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Summary
Background Unresectable Hepatocellular Carcinoma (uHCC) poses a substantial global health challenge, demanding
innovative prognostic and therapeutic planning tools for improved patient management. The predominant treatment
strategies include Transarterial chemoembolization (TACE) and hepatic arterial infusion chemotherapy (HAIC).

Methods Between January 2014 and November 2021, a total of 1725 uHCC patients [mean age, 52.8 ± 11.5 years; 1529
males] received preoperative CECT scans and were eligible for TACE or HAIC. Patients were assigned to one of the
four cohorts according to their treatment, four transformer models (SELECTION) were trained and validated on each
cohort; AUC was used to determine the prognostic performance of the trained models. Patients were stratified into
high and low-risk groups based on the survival scores computed by SELECTION. The proposed AI-based treatment
decision model (ATOM) utilizes survival scores to further inform final therapeutic recommendation.

Findings In this study, the training and validation sets included 1448 patients, with an additional 277 patients allo-
cated to the external validation sets. The SELECTION model outperformed both clinical models and the ResNet
approach in terms of AUC. Specifically, SELECTION-TACE and SELECTION-HAIC achieved AUCs of 0.761 (95%
CI, 0.693–0.820) and 0.805 (95% CI, 0.707–0.881) respectively, in predicting ORR in their external validation
cohorts. In predicting OS, SELECTION-TC and SELECTION-HC demonstrated AUCs of 0.736 (95% CI,
0.608–0.841) and 0.748 (95% CI, 0.599–0.865) respectively, in their external validation sets. SELECTION-derived
survival scores effectively stratified patients into high and low-risk groups, showing significant differences in
survival probabilities (P < 0.05 across all four cohorts). Additionally, the concordance between ATOM and
clinician recommendations was associated with significantly higher response/survival rates in cases of agreement,
particularly within the TACE, HAIC, and TC cohorts in the external validation sets (P < 0.05).

Interpretation ATOM was proposed based on SELECTION-derived survival scores, emerges as a promising tool to
inform the selection among different intra-arterial interventional therapy techniques.
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Research in context

Evidence before this study
Before undertaking this study, we conducted a comprehensive
review of existing literature to understand the current state of
knowledge on predicting treatment outcomes for unresectable
hepatocellular carcinoma (uHCC) using deep learning models.
We searched databases covering publications from January
2017 to December 2023. The search terms included
“hepatocellular carcinoma,” “deep learning,” “intra-arterial
therapy,” “treatment prediction,” and “survival outcomes.” We
included studies that focused on the use of machine learning or
deep learning to predict clinical outcomes in uHCC patients,
regardless of the language of publication. Studies were
excluded if they were reviews, editorials, or case reports.

Added value of this study
Our study contributes significantly to the existing body of
evidence by introducing SELECTION, a novel transformer-
based deep learning model, which demonstrates high
accuracy in prognosticating four treatment plans for uHCC.
This study uniquely integrates clinical data with CECT imaging
to provide a holistic approach to treatment decision-making.

Additionally, the proposed ATOM framework not only
enhances the precision of first-line treatment selection but
also tailors subsequent combination systemic therapies based
on individual patient characteristics. This dual approach of risk
stratification and treatment optimization has not been
previously explored to this extent in the context of uHCC.

Implications of all the available evidence
The findings from our study, combined with existing
evidence, suggest that incorporating advanced deep learning
models like SELECTION and ATOM into clinical practice could
significantly improve the accuracy of treatment planning for
uHCC patients. This approach has the potential to enhance
personalized treatment strategies, leading to better patient
outcomes. Future research should focus on further validation
of these models in diverse patient populations and settings to
ensure their generalizability and robustness. Additionally,
exploring the integration of these models into routine clinical
workflows and evaluating their impact on clinical decision-
making and patient outcomes would be valuable.
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Introduction
Transarterial chemoembolization (TACE) and hepatic
arterial infusion chemotherapy (HAIC) are the two
current standard intra-arterial interventional therapy
(IAIT) protocols for patients in Asia with unresectable
hepatocellular carcinoma (uHCC), which are guided by
international guidelines and several randomized clinical
trials.1–3 Moreover, IAITs were administered in combi-
nation with molecular-targeted agents (MTAs) or im-
mune checkpoint inhibitors (ICIs), showing significant
improvement in long-term survival benefit for uHCC.4–7

In the context of hepatocellular carcinoma (HCC),
the transition from intermediate to advanced stages
often corresponds with heightened tumor invasive-
ness.8,9 The intricate landscape of tumor heterogeneity
accentuates the complexity surrounding the choice of
intervention strategies for patients with uHCC in
clinical settings. The therapeutic decision-making
process of uHCC remains a subject of ongoing con-
troversy. Critical considerations include imaging fea-
tures such as tumor burden, the presence of cirrhosis,
nonrim hyperenhancement, and infiltrative appear-
ance, all of which play pivotal roles in prognostic pre-
dictions for individuals with HCC.10–13 While these
imaging features have gained substantial attention
from experts, the core of the decision-making process
for IAITs primarily relies on physicians’ assessments
regarding patient’s physical condition and the blood
supply status of the targeted HCCs. It is noteworthy
that despite the focus on supervisor experience and
individual tumor features, the treatment selection and
planning for uHCC remain constrained and subject to
ambiguity in clinical practice.

Medical artificial intelligence (AI) is advancing from
research to clinical use. Despite this, the practical
application of image-driven AI for guiding therapeutic
decisions in clinical settings remain limited. Dynamic
contrast-enhanced computer tomography (CECT) is a
standardized imaging technique providing insights into
tumor characteristics. We hypothesize a connection
between the choice of IAIT and specific imaging fea-
tures. Previous research showed radiomics features
from CECT predicting treatment responses but are less
suitable for intermediate-advanced stage HCC.14–16

This study aims to develop a deep learning (DL)
based decision support system integrating clinical in-
formation with CECT to support clinicians in IAIT
decision-making for uHCC. To the best of our knowl-
edge, this is the first study using real-world retrospective
clinical and CECT data collected to validate the deep
learning-based decision support of IAIT schemes in a
heterogeneous uHCC population.
Methods
Ethics
This retrospective, multi-institutional study protocol ob-
tained approval from the Institutional Review Board of all
participating hospitals (B2022-694) and was conducted
following the principles of the 1975 Helsinki Declaration.
www.thelancet.com Vol 75 September, 2024
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Due to retrospective nature of this study, the requirement
for written informed consent was waived.

Patient enrolment
Between January 2014 and November 2021, a total of
4773 consecutive patients with uHCC undergoing initial
TACE or HAIC were reviewed in 12 tertiary hospitals.
Three of the twelve hospitals with 1448 enrolled patients
were allocated to contribute to all the train and internal
validation sets, attributing to optimization for the pro-
posed model. 277 patients from the other nine hospitals
constitute the external validation sets. The distribution
of the data source was shown in Supplementary
Table S1.1. All of the patients were diagnosed based
on the European Association for the Study of Liver
(EASL) and the American Association for the Study of
Liver Disease (AASLD) guidelines.1,2 Multiple intra-
hepatic metastases, distant metastases, or tumour sizes
more than 10 cm were considered indicators of uHCC.
Further, some suspected cases were confirmed by
imaging-guided needle biopsy. The inclusion criteria
were as follows: (a) age 18–75 years; (b) Eastern
Cooperative Oncology Group (ECOG) performance sta-
tus <2; (c) Child-Pugh class A or B liver function; (d)
the management of TACE or HAIC of FOLFOX
regimen (oxaliplatin plus fluorouracil and leucovorin)
(e) the availability of CECT within 2 weeks before the
initial treatment; (f) Patients with HCC who had a
persistent HBV infection were treated with antiviral
treatment, and their viral loads were controlled to a low
level before receiving the IAIT. The exclusion criteria
were as follows: (a) the patients received any therapeutic
measures before TACE or HAIC; (b) HCC combined
with other malignancies; (c) simultaneous treatment of
TACE combined with HAIC; (d) missing image data
during perioperative period; (e) lost to follow-up >6
months; (f) uHCC patients receiving simultaneous
treatment of TACE combined with HAIC, who have
received both TACE and HAIC in uHCC treatment
process. CECT scan protocol and the reasons for con-
ducting TACE or HAIC as the first-line therapy were
described in Supplementary Information E1. IAIT pro-
cedures and the criteria for treatment discontinuation
were shown in Supplementary Information E2.1–2.3.
The IAIT combination therapy protocols were described
in Supplementary Information E2.4.

