bladder cancer
cells (Wei et al., 2019). Hypoxia could also induce
circNRIP1 to increase its expression and improve the
resistance of GC to 5-fluorouracil (Xu et al., 2020b). A
previous study involving qPCR showed that
hsa_circ_0000285 could improve the sensitivity of patients
with bladder cancer to cisplatin, which may be related to the
stage, differentiation, and metastasis of tumors (Chi et al.,
2019). However, the study did not explore the specific
mechanism of drug resistance. Further studies on the
mechanisms involved in some articles should be performed.

Liver Cancer
Liver cancer is the second leading cause of cancer death
worldwide (Pratama et al., 2019). Cisplatin is the standard
drug for transcatheter arterial chemoembolization in the
treatment of liver cancer in Japan (Ikeda, 2019). However,
cisplatin resistance often occurs during chemotherapy and

consequently lowers the survival rate of patients (Chen et al.,
2019b). (Figure 12).

Hepatobiliary carcinoma (HCC) is the most common
among all liver cancers (Chen et al., 2019b). Yanwei Luo
et al. found a new circRNA (circRNA_101505) that was
downregulated in the cisplatin resistance of HCC.
Bioinformatic prediction and luciferase assay revealed that
miR-103 was a direct downstream target of circRNA_101505.
CircRNA_101505 could enhance the sensitivity of cisplatin to
liver cancer cell lines through miR-103/NOR1 (Luo et al.,
2019). Wei Fan et al. used qRT-PCR and Western blot
analysis to examine the gene and protein expression levels
of circ_0031242, miR-924, and POU3F2. They found that the
miR-924/POU3F2 axis could be regulated to promote the
cisplatin resistance, proliferation, and invasion of hepatoma
cells by circ_0031242. The same results were observed in
xenografts (Fan et al., 2021). The upregulation of the
circ_0000517 expression in cisplatin-resistant hepatocellular
carcinoma cells could promote cell cycle arrest and apoptosis
through the miR-328-3P/ARID4B axis. The effect of
circ_0000517 on glycolysis in liver cancer cells was analyzed
through an ECAR assay. Circ_0000517 could reduce cell
glycolysis (Zhao et al., 2021).

Circ_0003418 was found to lower cisplatin resistance in HCC.
Silencing circ_0003418 could enhance cisplatin resistance in

FIGURE 11 |Cisplatin resistance mechanism of circRNA in bladder cancer. Only five circRNAs associated with the cisplatin resistance of bladder cancer have been
studied. The mechanisms involved include ceRNA NET, CSCs, ABC transporter, and KRAS pathways.
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HCC via the Wnt/catenin signaling pathway (Chen et al., 2019b).
Shuping Zhou et al. showed that circRNA_101237 was not only
related to the proliferation, invasion, metastasis, and stage of
HCC; it also enhanced the resistance of HCC to cisplatin (Zhou
et al., 2020). However, the exact drug resistance mechanism of
circRNA_101237 remains unclear.

Intrahepatic cholangiocarcinoma is the second-most
common type of primary cancer of the liver. Qi Lu et al.
conducted a subgroup analysis on 92 patients with intrahepatic
cholangiocarcinoma. They found that the expression of circ-
SMARCA5 in cancer tissues decreased, and this was negatively
correlated with ECOG grading and TNM stage. The
overexpression of circ-SMARCA5 could increase the
sensitivity of ICC cells to cisplatin and gemcitabine (Lu and
Fang, 2020).

Osteosarcoma
Osteosarcoma is one of the most common malignant bone
tumors in young individuals (Zhang et al., 2018b; Gong et al.,
2020b; Hu et al., 2020). The treatment regime covers a few weeks
of chemotherapy before and after surgery. The main treatment
method includes methotrexate, adriamycin, and cisplatin (Tang
et al., 2019). (Figure 13).

