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Effects of chronic inhibition of Testosteronemetabolism on cardiac
remodeling after ischemia/reperfusion-induced myocardial
damage in gonadectomized rats
Octavio Maldonado1,2, Angel Ramos3, Mario Guapillo4, Jose Rivera3, Icela Palma5, Ivan Rubio-Gayosso5,
Israel Ramirez-Sanchez5, Nayelli Najera5, Guillermo Ceballos5,*,‡ and Enrique Mendez-Bolaina1,3,*

ABSTRACT
The effects of testosterone on cardiovascular homeostasis are
still not well understood. The objective of this work was to evaluate
the effects of testosterone in the absence or presence of inhibition
of Aromatase (4-hydroxyandrostenedione) and/or 5α reductase
(Finasteride) enzymatic activities on the myocardial remodeling
30 days after ischemia/reperfusion (I/R) injury in gonadectomized
rats. Results showed that testosterone administration to ORX rats
resulted in decreased myocardial damaged area, inflammatory
infiltrates and reduced MMP-3 and 13 expressions. Interestingly,
Finasteride administration resulted in a greater decrease in scar
tissue, inflammatory infiltrates, along with a significant decrease in
MMP-3 and 13 expressions. In contrast, 4-hydroxyandrostenedione
administrations increased all parameters. Our results suggest that
testosterone does not have a direct effect since simultaneous
inhibition of aromatase and 5α-reductase did not induce significant
changes in I/R induced myocardial injury.
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INTRODUCTION
Clinical studies have shown gender differences in the incidence of
cardiovascular diseases. Men are more susceptible to developing
cardiopathies than women who experience coronary heart disease
and myocardial infarction usually 10 years later than men (Parks
and Howlett, 2013; Czubryt et al., 2006; Booth and Lucchesi, 2008;
Luczak and Leinwand, 2009; Ostadal et al., 2009; Regitz-Zagrosek
and Seeland, 2012).

The effects of testosterone on cardiovascular homeostasis, however,
are controversial. It is thought that testosterone increases the possibility
of suffering ischemic heart disease in men (Araujo et al., 2007; Van
der Wall, 2011). High doses of androgenic steroid supplementation
accelerate atheroma progression increasing the risk of myocardial
infarction and cerebrovascular events (Parker and Thompson, 2010;
Phillips et al., 1994). Yet, there is no convincing evidence that
physiological concentrations of testosterone have an impact on the
development of ischemic heart disease (Carson and Rosano, 2012).
In contrast, clinical studies have shown beneficial effects of
testosterone on the cardiovascular system. It has been shown in
long-term epidemiological studies that testosterone supplementation
has a protective effect, reducing major cardiovascular events and
mortality (Jones and Kelly, 2018). Accordingly, population studies
have shown a strong relationship between decreased testosterone levels
and increased cases of cardiovascular mortality (Ponikowska et al.,
2010; Malkin et al., 2010).

Testosterone is converted into dihydrotestosterone (DHT) and
17β-estradiol by the action of the enzymes 5α-reductase and
aromatase cytochrome P450 (CYP19), respectively (Czakja
and Simpson, 2010). Thus, the contrasting findings mentioned
above could be the result of an indirect effect of testosterone driven
by its transformation into DHT or 17β-estradiol.

We had shown that administration of testosterone 15 min prior
to reperfusion induced no changes in ischemia/reperfusion-induced
(I/R) myocardial damage (after 4 h of reperfusion) in intact male
rats, meanwhile, its administration protects the myocardium against
ischemia/reperfusion damage in gonadectomized rats (Rubio-
Gayosso et al., 2013). It also has been shown that testosterone
supplementation in gonadectomized rats improved oxidative stress
and decreased triglyceride accumulation (Regouat et al., 2018).

We also showed that testosterone metabolism into 17β-estradiol
and/or DHT plays an important role in the testosterone-induced
effects in gonadectomized rats.

We wonder if the chronic administration of testosterone in
orchidectomized (ORX) rats modifies cardiac remodeling after
30 days of I/R-induced myocardial damage.