Study design
The patient enrolment and cohort definitions process can
be found in Fig. 1. A total of 1725 uHCC patients [mean
age, 52.8 ± 11.5 years; 1529 males] received preoperative
CECT scans and were eligible for IAIT. The methodo-
logical framework of this study unfolds as follows:
initially, the cohort was split into two categories TACE
group [(n = 816) and HAIC group (n = 909)] based on
interventional modalities. Within these two groups, sec-
ondary division was applied based on the receipt of
www.thelancet.com Vol 75 September, 2024
combination systemic therapy, resulting in a subdivision
of TACE and HAIC with systemic therapies [TC group
(n = 314) and HC group (n = 443)]. The training and
internal validation cohorts were chosen from three hos-
pitals with the most enrolled patients. Within these pa-
tients, we randomly split them with a ratio of 70/30 for
training and internal validation respectively. Where the
patients from the remaining nine medical centers were
assigned to external validation cohort. The model pa-
rameters, meticulously fine-tuned through intensive
training with distinctive cohorts outlined in Fig. 1a,
prioritizing optimal performance in each internal vali-
dation sets. This precise categorization enhances the
model’s ability to discern nuanced variations in complex
patient heterogeneity, contributing to its accuracy.

Data preprocess and automatic delineation
To uphold the uniformity and dependability of both the
segmentation algorithm and the envisioned deep
learning approach, several pre-processing steps were
implemented on the reconstructed CT images. One-
dimensional spline interpolation was carried out to
standardize the slice thickness to 1 mm across all
reconstructed CT images. Additionally, voxel intensities
were constrained within −50 to 350 Hounsfield Units
(HU) range to null non-liver and non-tumor tissues,
thereby enhancing the sensitivity and accuracy of the
segmentation, thus subsequent analysis.

Pre-processed CT images underwent automatic seg-
mentation using nnU-Net.17 nnU-Net is an advanced
deep learning architecture designed for semantic image
segmentation tasks. Pre-trained nnU-Net models from
previous medical image segmentation challenges were
made publicly available, therefore segmentation in this
task was done by running inference on nnU-Net model
pre-trained using dataset from the Liver and Tumour
Segmentation (LITS) Challenge. Each of the arterial and
portal phase CECT images from individual patients
were processed by nnU-Net to provide liver and tumour
delineation. For each patient, one informative slice (slice
containing the maximum tumour area) was chosen
from each of the arterial and portal phase CT images
based on the location containing maximum tumour
area. The images were cropped to 224 mm * 224 mm
using a bounding box covering the whole liver area from
the chosen slice. Open-source code and information on
preprocessing and inference using nnU-Net can be
found (https://github.com/MIC-DKFZ/nnUNet).

Unresectable hepatocellular carcinoma multimodal
transformer (SELECTION)
The graphical representation of SELECTION construc-
tion is illustrated in Fig. 2a. In this depiction, a
transformer-based deep learning model is employed to
predict IAIT outcomes, inspired by a recent state-of-the-
art proposal for a multi-modal prognostic transformer.18

Its capability lies in the progressive acquisition of
3
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Fig. 1: Patient Enrolment of uHCC patients. (a) Cohort who received TACE or HAIC therapy. (b) Cohort who received TACE or HAIC in
combination with systemic therapies, cohort B is considered a subgroup from cohort A. Abbreviations: uHCC, unresectable hepatocellular
carcinoma; TACE, Transarterial Chemoembolization; HAIC, Hepatic-arterial infusion chemotherapy.
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comprehensive multi-modal representations, treating
multimodal input data uniformly as sequences of tokens
while integrating the entirety of medical knowledge
graph information. SELECTION utilized pre-operative
CECT images alongside corresponding demographic
baselines and quantitative clinical parameters as its
input. Detailed information on the mechanisms of SE-
LECTION, bidirectional multimodal attention and self-
attention can be found in Supplementary Material
E3.1–E4.2. Performance of SELECTION was compared
with a standard Vision Transformer (ViT) utilizing im-
age input only. The detailed information on ViT can be
found in Supplementary Materials E3.2. Moreover, we
conducted a comparison between SELECTION with a
widely employed multi-modal method, a pretrained
convolutional neural-network (CNN), ResNet-50,
extracted features from CECT images. The extracted
features along with clinical variables were then reduced
through feature selection, classifiers such as logistic
regression predicts the outcome by using the reduced
features. In contrast to conventional CNN method, the
proposed SELECTION provides outcome prediction by
unified processing of multimodal inputs which does not
require as much fine-tunning at each stage. Moreover,
the multimodal attention used by SELECTION provided
multimodal inter-connections at a global level. In com-
parison, the non-unified methods such as the conven-
tional CNN method only consider the connections
between the global representations (i.e., reduced fea-
tures). This study examined the viability of predicting
the overall objective response (OOR) and overall survival
(OS) of distinctive uHCC therapeutic plans using
SELECTION.

Comprehensive AI-based treatment decision model
(ATOM)
The four SELECTION models, cultivated from four
distinct cohorts, collectively contribute to a sophisticated
www.thelancet.com Vol 75 September, 2024
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Fig. 2: The workflow of this study, from deep learning model building, decision support pipeline construction to model evaluation. (a) Ar-
chitecture of SELECTION, Multi-modal input construction was considered from clinical variables and CECT images; (b) Simplified illustration of
ATOM in clinical application, where ATOM consist of four SELECTION models trained by four distinctive cohorts, each model will provide a
survival score for the patient, through designed decision support pipeline, provide a treatment recommendation according to corresponding
SELECTION model. (c) Attention operations in the bidirectional multimodal attention layer. (d) Evaluation methods used to assess the model
performance. Abbreviations: uHCC, unresectable hepatocellular carcinoma; MLP, Multilayer Perceptron; Mul., Multiplication; SELECTION,
unreSEctabLe hEpatocellular Carcinoma mulTImOdal transformer; AUROC, area under the receiver operating characteristic curve.
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decision-making paradigm, enhancing the approach to
uHCC management. ATOM describes the comprehen-
sive decision-making process of manipulating the sur-
vival scores computed from each SELECTION model,
the relationship between ATOM and SELECTIONs is
demonstrated in Fig. 2b. ATOM expand its functionality
by offering guidance on potential combination therapy
alongside the chosen IAIT, introducing a comprehen-
sive consideration of therapeutic strategies. Fig. 3a il-
lustrates the proposed clinical utilization of ATOM.
Fig. 3b demonstrated the therapeutic decision-making
process of ATOM. The decision-making paradigm is
based on making comparisons between patients’ sur-
vival scores with the median survival scores (MSS)
www.thelancet.com Vol 75 September, 2024
found from each training sets only. It classifies patients
into high and low risk groups based on whether the
survival score reaches the MSS.

Visualization of SELECTION
Standard approach of attention analysis for vision trans-
formers was used and SELECTION was visualized with
GradCam.19 In the context of multi-head self-attention
utilized by SELECTION, attention weights across various
heads were averaged from each layer, resulting in an
attention matrix. To account for residual connections, an
identity matrix was introduced to each attention matrix,
followed by normalization of the resultant weight
matrices. The weight matrices of different layers from the
5
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Fig. 3: (a) Overview of ATOM, providing uHCC patient with therapeutic decision planning recommendation. (b) Patient management flowchart
demonstrating the risk stratification process, and the ATOM recommendation of therapeutic decision based on survival scores obtained from
SELECTION. (c) Survival scores derived by SELECTION found in train, internal validation and external validation in each of the four cohorts in this
study. Abbreviation: ATOM, AI-based Treatment Decision Model. P value shows two-sided Mann–Whitney test, Whiskers show minimum and
maximum values, boxes represent 25–75% data ranges, ns denotes no significant differences (P > 0.05), * denotes a P value < 0.05. SELECTION:
unreSEctabLe hEpatocellular Carcinoma mulTImOdal transformer. DLS, Deep learning score representing the survival score computed by SE-
LECTION in predicting ORR or OS; MSS, median survival score found in the training set; HCC, Hepatocellular Carcinoma; Train, Training datasets;
Int, Internal Validation datasets; Ext, External Validation datasets. T-C, TACE with systemic treatment; H-C, HAIC with systemic treatment.
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model were multiplied. The culmination of this process
yielded an attention map encapsulating the similarity
between each input token and the CLS token. Given the
role of the CLS token in diagnostic predictions, these
similarities served as indicators of the relevance between
input tokens and prediction outcomes, facilitating sub-
sequent visualization.