Yuhang Hu et al. evaluated 72 patients with osteosarcoma.
They found that circRNA LARP4 was negatively correlated with
the Enneking staging of osteosarcoma. In osteosarcoma cell lines
with overexpressed circRNA LARP4, the IC50 value related to
cisplatin and adriamycin was significantly lowered. Similarly, the
circRNA LARP4 could increase its sensitivity to chemotherapy by
sponging miR-424 (Hu et al., 2020). Recent studies had shown
that the circRNA LARP4 could promote the sensitivity of breast
cancer to adriamycin (Zhang et al., 2020c). Through the miR-
506-3P/SEMA6D axis, circUBAP2 was reported to activate the
Wnt/catenin signaling pathway and promote the proliferation,
invasion, and cisplatin resistance of osteosarcoma. The
expression of SEMA6D was upregulated in GC and esophageal
cancer. However, few studies have investigated its drug resistance
mechanism (Gong et al., 2020b).

Circ_001569 was also associated with the Wnt signaling
pathway in osteosarcoma. Upregulating the expression of
circ_001569 in osteosarcoma was correlated with distant
metastasis and TNM staging, and the resistance of
osteosarcoma cells to cisplatin was enhanced by activating the
Wnt/catenin signaling pathway (Zhang et al., 2018b). As
mentioned earlier, circPVT1 could regulate the expression of
ABCC1 and promote cisplatin resistance in lung cancer (Zheng

FIGURE 12 |Cisplatin resistancemechanism of circRNA in liver cancer. Only six studies on liver cancer have been performed, and few studies on themechanism of
drug resistance have been conducted. The mechanism of the cisplatin resistance of CircRNA_101237 and CircRNA SMARCA5 has not been studied.
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and Xu, 2020). Zhu Kun-Peng et al. found that circPVT1 could
promote the resistance of osteosarcoma to cisplatin and
adriamycin. Silencing circPVT1 was found to lower the
expression of the drug resistance-related gene ABCB1 (Kun-
Peng et al., 2018).

Thyroid Cancer
Thyroid cancer is a common malignant tumor (Liu et al., 2018a).
It can be divided into five pathological types: papillary thyroid
carcinoma (PTC), follicular thyroid cancer, poorly differentiated
thyroid cancer, medullary thyroid carcinoma, and
undifferentiated thyroid cancer (Liu et al., 2018a; Liu et al.,
2018b). The most aggressive type is anaplastic thyroid cancer
(ATC) (Zhang et al., 2014). The treatment of thyroid cancer
includes surgery, radioactive iodine therapy, and chemotherapy
(Carling and Udelsman, 2014). Cisplatin is the foundation of
chemotherapy, but its effect is unsatisfactory, especially for ATC
(Zhang et al., 2014).

Liu et al. confirmed that circEIF6 (HSA) could enhance
the cisplatin resistance of cells in PTC and ATC. CircEIF6
regulates the TGF-β expression by sponging miR-144-3P,
promotes the autophagy of thyroid cancer cells, and
enhances cisplatin resistance (Liu et al., 2018b). TGF-β is
an important gene in EMT mechanism. EMT may
participate in the above process. However, the author did
not discuss it.

Cervical Carcinoma/Ovarian Carcinoma
Cervical carcinoma is the second-most common malignant
tumor in women, and ovarian carcinoma is the most common
cause of death in females (Vaughan et al., 2011; Peng et al., 2016).
Cisplatin is still the main chemotherapy regimen in both cancers
(Vargas-Hernández et al., 2014; Feng et al., 2017). However,
cisplatin resistance has affected the curative effect and survival
rate of patients (Waldmann et al., 2013; Peng et al., 2016).

The differential expression of circRNA CDR1as in bladder
cancer and NSCLC had been reported. circRNA CDR1as was
highly expressed in NSCLC cells, whereas it is weakly expressed in
bladder cancer cells (Yuan et al., 2019; Zhao et al., 2020). Zhao
et al. recently found that circRNA CDR1as was also poorly
expressed in ovarian carcinoma and could enhance the
sensitivity of cisplatin through the miR-1270/SCAI axis (Zhao
et al., 2019). Therefore, circRNA CDR1as has a huge potential in
the research on cisplatin resistance. In terms of exosomes, studies
have explored ovarian carcinoma. Luo Yanwei Luo et al. Found
that high levels of the exosomal circFOXP1 in cisplatin-resistant
ovarian carcinoma could regulate the expression of CEBPG and
FMNL3 through miR-22 and miR-150-3P to improve the
cisplatin resistance of ovarian carcinoma (Luo and Gui, 2020).