In this work we evaluated myocardial remodeling, inflammatory
infiltrate and matrix metallopeptidase (MMP)-3 and MMP-13
expression in the absence and presence of inhibitors of testosterone
5α reduction or aromatization.

RESULTS AND DISCUSSION
Effect of testosterone supplementation, reductase and
aromatase inhibition on myocardial damage induced by
coronary I/R in orchidectomized rats
In order to evaluate the role of testosterone during I/R, we
administered exogenous testosterone to ORX rats. Interestingly,Received 21 January 2019; Accepted 17 April 2019
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testosterone administration reduced the percentage of damaged
heart tissue when compared to the control group (41.4±6.9 versus
51.8±5.1, % AI/AT, respectively, P<0.05) (Fig. 1).
We evaluated whether the conversion of testosterone into

17β-estradiol or DHT was responsible for the beneficial effects of
testosterone on I/R. To do this, we administered 5α-reductase
(Finasteride) and/or aromatase (4-OHA) inhibitors. Finasteride
administration in testosterone+ORX treated rats resulted in a
significant decrease in myocardial damage when compared to both
the untreated ORX (51.8±5.1 versus 24±4.1, control versus
testosterone+Finas % AI/AT, respectively, P<0.001) and the ORX
group treated with testosterone (41.4±6.1 versus 24±4.1, testosterone
versus testosterone+Finas, respectively, P<0.001). The protection
induced by testosterone during I/R disappeared when aromatase was
inhibited with 4-OHA (41.4±6.9 versus 55±6% AI/AT, respectively,
P<0.01) (Fig. 2). On the other hand, simultaneous enzymatic
inhibition of 5α-reductase and aromatase did not induce significant
changes when compared with either the ORX control group or the
ORX group administered with testosterone (Fig. 1).

Histological analysis
We evaluated the cellular infiltration and changes in cardiac tissue
architecture 30 days after coronary I/R by Hematoxylin-Eosin
staining. Testosterone administration decreased the presence of
inflammatory cells in the ORX group compared to the untreated
ORX group (P<0.05). Finasteride administration resulted in
decreased cellular infiltrate. This group presented fibers of a
normal size and morphology while edema was scarce. The
testosterone+4-OHA group was the most affected, with a loss of

continuity and separation of cardiac muscle fibers due to a dense
inflammatory infiltrate. Administration of both 4-OHA and
Finasteride in testosterone+ORX did not result in statistical
differences compared to the untreated control (Fig. 2).

MMP-3 expression in cardiac tissue
Fig. 3 shows micrographs of myocardial histological sections
showing immunoreactive zones for MMP-3 and their respective
quantitative analysis bymeasuring the integrated optical densityof the
treated groups and the control group. Testosterone administration
decreased the expression of MMP-3 when compared to the control
group (5.4×106±0.9×106 versus 3.6×106±0.6×106, control versus
testosterone, respectively, P<0.05) (Fig. 3, upper panel).
Administration of testosterone+Finas resulted in decreased MMP-3
expression in contrast to the control group (5.4×106±0.9×106 versus
1.9×106±0.4×106, control versus testosterone+Finas, respectively,
P≤0.001) and the testosterone group (3.6×106±0.6×106 versus
1.9×106±0.4×106, testosterone versus testosterone+Finas,
respectively, P≤0.05) (Fig. 3, upper panel). The enzymatic
inhibition of aromatase abrogated the effects of testosterone
administration on MMP-3 expression (3.6×106±0.6×106 versus
5.3×106±0.8×106, testosterone versus testosterone+4-OHA,
respectively, P≤0.05). Interestingly, co-administration of the
enzymatic inhibitors Finasteride and 4-OHA did not induce
significant changes (Fig. 3, upper panel).