Follow up protocol and endpoints definition
All eligible patients were censored at the last follow-up
date [November 30, 2022]. After thorough TACE or
HAIC procedure was accomplished, the serum alpha-
fetoprotein (AFP) and dynamic contrast enhanced
images were examined again at 3–6-month intervals
during interventional treatment and at approximately 3-
month intervals in the first year and every 6-month in-
tervals follow-up after that. If suspected metastasis was
encountered, chest CT, whole-body bone scans, or posi-
tron emission tomography-CT were performed
selectively.

The primary endpoint was 1-year OS, It was calcu-
lated from the date of initial treatment to the following
1-year deadline. The evaluation of the therapy’s initial
efficacy depends on the ability to differentiate between
early responders and non-responders, and 1-year OS is a
crucial milestone in this regard. The second endpoint
www.thelancet.com Vol 75 September, 2024
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was overall objective response (OOR) to IAITs based on
modified Response Evaluation Criteria in Solid Tumor
(mRECIST),20 including complete response (CR), partial
response (PR), stable disease (SD), and progression dis-
ease (PD), which was defined as the percentage of
patients with CR and PR lasting for over 4 weeks from the
first radiological confirmation. 1-year OS serves as a
critical milestone for systemic treatments, as it helps to
distinguish between early responders and non-
responders, which is essential for evaluating the initial
effectiveness of the therapy. OOR was chosen to evaluate
IAIT outcomes, this ensures effective identification of
treatment impacts and to provide metrics consistent with
clinical guidelines. We collected a total of 20 clinical var-
iables related to enrolled patient and the variables’ defi-
nition were described in Supplementary Information E5.

Statistics
Statistical analysis was performed using SPSS version
26.0 (IBM Corp., NY, USA) and RMS package of the R
software version 3.5.1 (http://www.r-project.org/). The
quantitative variables with mean ± standard deviation or
median with interquartile range (IQR) were compared
by Mann–Whitney test, Student’s t-test, Kruskal–Wallis
test and ANOVA. Categorical variables were analyzed
using χ2 tests or Fisher’s exact test. The areas under
receiver operating characteristic curve (AUC) of
different models were compared by Delong test and OS
curves of different subgroups were compared using the
Kaplan–Meier with log-rank test. All tests of significance
were two-sided and a P value < 0.05 was considered
statistically significant.

Role of the funding source
This study received funding from the Beijing Municipal
Natural Science Foundation (Z190024), the Key Pro-
gram of the National Natural Science Foundation of
China (81930119), The Science and Technology Plan-
ning Program of Beijing Municipal Science & Tech-
nology Commission and Administrative Commission of
Zhongguancun Science Park (Z231100004823012),
Tsinghua University Initiative Scientific Research Pro-
gram of Precision Medicine (10001020108) and Insti-
tute for Intelligent Healthcare, Tsinghua University
(041531001). The funding was utilized for operation of
high-performance computing power, such as graphics
cards, patient enrollment, and covering administrative
costs. The funders had no role in study design, data
collection, data analysis, data interpretation, or writing
of the report.
Results
Baseline characteristics
Among all the 4773 enrolled patients in this study, 3048
patients were excluded following the exclusion criteria,
816 patients were assigned to TACE group and 909 were
www.thelancet.com Vol 75 September, 2024
assigned to HAIC group. The baseline characteristics
stratified by the four therapeutic schemes are shown in
Table 1. The distribution of age, ECOG, comorbidity,
AFP, tumor size, vascular invasion, metastasis, BCLC
stages, albumin, international normalized ratio, platelet,
and combination therapeutic schemes including, TKI
(Tyrosine Kinase Inhibitor), ICI (Immune Checkpoint
Inhibitor) and local treatment, were different signifi-
cantly between the four groups (all, P < 0.05). Clinical
baseline from HCC patients in training set (n = 502),
internal validation set (n = 126) and external validation
set (n = 188) in TACE group and training set (n = 656),
internal validation set (n = 164) and external validation
set (n = 89) in HAIC group were outlined in
Supplementary Tables S1.2–S1.5. The overall response
rate (ORR) was 24.8% (202/816) in TACE group, and
34.2% (311/909) in HAIC group. There was significant
statistical difference (P < 0.001) between TACE and
HAIC groups. The follow-up period for all uHCC pa-
tients receiving IAIT was 13.1 [Interquartile Range:
7.3–24.8] months, and 10.6 [Interquartile Range:
6.8–21.2] months for TACE in general group, Median:
11.9 [Interquartile Range: 6.7–21.2] months for HAIC in
general group, Median: 20.9 [Interquartile Range:
9.9–38.1] months for TACE + systemic therapy group
and Median: 16.1 [Interquartile Range: 9.7–29.6]
months for HAIC + systemic therapy group. The cu-
mulative 1-year, 3-year and 5-year OS among the 4
groups of patients were 1-year: 52.0%, 3-year: 29.5% and
5-year: 20.7% in TACE in general group, 1-year: 56.9%,
3-year: 27.9% and 5-year: 21.0% in HAIC in general
group, 1-year: 80.5%, 3-year: 53.6% and 5-year: 41.1% in
TACE + systemic therapy group and 1-year: 77.7%,
3-year: 50.5% and 5-year: 40.2% in HAIC + systemic
therapy group. For patient undergoing combination
systemic therapies, TKI schemes presented median OS
of 15.6 months, ICI schemes had median OS of 14.1
months, showing no significant differences between the
two systemic treatment schemes (P = 0.736). The asci-
tes, tumor diameter, tumor number, vascular invasion
and AFP were independent risk factors for OS in all
cohorts (Supplementary Tables S1.13–S1.19).

SELECTION performance for prognosis of
distinctive treatment plans
In this study, automatic segmentation results were
manually modified by two senior reviewers with more
than ten years of expertise in liver imaging and costed
around 8 h in total. In total, 3450 CECT slices from the
four cohorts were used for development and validation
of four individual SELECTIONs (unreSEctabLe hEpato-
cellular Carcinoma mulTImOdal transformer). Table 2
compared performance between SELECTION with ViT
and the multi-modal CNN approach as well as clinical
models during training and validation in all four co-
horts. Within the deep learning approaches, the CNN
approach showed the least regularization abilities,
7
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Baseline Characteristics Study cohorts P-value

TACE HAIC TC HC

N = 816 N = 909 N = 314 N = 443

Age (years), n (%)

≤65 650 (79.66) 805 (88.56) 253 (80.57) 393 (88.71) <0.001

>65 166 (20.34) 104 (11.44) 61 (19.43) 50 (11.29)

Gender, n (%)

Female 98 (12.01) 98 (10.78) 37 (11.78) 48 (10.84) 0.845

Male 718 (87.99) 811 (89.22) 277 (88.22) 395 (89.16)

ECOG, n (%)

0 772 (94.61) 828 (91.09) 294 (93.63) 395 (89.16) 0.002

1 44 (5.39) 81 (8.91) 20 (6.37) 48 (10.84)

Comorbidity, n (%)

Absence 755 (92.52) 781 (85.92) 282 (89.81) 382 (86.23) <0.001

Presence 61 (7.48) 128 (14.08) 32 (10.19) 61 (13.77)

HBV, n (%)

Absence 47 (5.76) 60 (6.60) 21 (6.69) 29 (6.55) 0.882

Presence 769 (94.24) 849 (93.40) 293 (93.31) 414 (93.45)

Ascites, n (%)

Absence 704 (86.27) 773 (85.04) 282 (89.81) 393 (88.71) 0.090

Presence 112 (13.73) 136 (14.96) 32 (10.19) 50 (11.29)

Tumor diameter, n (%)