Few studies have been performed on cervical cancer. In one
study, Hsa_circ_0023404 could promote the invasion, metastasis,
and cisplatin resistance of cervical cancer through the miR-5047/
VEGFA axis. In addition, using the autophagy inhibitor 3-MA

FIGURE 13 | Cisplatin resistance mechanism of circRNA in osteosarcoma. Only four papers have been published on the cisplatin resistance of circRNA in
osteosarcoma, which involves ceRNA NET, Wnt signaling pathway, and ABC transporter.
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TABLE 1 | Collection of papers on circRNA in cisplatin resistance. Expression refers to the circRNA expression in cancers. Targets correspond to targeted genes in circRNA
downstream. Mechanism denotes the drug resistance mechanism of circRNA in various tumors. NA: not applicable.

CircRNAs References Expression Targets Mechanisms Cancers

Circ_0076305 Dong et al. (2019) ↑ MiR-296-5p/STAT3 CeRNA NET/ABC Lung cancer
Hsa_circ_0001946 Huang et al. (2019b) ↓ NA DNA damage repair Lung cancer
Circ-ABCB10 Wu et al. (2020) ↑ MiR-556-3p/AK4 CeRNA NET Lung cancer
Circ_0072083 Li et al. (2020b) ↑ MiR-545-3p/CBLL1 CeRNA NET Lung cancer
Hsa_circ_0085131 Kong, (2020) ↑ MiR-654-5P/ATP7 CeRNA NET/Autophagy Lung cancer
Circ_0007385 Ye et al. (2020) ↑ MiR-519d-3p CeRNA NET Lung cancer
Circ-CPA4 Hong et al. (2020) ↑ Let-7/PD-L1 CeRNANET/EMT/ Exosomes

/CSCs
Lung cancer

Hsa_circ_0096157 Huang et al. (2019b) ↑ NA NA Lung cancer
CircRNA PRMT5 Pang et al. (2020) ↑ MiR-4458/REV3L CeRNA/DNA damage repair Lung cancer
Hsa_circ_0046264 Liu et al. (2020a) ↑ NA NA Lung cancer
Circ_0000079 Chen et al. (2020a) ↑ FXR1/PRCKI EMT Lung cancer
Circ-SMARCA5 Tong (2020) ↓ NA NA Lung cancer
CircCDR1as Zhao et al. (2020) ↑ MiR-641/HOXA9 CeRNA NET/CSCs Lung cancer
CircCDR1as Mao and Xu (2020) ↑ NA PI3K Lung cancer
CircPVT1 Zheng and Xu (2020) ↑ MiR-145-5p/ABCC1 CeRNA NET/ABC Lung cancer
CircPVT1 Lu (2020) ↑ NA NA Lung cancer
CircAKT3 Xu et al. (2020a) ↑ MiR-516b-5p/STAT3 CeRNA NET Lung cancer
Circ-PIP5K1A Shao et al. (2021) ↑ MiR-101/ABCC1 CeRNA NET/ABC Lung cancer
Hsa_circ_0081143 Xue et al. (2019a) ↑ MiR-646/CDK6 CeRNA NET Gastric cancer
CircRNA AKT3 Huang et al. (2019a) ↑ MiR-198/PIK3R1 CeRNANET/DNA damage repair Gastric cancer
Circ_0110805 Yang et al. (2020a) ↑ MiR-299-3p/ENDOPDI CeRNA NET Gastric cancer
CircPVT1 Yao (2020) ↑ MiR-30a-5p/YAP1 CeRNANET/ Exosomes/