MMP-13 expression in cardiac tissue
Fig. 3 (lower panel) shows micrographs of myocardial histological
sections showing immunoreactive zones for MMP-13 and their

Fig. 1. Effect induced by the inhibition of testosterone metabolism. Testosterone modifies the percentage of tissue damage by the coronary I/R process in
ORX rats. The ORX rats were treated subcutaneously every 72 h for 30 days after cardiac damage induced by the coronary I/R process, with exogenous
testosterone (T), Finasteride (Finas), 4-OHA or a combination of both inhibitors. Representative images of heart sections are shown at the top of each bar.
Image X4. The data are expressed as the mean±s.e.m. of the percentage of the AI/AT ratio of five hearts per group, *P<0.05, δδP<0.01, ***P<0.005, δδδP<0.001.
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respective quantitative analysis by measuring the integrated optical
density of the treated groups and the control group. The administration
of testosterone significantly decreased MMP-13 (6.8×106±1×106

versus 4.5×106±0.6×106, control versus testosterone, respectively,
P≤0.05). It was also observed that Finasteride administration in the
presence of testosterone increased the inhibitory effect on MMP-13
expression (6.8×106±1×106 versus 2×106±0.4×106, control and
testosterone+Finas, respectively, P≤0.001).
The enzymatic inhibition of 5α-reductase in the presence of

testosterone decreased the expression of MMP-13. This reduction
was additional to the effects observed in the groups that received
testosterone only (4.5×106±0.6×106 versus 2×106±0.4×106,
testosterone versus Finas, respectively, P≤0.05). In addition, the
administration of testosterone and simultaneous inhibition of
4-OHA significantly increased the MMP-13 expression when
compared with the testosterone treated group (4.5×106±0.6×106

versus 6.5×106±1.4×106, testosterone versus testosterone+4-OHA,
respectively, P≤0.05). Finally, simultaneous administration of the
enzymatic inhibitors Finasteride and 4-OHA did not induce
significant changes.
It has been postulated that testosterone plays a fundamental role in

cardiovascular function; however, divergent findings have raised
controversy regarding its possible beneficial effects. Several studies
have shown cardioprotective effects of testosterone. For example, Liu

et al. (2006), observed that testosterone administration contributes to
reducing infarct size in ventricular myocytes isolated from male rats
subjected to ischemic preconditioning and gonadectomy (Liu et al.,
2006). Er et al. (2004) demonstrated that testosterone was directly
cytoprotective in the myocardium through ATP sensitive K+ channel
activation in the inner mitochondrial membrane (Er et al., 2004). In
2003, Callies and colleagues showed in a cardiac I/R model
(Langendorff system) that testosterone improved cardiac function
recovery in gonadectomized rats (Callies et al., 2003).

In contrast, deleterious effects of testosterone have also been
reported. For example, testosterone administration induced
exacerbated inflammatory cytokines production, p38 MAPK
pathway activation, apoptotic signaling and androgenic receptors
blockade with flutamide, or castration improved myocardial
function after I/R (Wang et al., 2005; Vannay et al., 2009). In
animal models, supraphysiological concentrations of anabolic
steroids induced deleterious cardiac remodeling and impaired
cardiac function (Rocha et al., 2007). Clinical studies support the
evidence that anabolic androgenic steroids increase the content of
myocardial collagen. This effect contributes to a deterioration of
systolic function (Fanton et al., 2009).

On the other hand, in general, the heart is considered only a
testosterone target tissue, meaning that circulating testosterone that
originated in gonads needs to reach and interact with androgenic