<5 31 (3.80) 4 (0.44) 18 (5.73) 3 (0.68) <0.001

[5,10] 410 (50.25) 371 (40.81) 172 (54.78) 188 (42.44)

>10 375 (45.96) 534 (58.75) 124 (39.49) 252 (56.88)

Tumor number, n (%)

≤3 354 (43.38) 332 (36.52) 138 (43.95) 173 (39.05) 0.059

>3 462 (56.62) 577 (63.48) 176 (56.05) 270 (60.95)

Vascular invasion, n (%)

Absence 457 (56.00) 268 (29.48) 202 (64.33) 142 (32.05) <0.001

Presence 359 (44.00) 641 (70.52) 112 (35.67) 301 (67.95)

Metastasis, n (%)

Absence 608 (74.51) 542 (59.63) 243 (77.39) 279 (62.98) <0.001

Presence 208 (25.49) 367 (40.37) 71 (22.61) 164 (37.02)

BCLC, n (%)

A 168 (20.59) 91 (10.01) 79 (25.16) 57 (12.87) <0.001

B 209 (25.61) 143 (15.73) 100 (31.85) 76 (17.16)

C 439 (53.80) 675 (74.26) 135 (42.99) 310 (69.98)

ALB (g/L), (mean (SD)) 38.73 (5.31) 39.72 (4.62) 39.64 (5.22) 40.23 (4.71) <0.001

ALT (g/L), (mean (SD)) 65.04 (76.51) 62.86 (57.95) 64.30 (78.70) 63.78 (65.96) 0.931

AST (g/L), (mean (SD)) 91.11 (126.85) 94.65 (84.66) 85.48 (163.95) 91.42 (86.30) 0.003

TBIL (ng/ml), (mean (SD)) 20.40 (27.46) 18.15 (15.20) 19.61 (25.75) 17.77 (16.26) 0.088

PT (ng/ml), (mean (SD)) 12.55 (1.74) 12.50 (1.27) 12.45 (1.88) 12.48 (1.27) 0.768

INR (ng/ml), (mean (SD)) 1.07 (0.13) 1.09 (0.11) 1.07 (0.16) 1.08 (0.11) <0.001

PLT (ng/ml), (mean (SD)) 215.83 (102.02) 251.28 (121.58) 214.95 (104.38) 253.44 (116.85) <0.001

AFP (ng/ml)

≤400 375 (45.96) 353 (38.83) 148 (47.13) 165 (37.25) 0.001

>400 441 (54.04) 556 (61.17) 166 (52.87) 278 (62.75)

Sequential local treatment, n (%)

Absence 694 (85.05) 694 (76.35) 193 (61.46) 228 (51.47) <0.001

Presence 122 (14.95) 215 (23.65) 121 (38.54) 215 (48.53)

TKI, n (%)

Absence 605 (74.14) 614 (67.55) 103 (32.80) 148 (33.41) <0.001

Presence 211 (25.86) 295 (32.45) 211 (67.20) 295 (66.59)

(Table 1 continues on next page)
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Baseline Characteristics Study cohorts P-value

TACE HAIC TC HC

N = 816 N = 909 N = 314 N = 443

(Continued from previous page)

PD1, n (%)

Absence 732 (89.71) 723 (79.54) 230 (73.25) 257 (58.01) <0.001

Presence 84 (10.29) 186 (20.46) 84 (26.75) 186 (41.99)

Note. -Data are number of patients; data in parentheses are percentage unless otherwise indicated. Mean with standard deviation compared by the ANOVA test. P
value < 0.05 suggest statistically significant differences. Abbreviations: HCC, hepatocellular carcinoma; TACE, transarterial chemoembolization; HAIC, hepatic arterial infusion
chemotherapy; TC, TAEC used in combination with targeted-immunotheapy; HC, HAIC used in combination with targeted-immunotherapy; ECOG, Eastern Cooperative
Oncology Group; HBV, hepatitis type B viral; AFP, α-fetoprotein; ALBI, albumin-bilirubin; ALB, albumin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; PT,
prothrombin time; INR, international normalized ratio; TBIL, total bilirubin; PLT, platelet; BCLC, Barcelona Clinic Liver Cancer.

Table 1: Demographic and clinical characteristics of HCC patients underwent TACE or HAIC.

Articles
having the lowest external validation AUC across TC,
HAIC and HC cohorts (TACE: 0.695 [95% CI, 0.621,
0.762], P = 0.44, HAIC: 0.718 [95% CI 0.611, 0.809],
P = 0.286, TACE Combination: 0.637 [95% CI, 0.498,
0.761], P = 0.218, HAIC Combination: 0.685 [95% CI,
0.528, 0.817], P = 0.534; significance was tested by the
DeLong test with SELECION). Amongst all models,
SELECTION though not mostly significant compared to
other deep learning approaches, demonstrated the
highest performances values. SELECTION-TACE ach-
ieved an AUC of 0.788 (95% CI, 0.707, 0.856) and 0.761
(95% CI, 0.693, 0.820) at internal validation and external
validation respectively in predicting ORR. SELECTION-
HAIC achieved an AUC of 0.854 (95% CI, 0.791, 0.904)
and 0.805 (95% CI, 0.707, 0.881) at internal validation
and external validation respectively in predicting ORR.
The AUC of SELECTION-TC were 0.811 (95% CI, 0.677,
0.907) and 0.736 (95% CI, 0.608, 0.841) in internal and
external validation sets respectively in predicting OS.
The AUC of SELECTION-HC were 0.837 (95% CI,
0.737, 0.910) and 0.748 (95% CI, 0.599, 0.865) in in-
ternal and external validation sets respectively in pre-
dicting OS. Results of the DeLong test indicated
significant superiority of SELECTIONs over the clinical
model-1 in all cohorts expect external validation set from
HC cohort (P < 0.05). Clinical Model-2 has performed
consistently compared to clinical model-1, where clinical
model-2 has outperformed clinical model-1 in TC
cohort. Details of clinical models construction can be
found in Supplementary Materials E4.3. Furthermore,
propensity score matching (PSM) was employed in the
external validation cohorts to balance the differences
between TACE in general and HAIC in general group,
TACE + systemic therapy and HAIC + systemic therapy
group to enroll patients with more comparable tumor
stage and demographic characteristics (Supplementary
Tables S1.7–S1.12). SELECTION consistently showed
its’ performances in all cohorts before and after PSM
and in subgroup analysis (Supplementary Table S1.22).
Fig. 3c demonstrated the survival scores derived by
SELECTIONs, where no significant differences were
www.thelancet.com Vol 75 September, 2024
seen between the survival scores computed in train,
internal validation and external validation sets for HAIC,
TACE and TC cohorts (P > 0.05). There were significant
differences between the train and internal validation
sets for the HAIC combination cohorts (P = 0.019),
however no significant differences were present be-
tween train and external validation sets. The median
survival scores (MSS) found in each train datasets were
0.4035, 0.6130, 0.3368 and 0.6458 for TACE, TC, HAIC
and HC cohorts respectively.

SELECTION for identifying survival benefits
Successful stratification of patients into low and high-
risk subgroups was achieved by comparing the indi-
vidual patients’ survival scores with the MSS derived
from each SELECTION model during the training phase
only. The Kaplan–Meier overall survival curves in Fig. 4
illustrated significant differences between the predicted
high risk and low risk patients in all four cohorts
(P < 0.001). Notably, the best model presented a hazard
ratio of 3.2 (95% CI: 2.23, 4.23) in the high-risk group in
SELECTION-HC. Higher hazard ratio was recorded in
combination therapy cohorts (HC and TC groups)
compared to IAIT alone cohorts (HAIC and TACE
groups). There was no significant difference between
high–risk combination cohort with low-risk IAIT alone
cohorts (P = 0.59 and P = 0.10 for TACE and HAIC
respectively).