Autophagy
Gastric cancer

Circ_0026359 Zhang et al. (2020a) ↑ MiR-1200/POLD4 CeRNA NET Gastric cancer
Circ_0000260 Liu et al. (2020c) ↑ MiR-129-5p/MMP11 CeRNA NET/ Exosomes Gastric cancer
CircRNA CCDC66 Zhang et al. (2020b) ↑ MiR-618/BCL2 CeRNA NET Gastric cancer
CircFN1 Huang et al. (2020) ↑ MiR-182-5p CeRNA NET Gastric cancer
CircDONSON Liu et al. (2020b) ↑ MiR-802/BMI1 CeRNA NET Gastric cancer
CircCUL2 Peng et al. (2020) ↑ MiR-142-3p/ROCK2 CeRNA NET/ Autophagy Gastric cancer
CircMCTP2 Sun et al. (2020a) ↓ MiR-99a-5p/MTMR3 CeRNANET/Autophagy Gastric cancer
Hsa_circ_0000285 Chi et al. (2019) ↓ NA NA Bladder cancer
CircCDR1as Yuan et al. (2019) ↓ MiR-1270/APAF1 CeRNA NET Bladder cancer
CircELP3 Su et al. (2019b) ↑ NA CSCs Bladder cancer
CircFNTA Chen et al. (2020b) ↑ MiR-370-3P/FNTA CeRNA NET/KARS Bladder cancer
Hsa_circRNA_102336 Gong et al. (2020a) ↑ MiR-515-5p CeRNA NET/ABC Bladder cancer
Circ_0003418 Chen et al. (2019b) ↓ NA Wnt Liver cancer
CircRNA_101505 Luo et al. (2019) ↓ MiR-103/NOR1 CeRNA NET Liver cancer
CircRNA_101237 Zhou et al. (2020) ↑ NA NA Liver cancer
CircRNA SMARCA5 Lu and Fang, (2020) ↓ NA NA Liver cancer
Circ_0000517 Zhao et al. (2021) ↑ MiR-328-3P/ARID4B CeRNA NET Liver cancer
Circ_00031242 Fan et al. (2021) ↑ MiR-924/POU3F2 CeRNA NET Liver cancer
CircRNA_001275 Zou et al. (2020) ↑ MiR-370-3p/Wnt-7a CeRNA NET Esophageal cancer
CircRNA LARP4 Hu et al. (2020) ↓ MiR-424 CeRNA NET Osteosarcoma
CircUBAP2 Gong et al. (2020b) ↑ MiR-506-3p/SEMA6D CeRNA NET/Wnt Osteosarcoma
CircPVT1 Kun-Peng et al. (2018) ↑ NA ABC Osteosarcoma
Circ_001569 Zhang et al. (2018b) ↑ NA Wnt Osteosarcoma
CircRNA EIF6 Liu et al. (2018b) ↑ MiR-144-3p/TGF-β CeRNANET/Autophagy Thyroid cancer
CircFoxp1 Luo and Gui, (2020) ↑ MiR-22/miR-150-3P/CEBPG/

FMNL3
CeRNA NET/Exosomes Ovarian cancer

CircCDR1as Zhao et al. (2019) ↓ MiR-1270/SCAI CeRNA NET Ovarian cancer
Hsa_circ_0023404 Guo et al. (2019) ↑ MiR-5047/VEGFA CeRNA NET/Autophagy Cervical cancer
Circ_0004507 Yi et al. (2020) ↑ MiR-573/ABCB1 CeRNA NET/ABC Laryngeal cancer
CircPGAM1 Feng et al. (2021) ↑ MiR-376a CeRNA NET Laryngeal cancer
Circ_0109291 Gao et al. (2020) ↑ MiR-188-3p/ABCB1 ABC Oral squamous cell

carcinoma
Circ_0001971 Tan et al. (2020) ↑ MiR-194/miR-204 CeRNA NET/EMT Oral squamous cell

carcinoma
Hsa_Circ_0028007 Qiongna et al. (2020) ↑ NA NA Nasopharyngeal cancer
Hsa_Circ_0020095 Sun et al. (2020b) ↑ MiR-48a-3p/SOX9 CeRNA NET Colon cancer
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could recover the inhibitory effect of hsa_circ_0023404 on
autophagy-induced apoptosis and improve the sensitivity of
chemotherapy (Guo et al., 2019).