Potential value in ATOM for guidance on
recommending treatment
In this study, objective response rate (OOR) as an
important indicator was used for evaluating treatment
effectiveness of TACE or HAIC. Herein, the value of
ATOM (AI-based Treatment Decision Modal) in guiding
treatment plan was investigated by analyzing the ORR of
uHCC patients who received TACE or HAIC. Moreover,
the value of ATOM in recommending additional com-
bination therapy alongside IAIT were evaluated by
analyzing the 1-year OS in uHCC patients who received
combination therapies.
9
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Models Cohorts n AUC NPV PPV SENS SPEC P-value

TACE cohorts

Clinical model-1 Train 502 0.624 (0.593, 0.655) 0.346 0.872 0.589 0.602 <0.001

IntVal 126 0.589 (0.513, 0.665) 0.332 0.763 0.547 0.617 <0.001

ExVal 188 0.578 (0.508, 0.649) 0.289 0.619 0.525 0.592 0.007

Clinical model-2 Train 502 0.624 (0.593, 0.655) 0.346 0.872 0.589 0.602 <0.001

IntVal 126 0.589 (0.513, 0.665) 0.332 0.763 0.547 0.617 <0.001

ExVal 188 0.578 (0.508, 0.649) 0.289 0.619 0.525 0.592 0.007

Resnet-50 + LR Train 502 0.882 (0.850, 0.909) 0.843 0.834 0.434 0.972 0.066

IntVal 126 0.792 (0.708, 0.861) 0.600 0.798 0.300 0.933 0.892

ExVal 188 0.695 (0.621, 0.762) 0.875 0.827 0.194 0.993 0.440

ViT Train 502 0.835 (0.800, 0.866) 0.533 0.915 0.800 0.755 0.924

IntVal 126 0.755 (0.670, 0.827) 0.476 0.857 0.625 0.766 0.522

ExVal 188 0.663 (0.590, 0.730) 0.356 0.853 0.525 0.743 0.002

SELECTION Train 502 0.833 (0.797, 0.865) 0.618 0.897 0.723 0.844 –

IntVal 126 0.788 (0.707, 0.856) 0.724 0.887 0.656 0.915 –

ExVal 188 0.761 (0.693, 0.820) 0.456 0.893 0.650 0.791 –

HAIC cohorts

Clinical model-1 Train 656 0.658 (0.633, 0.683) 0.384 0.779 0.623 0.610 <0.001

IntVal 164 0.618 (0.545, 0.691) 0.307 0.715 0.536 0.582 <0.001

ExVal 89 0.588 (0.489, 0.687) 0.392 0.624 0.549 0.538 0.003

Clinical model-2 Train 656 0.565 (0.519, 0.612) 0.626 0.542 0.812 0.314 <0.001

IntVal 164 0.526 (0.430, 0.622) 0.489 0.583 0.577 0.495 <0.001

ExVal 89 0.566 (0.444, 0.688) 0.525 0.659 0.489 0.691 0.004

Resnet-50 + LR Train 656 0.888 (0.861, 0.911) 0.768 0.821 0.578 0.917 0.145

IntVal 164 0.710 (0.634, 0.779) 0.561 0.758 0.442 0.835 0.003

ExVal 89 0.718 (0.611, 0.809) 0.730 0.640 0.600 0.762 0.286

ViT Train 656 0.923 (0.900, 0.942) 0.794 0.936 0.873 0.892 0.653

IntVal 164 0.848 (0.783, 0.899) 0.623 0.895 0.811 0.766 0.852

ExVal 89 0.782 (0.681, 0.862) 0.900 0.678 0.587 0.930 0.574

SELECTION Train 656 0.916 (0.892, 0.936) 0.856 0.924 0.840 0.932 –

IntVal 164 0.854 (0.791, 0.904) 0.750 0.875 0.736 0.883 –

ExVal 89 0.805 (0.707, 0.881) 0.875 0.684 0.609 0.907 –

TACE + Systemic cohorts

Clinical model-1 Train 202 0.618 (0.599, 0.637) 0.287 0.794 0.505 0.619 <0.001

IntVal 51 0.589 (0.466, 0.712) 0.332 0.707 0.524 0.620 <0.001

ExVal 61 0.554 (0.422, 0.686) 0.320 0.668 0.519 0.576 0.046

Clinical model-2 Train 202 0.671 (0.578, 0.764) 0.656 0.706 0.832 0.481 0.005

IntVal 51 0.633 (0.473, 0.793) 0.390 0.576 0.586 0.684 0.105

ExVal 61 0.639 (0.488, 0.790) 0.574 0.717 0.714 0.577 0.296

Resnet-50 + LR Train 202 0.974 (0.961, 0.998) 0.829 1.000 1.000 0.400 <0.001

IntVal 51 0.789 (0.648, 0.894) 0.730 0.818 0.931 0.474 0.738

ExVal 61 0.637 (0.498, 0.761) 0.614 0.750 0.900 0.346 0.218

ViT Train 202 0.847 (0.799, 0.901) 0.914 0.645 0.853 0.769 0.519

IntVal 51 0.810 (0.675, 0.906) 0.880 0.654 0.710 0.850 0.974

ExVal 61 0.746 (0.620, 0.850) 0.815 0.618 0.629 0.808 0.865

SELECTION Train 202 0.839 (0.781, 0.887) 0.924 0.600 0.813 0.808 –

IntVal 51 0.811 (0.677, 0.907) 0.788 0.722 0.839 0.650 –

ExVal 61 0.736 (0.608, 0.841) 0.800 0.645 0.686 0.769 –

HAIC + Systemic cohorts

Clinical model-1 Train 317 0.647 (0.616, 0.678) 0.389 0.776 0.593 0.616 <0.001

IntVal 80 0.621 (0.522, 0.720) 0.315 0.626 0.421 0.578 <0.001

ExVal 46 0.590 (0.445, 0.735) 0.300 0.619 0.425 0.540 0.215

(Table 2 continues on next page)
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Models Cohorts n AUC NPV PPV SENS SPEC P-value

(Continued from previous page)

Clinical model-2 Train 317 0.664 (0.606, 0.722) 0.523 0.728 0.594 0.667 <0.001

IntVal 80 0.611 (0.474, 0.747) 0.513 0.767 0.516 0.765 <0.001

ExVal 46 0.736 (0.581, 0.890) 0.608 0.744 0.733 0.621 0.905

Resnet-50 + LR Train 317 0.929 (0.885, 0.948) 0.817 0.913 0.961 0.656 0.864

IntVal 80 0.760 (0.650, 0.848) 0.879 0.476 0.823 0.588 0.230

ExVal 46 0.685 (0.528, 0.817) 0.440 0.789 0.733 0.517 0.534

ViT Train 317 0.884 (0.844, 0.917) 0.879 0.807 0.883 0.800 0.073

IntVal 80 0.808 (0.705, 0.888) 0.925 0.519 0.790 0.778 0.678

ExVal 46 0.690 (0.537, 0.818) 0.474 0.778 0.600 0.677 0.532

SELECTION Train 317 0.925 (0.890, 0.952) 0.873 0.886 0.939 0.775 –

IntVal 80 0.837 (0.737, 0.910) 0.938 0.469 0.726 0.833 –

ExVal 46 0.748 (0.599, 0.865) 0.529 0.793 0.600 0.742 –

Note. —Significance of AUC was tested by the DeLong test between the other models and SELECTION. Abbreviation: SELECTION, unresectable hepatocellular carcinoma
multimodal transformer; ViT, Vision Transformer; AUC, area under receiver operating characteristic curve; ACC, accuracy; SENS, sensitivity; SPEC, specificity; PPV, positive
predictive value; NPV, negative predictive value; LR, Logistic regression classifier; TACE, transarterial chemoembolization; HAIC, hepatic arterial infusion chemotherapy; TC,
TAEC used in combination with targeted-immunotheapy; HC, HAIC used in combination with targeted-immunotherapy; IntVal, Internal validation cohort; ExVal, External
validation cohorts; PSM, Propensity score matching.

Table 2: The performance comparison of different models without PSM.

Articles
Table 3 tabulated the ORR and 1-year OS rates
from the external validation cohorts. It depicted vari-
ations in ORR/OS based on whether the actual treat-
ment aligned with the ATOM’s recommendation. For
both TACE and HAIC groups, the ORR was signifi-
cantly higher (P < 0.001) when the actual treatment
was consistent with ATOM’s recommendation. When
ATOM recommend against IAIT, significant differ-
ences were observed compared to instances where the
actual treatment aligns with ATOM recommenda-
tions. The TC group exhibited a similar trend, where
the OS rate was significantly higher when ATOM
recommendation aligned with the actual treatment.
However, this pattern was not statistically significant
in the HC group, possibly attributable to its smaller
sample size.

Interpretation of SELECTION
Four representative patients in the external validation
cohorts were selected and the feature maps learned by
SELECTIONs were shown in Fig. 5. The intensity of
feature maps in the SELECTION-recommended
model has shown to be higher than that of other
models. Additionally, the attention heatmap from the
suggested SELECTION model has shown focus mostly
in the tumour area. This is more obvious in heatmap
of the portal phase images, potentially due to tumour
region having greater contrast during portal phase.
Notably, liver parenchyma surrounding the tumour
region were often times focused by SELECTION,
showing the contribution of liver regions containing
tumour-induced systemic environment in the survival
prediction process.
www.thelancet.com Vol 75 September, 2024
Discussion
In recent years, an increasing number of investigations
have presented comparisons of efficacy and safety be-
tween TACE and HAIC, along with clinical trial find-
ings on IAIT combined with MATs and ICIs. While
various models have been developed based on clinical
information or radiomics to predict prognostic out-
comes after IAIT,21,22 with applications in HCC
including identification of pathological subtypes, and
prospective recurrence prediction after various thera-
peutic schemes using dynamic enhanced imaging,
showing promising prognostic performances. Howev-
er, these models struggle to guide physicians in
formulating individualized treatment schemes. This
challenge is attributed to small derivation sample sizes,
divergent pathologic scoring standards, and limited
clinical applicability.

We hypothesized the choice of IAIT decision can be
extracted from CECT images and clinical information at
the time of uHCC diagnosis with the help of SELEC-
TION and ATOM. SELECTION predicted survival
scores supported the clinical outcomes, presenting
highest AUC values amongst all the evaluated models
(ORR AUC, 0.761 and 0.805 for HAIC and TACE
external validation cohorts respectively; OS AUC, 0.736
and 0.748 for TC and HC external validation cohorts
respectively). The risk stratification ability of SELEC-
TION was also visible, showing significant differences
in survival between stratified high and low risk groups
[P < 0.001 for all four cohorts].

ATOM, the proposed clinical pipeline ensured
objective response to be achieved in order to select the
best therapeutic plan for uHCC patients. The ATOM
11
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Fig. 4: Kaplan Meier overall survival analysis of high and low-risk groups for (a) TACE group; (b) HAIC group; (c) TC group; (d) HC group.
Abbreviation: T-C, TACE with systemic treatment; H-C, HAIC with systemic treatment; HR, hazard ratio.

Stage 1–actual ORR

Cohort Consistent recommendation Inconsistent recommendation P Recommendation Against IAIT (stage 1) P Total number

TACE 30/89 (33.7%) 6/59 (10.2%) <0.001 4/40 (10.0%) 0.005 40/188 (21.3%)

HAIC 34/49 (69.4%) 3/16 (18.8%) <0.001 9/24 (37.5%) 0.012 46/89 (51.7%)

Stage 2–Actual OS rate

Cohort Consistent recommendation Inconsistent recommendation P Recommendation against IAIT (stage 2) P Total number

TC group 15/18 (83.3%) 20/38 (52.6%) 0.039 0/5 (0.0%) 0.002 35/61 (57.4%)

HC group 5/11 (45.5%) 9/31 (29.0%) 0.459 1/4 (25.0%) 0.604 15/46 (32.6%)

Note. —Significance was tested by Fisher’s exact test. Abbreviation: ATOM, AI-based treatment decision model; ORR, overall objective response; OS, overall survival; Stage 1
refers to making recommendation on TACE or HAIC; Stage 2 refers to making recommendation on combination therapies alongside IAIT.

Table 3: Actual ORR/OS rate of different cohorts in the external validation set, who has seen consistent recommendation between ATOM and clinician
compared with those who had inconsistent recommendations or when no recommendation was suggested by ATOM.
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Fig. 5: Feature visualization of SELECTION models on four representative patients using Grad-Cam. Abbreviation: T-C, TACE with systemic
treatment; H-C, HAIC with systemic treatment.

Articles
framework not only optimizes the selection of first-line
treatments but also customizes subsequent combination
treatment recommendations based on individual patient
characteristics, thereby enhancing the precision and
efficacy of therapeutic decisions in uHCC management.
It was evidential that when the ATOM recommendation
aligns with the actual treatment, there is a significantly
higher rate of ORR/OS [P < 0.05 for TACE, HAIC and
TC cohorts]. Notably, the results revealed extended
survival in the IAIT combination groups compared to
IAIT alone groups, suggesting that, for high-risk uHCC
patients, TACE or HAIC combination therapies should
be the recommended first-line therapeutic approach.
Our findings align with BCLC guidelines and are
consistent with prior research, where after stratification,
low-risk group in combination cohorts has significantly
higher survival than that of low-risk group in the IAIT
alone cohorts. This agrees with previous findings of
combination therapy providing longer OS for uHCC
patients.23–25 Finally, for patients predicted to exhibited
OOR to initial IAITs only, our findings would be able to
caution against anticipating subsequent targeted-
immunotherapy or molecular targeted agent to avoid
potential economic loss and complications. For
SELECTION-high risk IAIT patients and those SELEC-
TION recommending against IAIT altogether patients,
proactive treatment scheme adjustments or post-
operative prevention and monitoring strategies were to
be implemented, emphasizing the need for intensive
www.thelancet.com Vol 75 September, 2024
surveillance and adjuvant systemic therapies due to the
elevated risk of death.

Prior investigations predominantly focused on a
singular treatment modality recommendation, lacking
the capacity to address the fundamental challenges of
delivering optimal decision support. Recent studies have
been looking into treatment decision between two
treatment options for HCC, by forecasting recurrence
probabilities of HCC patients and choosing the treat-
ment with higher probabilities.26,27 Unlike previous
proposed models and pipelines, ATOM swiftly and
precisely performs risk stratification for uHCC patients
undergoing four distinctive IAIT schemes considering
multimodal input data. Furthermore, unlike previous
studies, ATOM was able to provide meaningful recom-
mendations against IAIT altogether, preventing unnec-
essary complications.

In the past, studies have often overlooked the
intricate interconnection between clinical variables
and medical images. Most commonly used multi-
modal approach, combining the feature extraction
ability of CNN such as ResNet-50 with classification
ability of classifiers such as logistic regression, has
shown excellent prognostic performances, the gener-
alizability of such method however has yet to be
extensively studied.28,29 Overfitting concern was
observed in our application of the CNN multi-modal
approach, where comparable performance was noted
between the traditional late-fusion CNN approach and
13
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the proposed SELECTION in all internal validation
cohorts, but lower performance was evident in
external validation cohorts. Besides, the results com-
parison between ViT and SELECTION demonstrated
the importance of clinical features in prognostication
performance. Although not statistically significant for
most cohorts, higher AUC values were presented by
SELECTION in almost all the cohorts when compared
to ViT.

The analysis of attention map features learned by
SELECTION highlighted the potential roles of tumour
micro-environment, in addition the surrounding
tumour-induced systemic environment in the liver
parenchyma. The intensity displayed in the heatmap
reflected heterogeneity, with variations in intensity
among different SELECTION models for the same
patient indicating distinct focal points elucidated by
SELECTION trained on different IAIT schemes. Dis-
tinctions in feature maps between arterial and portal
phase images were observed, indicating varying con-
centrations of contrast agents in the liver vessels,
potentially influenced by tumor microvessels and the
tumor microenvironment. Previous studies exploring
mechanisms of conventional chemotherapy resistance
had revealed involvement of tumor microenvironment
components.30,31 It seemed to explain the relation be-
tween status of tumor micro environment and
response to chemotherapy. Based on these studies, we
inferred that response to initial IAITs are associated
with the tumor microvessels which can be reflected by
feature maps. This hypothesis needs further experi-
mental research to explore the mechanism. Visualiza-
tion of extracted SELECTION features also indicated
that response to initial IAITs as well as the following
potential combination therapies might be closely
related to the area outside the tumor, proving the ra-
tionality of the purposed ROI definition. Furthermore,
SELECTION exhibits a proclivity for concentrating the
liver’s edge, a phenomenon accentuated in instances of
lower signal-to-noise ratio (SNR) resulting from
reduced tube current. We suspect that SELECTION
engages in edge tracking of the liver as a response to
detecting lower SNR, potentially as a compensatory
mechanism for abnormal image parameters. By
incorporating survival scores with the MSS calculated
from the training dataset, therapeutic decisions were
guided by ATOM. While these visualizations provide
valuable insights, they should be interpreted with
caution, and further studies with larger sample sizes
are necessary to validate our findings.