Nasopharyngeal Carcinoma
Nasopharyngeal carcinoma is a common head and neck cancer
worldwide (He et al., 2015). Cisplatin is still the main
chemotherapeutic drug in the standard chemotherapy regimen
for patients with advanced nasopharyngeal carcinoma (Tang
et al., 2018). However, numerous patients have a poor
response to chemotherapy, resulting in cisplatin resistance (Liu
et al., 2018c).

Qiongna Dong et al. found that the overexpression of
hsa_circ_002807 was related to the staging, invasion, and
metastasis of nasopharyngeal carcinoma, and hsa_circ_002807
could enhance the resistance to cisplatin and paclitaxel (Qiongna
et al., 2020). However, its mechanism remains to be elucidated.
The effect of circRNAs on cisplatin resistance in nasopharyngeal
carcinoma in terms of autophagy should be further investigated.

Oral Squamous Cell Carcinoma
OSCC is a highly invasive malignant tumor and the most
common malignant tumor in the head and neck (Bray et al.,
2018; Pai et al., 2019). Surgery, postoperative radiotherapy, and
chemotherapy are the main treatment methods. Themain drug in
chemotherapy is cisplatin (Pai et al., 2019). However, the
emergence of chemotherapy resistance decreases the curative
effect of chemotherapeutic drugs (Pérez-Sayáns et al., 2010).

Circ_0001971 had recently been found to increase
significantly in OSCC. Circ_0001971 could promote the
proliferation, invasion, migration, and cisplatin resistance of
tumors by sponging miR-194 and miR-204. Western blot
analysis showed that the EMT-related proteins cyclin D1 and
N-cadherin and the expression of E-cadherin increased
significantly after silencing circ_0001971 (Tan et al., 2020).
Therefore, EMT plays an important role in it. ABC
transporters participate in the cisplatin resistance of OSCC.
The expression of circ_0109291 in cisplatin-resistant OSCC
cell lines was upregulated, thereby inhibiting apoptosis.
Circ_0109291 could promote cisplatin resistance via the miR-
188-3P/ABCB1 axis (Gao et al., 2020).

Laryngocarcinoma
Laryngocarcinoma is one of the most common cancers in the
respiratory system, head, and neck (Liu et al., 2016; Steuer et al.,
2017). It is more common in men than in women (Steuer et al.,
2017). Its main treatment strategy is chemotherapy, especially
patients at an advanced stage (Liu et al., 2016). However, drug
resistance occurs with the long-term use of chemotherapeutic
drugs (Liang et al., 2014). One of the most common
chemotherapeutic drugs for laryngocarcinoma is cisplatin. Its
initial effect is good, but cisplatin resistance occurs over time
(Tian et al., 2017).

Xuehan Yi et al. found that circ_0004507 could promote the
proliferation, invasion, migration, and cisplatin resistance of
laryngocarcinoma cells by sponging miR-873. Circ_0004507
was revealed to enhance the expression and translation of

MDR1 (ABCB1) and ABCC1, so as to regulate cisplatin
resistance (Yi et al., 2020). Recently, circPGAM1 had been
reported to inhibit apoptosis of laryngocarcinoma cells and
enhance cisplatin resistance. MiR-376A was a direct
downstream target of circPGAM1, which could inhibit the
expression of ATG2A to improve the sensitivity of cisplatin
(Feng et al., 2021).

Carcinoma of the Esophagus
In recent years, the mortality of patients with esophageal cancer
has increased significantly. Patients with esophageal cancer are
always diagnosed at an advanced stage in addition to the high
incidence rate, so chemotherapy becomes important (Huang and
Yu, 2018). The basic drug used in chemotherapy is cisplatin (Su
et al., 2019c). Cisplatin remains effective at early stages, but the
emergence of cisplatin resistance gradually decreases the survival
of patients with esophageal cancer (Hou et al., 2017; Zou et al.,
2020).

CircRNA_001275 was significantly increased in cisplatin-
resistant esophageal cancer tissues and cells. Through the
miR-370-3P/WNT7A axis, circRNA_001275 could inhibit
apoptosis and promote the proliferation and drug resistance of
esophageal cancer cells (Zou et al., 2020). The mechanism of
cisplatin resistance in esophageal cancer remains unknown, but it
should be further explored in terms of autophagy and signaling
pathways.