This study is subject to several limitations. Although
HAIC is not recommended by most western guideline,
HAIC is treated as an effective and safe transcatheter
chemotherapy, provides sustained higher concentra-
tions of chemotherapy agents in tumors than intrave-
nous chemotherapy, which has been used for HCC
treatment.6,28 The clinical significance of selection be-
tween TACE and HAIC may be more applicable to
Asian countries. However, our work remains relevant
and significant as it highlights the potential benefits of
personalized treatment strategies, which can be adapted
to different regional practices and patient populations.
The inclusion of patients from 12 hospitals in China
introduced variability in treatment practices and proce-
dural techniques across different institutions. Addi-
tionally, variations in the selection of TACE drugs could
potentially impact the ultimate outcomes. The majority
of patients enrolled in our study exhibited large HCC
with Hepatitis B Virus infection as the predominant
etiology, raising uncertainties about the generalizability
of our findings to Western countries where patients
often present with a low tumor burden or alcoholic liver
cirrhosis as the primary etiology. Another limitation of
our study is that while our deep learning model showed
higher AUC values compared to other models, these
differences were not mostly statistically significant. This
suggests potential for improved performance, which
could be validated by enrolling patients with more
similar baseline characteristics to reduce uncertainty.
Moreover, this study did not analyze information on
complications during and after IAIT, and administra-
tion of TKI, and ICI, necessitating further exploration.
Given these limitations, the prospective application of
ATOM as a decision support tool in clinical settings
requires thorough validation.

In conclusion, SELECTION has successfully predicted
uHCC treatment outcomes. ATOM was used to recom-
mend the IAIT scheme in patients with uHCC, it could
be easily implemented in clinical practice for physicians
and patients to stratify risk and prognosticate quickly and
accurately, thereby serving as a more favorable tool to
strengthen individualized IAIT schemes.

Contributors
Guarantors of integrity of entire study, X.L, R.W, C.A, H.C.; study
concepts/study design, H.C, C.A, X.L, R.W; Data acquisition, data
analysis, data interpretation, X.L, R.W, Z.X; manuscript drafting, X.L,
C.A; Algorithm optimization, X.L, H.S, R.L, J.D; Verification of under-
lying data: X.L, R.W,C.A; manuscript revision for important intellectual
content, H.C, C.A; approval of final version of submitted manuscript, all
authors; agrees to ensure any questions related to the work are appro-
priately resolved, all authors; literature research, W.R, X.L, C.A, Z.X,
H.C; statistical analysis, W.R, X.L, Z.X,Q.L; and manuscript editing, all
authors. All authors read and approved the final version of the
manuscript.

Data sharing statement
CT imaging data and clinical information are not publicly available due
to patient privacy reasons, they will be made available upon request from
the corresponding authors. The code for the model (SELECTION) used
in this study can be found on GitHub (https://github.com/banterlin/
SELECTION) for test and evaluation purposes.

Declaration of interests
All authors; no relevant relationships. Correspondence and requests for
materials should be addressed to X.L, R.W, C.A, H.C.
www.thelancet.com Vol 75 September, 2024

https://github.com/banterlin/SELECTION
https://github.com/banterlin/SELECTION
http://www.thelancet.com


Articles
Acknowledgements
Assistance with the study: none.

Appendix A. Supplementary data
Supplementary data related to this article can be found at https://doi.
org/10.1016/j.eclinm.2024.102808.
References
1 EASL clinical practice guidelines: management of hepatocellular

carcinoma. J Hepatol. 2018;69(1):182–236. https://doi.org/10.1016/
j.jhep.2018.03.019.

2 Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the
treatment of hepatocellular carcinoma. Hepatology. 2018;67(1):358–
380. https://doi.org/10.1002/hep.29086.

3 Benson AB, D’Angelica MI, Abrams T, et al. NCCN guidelines®
insights: biliary tract cancers, version 2.2023: featured updates to
the NCCN guidelines. J Natl Compr Cancer Netw. 2023;21(7):694–
704. https://doi.org/10.6004/jnccn.2023.0035.

4 Peng Z, Fan W, Zhu B, et al. Lenvatinib combined with trans-
arterial chemoembolization as first-line treatment for advanced
hepatocellular carcinoma: a phase III, randomized clinical trial
(LAUNCH). J Clin Oncol. 2023;41(1):117–127. https://doi.org/10.
1200/JCO.22.00392.

5 He M, Li Q, Zou R, et al. Sorafenib plus hepatic arterial infusion of
oxaliplatin, fluorouracil, and leucovorin vs sorafenib alone for he-
patocellular carcinoma with portal vein invasion: a randomized
clinical trial. JAMA Oncol. 2019;5(7):953–960. https://doi.org/10.
1001/jamaoncol.2019.0250.

6 Ikeda M, Shimizu S, Sato T, et al. Sorafenib plus hepatic arterial
infusion chemotherapy with cisplatin versus sorafenib for advanced
hepatocellular carcinoma: randomized phase II trial. Ann Oncol.
2016;27(11):2090–2096. https://doi.org/10.1093/annonc/mdw323.

7 Zhang T-Q, Geng Z-J, Zuo M-X, et al. Camrelizumab (a PD-1 in-
hibitor) plus apatinib (an VEGFR-2 inhibitor) and hepatic artery
infusion chemotherapy for hepatocellular carcinoma in Barcelona
Clinic Liver Cancer stage C (TRIPLET): a phase II study. Signal
Transduct Targeted Ther. 2023;8(1):413. https://doi.org/10.1038/
s41392-023-01663-6.

8 Villanueva A, Hoshida Y, Battiston C, et al. Combining clinical,
pathology, and gene expression data to predict recurrence of he-
patocellular carcinoma. Gastroenterology. 2011;140(5):1501–1512.e2.
https://doi.org/10.1053/j.gastro.2011.02.006.

9 Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet.
2018;391(10127):1301–1314. https://doi.org/10.1016/s0140-6736(18)
30010-2.

10 Wakabayashi T, Ouhmich F, Gonzalez-Cabrera C, et al. Radiomics
in hepatocellular carcinoma: a quantitative review. Hepatol Int.
2019;13:546–559. https://doi.org/10.1007/s12072-019-09973-0.

11 Qu Q, Liu Z, Lu M, et al. Preoperative Gadoxetic acid-enhanced
MRI features for evaluation of vessels encapsulating tumor clusters
and microvascular invasion in hepatocellular carcinoma: creating
nomograms for risk assessment. J Magn Reson Imaging. 2023;60(3):
1094-1110. https://doi.org/10.1002/jmri.29187.

12 Martin D, Smet H, Costa ACDS, et al. Tumor burden in patients
with early and intermediate-stage hepatocellular carcinoma under-
going liver resection: a retrospective multicenter study on clinical
and oncological outcomes. HPB. 2023;25(7):836–844. https://doi.
org/10.1016/j.hpb.2023.04.001.

13 Jiang H, Yang C, Chen Y, et al. Development of a model including
MRI features for predicting advanced-stage recurrence of hepato-
cellular carcinoma after liver resection. Radiology. 2023;309(2):
e230527. https://doi.org/10.1148/radiol.230527.

14 Xu X, Zhang H-L, Liu Q-P, et al. Radiomic analysis of contrast-
enhanced CT predicts microvascular invasion and outcome in he-
patocellular carcinoma. J Hepatol. 2019;70(6):1133–1144. https://
doi.org/10.1016/j.jhep.2019.02.023.

15 Liu Z, Li Z, Qu J, et al. Radiomics of multiparametric MRI for
pretreatment prediction of pathologic complete response to neo-
adjuvant chemotherapy in breast cancer: a multicenter study. Clin
www.thelancet.com Vol 75 September, 2024
Cancer Res. 2019;25(12):3538–3547. https://doi.org/10.1158/1078-
0432.CCR-18-3190.

16 Zhang K, Zhang L, Li W-C, et al. Radiomics nomogram for the
prediction of microvascular invasion of HCC and patients’ benefit
from postoperative adjuvant TACE: a multi-center study. Eur
Radiol. 2023;33(12):8936–8947. https://doi.org/10.1007/s00330-
023-09824-5.

17 Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-
Net: a self-configuring method for deep learning-based biomedical
image segmentation. Nat Methods. 2021;18(2):203–211. https://doi.
org/10.1038/s41592-020-01008-z.

18 Zhou H-Y, Yu Y, Wang C, et al. A transformer-based
representation-learning model with unified processing of multi-
modal input for clinical diagnostics. Nat Biomed Eng.
2023;7(6):743–755. https://doi.org/10.1038/s41551-023-01045-x.

19 Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D.
Grad-cam: visual explanations from deep networks via gradient-based
localization. 2017:618–626.

20 Domaratius C, Settmacher U, Malessa C, Teichgräber U. Trans-
arterial chemoembolization with drug-eluting beads in patients
with hepatocellular carcinoma: response analysis with mRECIST.
Diagn Interv Radiol. 2021;27(1):85. https://doi.org/10.5152/dir.
2020.19439.

21 Zheng X, Yao Z, Huang Y, et al. Deep learning radiomics can
predict axillary lymph node status in early-stage breast cancer. Nat
Commun. 2020;11(1):1236. https://doi.org/10.1038/s41467-020-
15027-z.

22 Wang K, Lu X, Zhou H, et al. Deep learning Radiomics of shear
wave elastography significantly improved diagnostic performance
for assessing liver fibrosis in chronic hepatitis B: a prospective
multicentre study. Gut. 2019;68(4):729–741. https://doi.org/10.
1136/gutjnl-2018-316204.

23 Wang Z, Wang E, Bai W, et al. Exploratory analysis to identify
candidates benefitting from combination therapy of transarterial
chemoembolization and sorafenib for first-line treatment of unre-
sectable hepatocellular carcinoma: a multicenter retrospective
observational study. Liver Cancer. 2020;9(3):308–325. https://doi.
org/10.1159/000505692.

24 Zhang T, Merle P, Wang H, Zhao H, Kudo M. Combination
therapy for advanced hepatocellular carcinoma: do we see the light
at the end of the tunnel? Hepatobiliary Surg Nutr. 2021;10(2):180.
https://doi.org/10.21037/hbsn-2021-7.

25 Voron T, Colussi O, Marcheteau E, et al. VEGF-A modulates
expression of inhibitory checkpoints on CD8+ T cells in tumors.
J Exp Med. 2015;212(2):139–148. https://doi.org/10.1084/jem.
20140559.

26 Liu F, Liu D, Wang K, et al. Deep learning radiomics based on
contrast-enhanced ultrasound might optimize curative treatments
for very-early or early-stage hepatocellular carcinoma patients. Liver
Cancer. 2020;9(4):397–413. https://doi.org/10.1159/000505694.

27 Ding W, Wang Z, Liu FY, et al. A hybrid machine learning model
based on semantic information can optimize treatment decision for
naive single 3-5-cm HCC patients. Liver Cancer. 2022;11(3):256–
267. https://doi.org/10.1159/000522123.

28 Xu Z, An C, Shi F, et al. Automatic prediction of hepatic arterial
infusion chemotherapy response in advanced hepatocellular carci-
noma with deep learning radiomic nomogram. Eur Radiol.
2023;33(12):9038–9051. https://doi.org/10.1007/s00330-023-09953-x.

29 Li Y, Xu Z, Chao AN, Chen H, Li X. Multi-task deep learning
approach for simultaneous objective response prediction and tu-
mor segmentation in HCC patients with transarterial chemo-
embolization. J Pers Med. 2022;12(2):248. https://doi.org/10.3390/
jpm12020248.

30 Liu L, Zhang R, Deng J, et al. Construction of TME and identifi-
cation of crosstalk between malignant cells and macrophages by
SPP1 in hepatocellular carcinoma. Cancer Immunol Immunother.
2022;71(1):121–136. https://doi.org/10.1007/s00262-021-02967-8.

31 Binnewies M, Roberts EW, Kersten K, et al. Understanding the
tumor immune microenvironment (TIME) for effective therapy.
Nat Med. 2018;24(5):541–550. https://doi.org/10.1038/s41591-018-
0014-x.
15

https://doi.org/10.1016/j.eclinm.2024.102808
https://doi.org/10.1016/j.eclinm.2024.102808
https://doi.org/10.1016/j.jhep.2018.03.019
https://doi.org/10.1016/j.jhep.2018.03.019
https://doi.org/10.1002/hep.29086
https://doi.org/10.6004/jnccn.2023.0035
https://doi.org/10.1200/JCO.22.00392
https://doi.org/10.1200/JCO.22.00392
https://doi.org/10.1001/jamaoncol.2019.0250
https://doi.org/10.1001/jamaoncol.2019.0250
https://doi.org/10.1093/annonc/mdw323
https://doi.org/10.1038/s41392-023-01663-6
https://doi.org/10.1038/s41392-023-01663-6
https://doi.org/10.1053/j.gastro.2011.02.006
https://doi.org/10.1016/s0140-6736(18)30010-2
https://doi.org/10.1016/s0140-6736(18)30010-2
https://doi.org/10.1007/s12072-019-09973-0
https://doi.org/10.1002/jmri.29187
https://doi.org/10.1016/j.hpb.2023.04.001
https://doi.org/10.1016/j.hpb.2023.04.001
https://doi.org/10.1148/radiol.230527
https://doi.org/10.1016/j.jhep.2019.02.023
https://doi.org/10.1016/j.jhep.2019.02.023
https://doi.org/10.1158/1078-0432.CCR-18-3190
https://doi.org/10.1158/1078-0432.CCR-18-3190
https://doi.org/10.1007/s00330-023-09824-5
https://doi.org/10.1007/s00330-023-09824-5
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1038/s41551-023-01045-x
http://refhub.elsevier.com/S2589-5370(24)00387-0/sref19
http://refhub.elsevier.com/S2589-5370(24)00387-0/sref19
http://refhub.elsevier.com/S2589-5370(24)00387-0/sref19
https://doi.org/10.5152/dir.2020.19439
https://doi.org/10.5152/dir.2020.19439
https://doi.org/10.1038/s41467-020-15027-z
https://doi.org/10.1038/s41467-020-15027-z
https://doi.org/10.1136/gutjnl-2018-316204
https://doi.org/10.1136/gutjnl-2018-316204
https://doi.org/10.1159/000505692
https://doi.org/10.1159/000505692
https://doi.org/10.21037/hbsn-2021-7
https://doi.org/10.1084/jem.20140559
https://doi.org/10.1084/jem.20140559
https://doi.org/10.1159/000505694
https://doi.org/10.1159/000522123
https://doi.org/10.1007/s00330-023-09953-x
https://doi.org/10.3390/jpm12020248
https://doi.org/10.3390/jpm12020248
https://doi.org/10.1007/s00262-021-02967-8
https://doi.org/10.1038/s41591-018-0014-x
https://doi.org/10.1038/s41591-018-0014-x
http://www.thelancet.com

	A deep learning model for personalized intra-arterial therapy planning in unresectable hepatocellular carcinoma: a multicen ...
	Introduction
	Methods
	Ethics
	Patient enrolment
	Study design
	Data preprocess and automatic delineation
	Unresectable hepatocellular carcinoma multimodal transformer (SELECTION)
	Comprehensive AI-based treatment decision model (ATOM)
	Visualization of SELECTION
	Follow up protocol and endpoints definition
	Statistics
	Role of the funding source

	Results
	Baseline characteristics
	SELECTION performance for prognosis of distinctive treatment plans
	SELECTION for identifying survival benefits
	Potential value in ATOM for guidance on recommending treatment
	Interpretation of SELECTION

	Discussion
	ContributorsGuarantors of integrity of entire study, X.L, R.W, C.A, H.C.; study concepts/study design, H.C, C.A, X.L, R.W;  ...
	Data sharing statementCT imaging data and clinical information are not publicly available due to patient privacy reasons, t ...
	Declaration of interests
	Acknowledgements
	Appendix A. Supplementary data
	References