Colon Cancer
Colon cancer is the third-most common cancer in men and the
second-most common cancer in women, accounting for about 10
and 9.2%, respectively (Pan et al., 2017). The combination of
surgery, chemotherapy, and radiation has been the most common
treatment for rectal cancer. Chemotherapy is used before, during,
and after surgery and has a different role (Karpisheh et al., 2019).
Patients with advanced colon cancer are still treated with
cisplatin-based combination chemotherapy and radiotherapy
to improve the quality of life and prolong the survival time
(Scott et al., 2009).

The luciferase experiment showed a targeting relationship
between miR-487a-3P and circ_0020095. The in vitro and in
vivo silencing of circ_0020095 could inhibit colon cancer
proliferation and invasion and enhance cisplatin sensitivity via
the miR-487A-3P/SOX9 axis (Sun et al., 2020b). This finding also
provides further insights into targeted treatments for colon
cancer and even rectal cancer.

CONCLUSION

Summary and Outlook
Research on circRNA in cisplatin resistance has attracted
increasing attention in recent years, and most studies are
based on the ceRNA network. The ceRNA network is essential
for studying the mechanism of cisplatin resistance. The ceRNA
network gives us a good framework in studies. In this large
framework, one or several mechanisms involve the combined
action in other mechanisms to explore tumor proliferation,
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invasion, and drug resistance. For example, studies on exosomes
should consider whether CSCs participate in this process and
detect CSC-related pathways, such as FGFR and MEK, or the
mRNA level of related genes (SOX2, OCT4, and Nanog). In
addition, the expression of RAS gene, ABCG2 (ABC transporter)
and REV3L (DNA repair) may be a future research direction.
Autophagy can promote and inhibit tumor proliferation and
growth, which are a two-way mechanism. However, recent
research has shown that circRNA can promote drug resistance
in cisplatin resistance by activating autophagy. In the future,
studies should detect the expression of more ATGs, such as P62
and LC3, and explore whether they can inhibit drug resistance.
The exosome PD-L1 influences the cisplatin resistance of lung
cancer by affecting the immune system. This finding suggests that
immunotherapy combined with chemotherapy may improve the
postoperative survival rate of patients with cancer. N6-
methyladenosine (m6A), a common RNA including ncRNAs
(circRNA) methylation modification, has gradually entered the
field of vision in the proliferation of tumor cells. However, the
role of circRNAm6A in the regulation of chemotherapeutic drugs

such as cisplatin still need to be explored further. The cisplatin
resistance mechanism of circRNA in different cancers is
summarized in this review to provide a basis for future studies
on circRNAs. Therefore, this review may provide a new idea for
the clinical improvement of cisplatin resistance Table 1.
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GLOSSARY

ABC ATP-binding cassette

AR androgen receptor

ATC anaplastic thyroid cancer

BCRP breast cancer resistance protein

CCL2 CC-chemokine ligand 2

CeRNA NET competing endogenous RNA network

CircRNA circular RNA

CRC colorectal cancer

CSCs cancer stem cells

DDR DNA damage repair

EGFR epidermal growth factor receptor

EMT epithelial–mesenchymal transition

ERCC1 excision repair cross-complementing 1

FGFR fibroblast growth factor receptor

FDA Food and Drug Administration

GC gastric cancer

HCC hepatocellular carcinoma

Hh Hedgehog

LncRNA long noncoding

m6A N6-methyladenosine

MBL muscle blind

MDR multidrug resistance

MDR1 multidrug resistance protein 1

MEK mitogen-activated protein kinase

MiRNA/MiR microRNA

MREs miRNA reaction elements

MRP1 multidrug resistance-related protein 1

NcRNA noncoding RNA

NER nucleotide excision repair

OS overall survival

OSCC oral squamous cell carcinoma

PD1 programmed cell death protein-1

PD-L1 programmed cell death-ligand 1

PE phosphatidylethanolamine

PI3K phosphatidylinositol 3-kinase

PTC papillary thyroid carcinoma

QRT-PCR quantitative reverse transcription PCR

SBP substrate-binding proteins

TGF-β transforming growth factor-β

TME tumor microenvironment
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