Fig. 2. Quantitative analysis of cellular infiltration (blue spots) in cardiac tissue subjected to coronary I/R in ORX rats. Exogenous testosterone
administration, Finas, 4-OHA or a combination of both inhibitors were administered subcutaneously every 72 h for 30 days after ischemic damage. The analysis
was performed in three sections of each heart per group (n=5) using the ImageJ program. The data are expressed as the mean±s.e.m. Representative images
of cellular infiltration are observed through Hematoxylin-Eosin staining (top panels). Scale bars: 100 μm. *P<0.01, δP<0.05, ***P<0.001.
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Fig. 3. Quantitative analysis of MMP-3 and MMP-13 expression. Upper panel: MMP-3 expression in cardiac tissue subjected to coronary I/R in ORX rats.
Lower panel: MMP-13 expression in cardiac tissue subjected to coronary I/R in ORX rats. Rats were treated subcutaneously with exogenous testosterone, Finas,
and/or 4-OHA every 72 h for 30 days after ischemic damage. The micrographs show representative images of the immunohistochemical analysis performed on
five sections of each heart per group (n=5). The data are expressed as the mean±s.e.m. *P<0.01, δP<0.05, ***P<0.001, δδP<0.01. Scale bar: 100 μm.
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receptors at the myocardial level in order to induce its effects;
however, this does not seem to be the main/only phenomena since at
the myocardial level testosterone can be converted into DHT or
estradiol by the competing enzymes 5α-reductase and aromatase,
respectively (Regouat et al., 2018). Interestingly, the role of
these enzymes’ activities in the absence (as in gonadectomized
animals) or in states of decreased circulating testosterone is poorly
understood. We showed that ORX rats had a significant increase in
5α-reductase expression without changes in aromatase expression,
our results suggested a cross-modulation of the activities of these
enzymes since inhibition of their activities induced divergent effects
in acute I/R-induced myocardial damage (Regouat et al., 2018).
In the present work, testosterone administration in ORX rats

reduced cardiac remodeling (scar tissue size) (P<0.05) after 30 days of
I/R-induced myocardial damage. In addition, chronic 5α-reductase
inhibition by Finasteride resulted in a significant reduction (P<0.001)
in cardiac pathological remodeling (scar tissue size and inflammatory
infiltrates) (P<0.05). In contrast, aromatase inhibition by 4-OHA
increased pathological remodeling (P<0.01), inducing disseminated
lymphocytic infiltrate in perivascular and interstitial areas, enlarged
cardiomyocytes, and intra and extracellular edema.
These results suggest that, in the absence of gonadal testosterone,

the balance between 5α-reductase and aromatase enzymatic activity
plays a role in the effects attributed to testosterone, favoring
protection when aromatization predominates and damage when 5α-
reduction occurs. This idea is reinforced when we analyze the
affinity constants (Km Michaelis-Menten). Aromatase affinity
constant is 1.83 nM while 5α-reductase is 3.35 nM. Thus, it is
more feasible (1.53 times) the aromatization of testosterone than 5α-
reduction (Lakshman et al., 2010). Our results show that the
simultaneous chronic inhibition of both enzymes (Finas+4-OHA)
induced no changes in cardiac damage as compared to controls,
suggesting also that testosterone by itself has no direct effect being
necessary its 5α-reduction or aromatization to induce effects.
On the other hand, several studies have shown that MMPs play a

fundamental role in several processes of cardiovascular diseases.
These include atherosclerotic plaque rupture, (Galis andKhatri, 2002)
acute myocardial infarction, (Webb et al., 2006) aneurysm and left
ventricular rupture (Carmeliet, 2000), ventricular remodeling (Zile
et al., 2011; Spinale, 2007) and age-dependent changes in the left
ventricular structure (Lindsey et al., 2005). Yet, during ventricular
remodeling, the effects of testosterone metabolism on MMP-3 and
MMP-13 have not been fully explored. MMP-3 is a protease capable
of degrade proteoglycans, fibronectin, laminin and type IV collagen
and is able to activate otherMMPs.MMP-3may play a regulatory role
duringmyocardial remodeling (Mukherjee et al., 2005).HighMMP-3
levels are associated with left ventricular dysfunction and adverse left
ventricular remodeling after acutemyocardial infarction (AMI) (Kelly
et al., 2008). Myocardial MMP-3 expression is elevated early after
experimental AMI and sustained for several days (Romanic et al.,
2001). In men, MMP-3 expression levels are higher 3 months after
AMI than 48 h after AMI (Cavusoglu et al., 2016). On the other hand,
MMP-13 degrades fibrillar collagen type I and III (Vincenti et al.,
1998), and it is expressed at moderate levels in the healthy heart.
Although MMP-13 expression increases under cardiac pathological
conditions (Li et al., 2000; Sakata et al., 2004), its role in pathological
cardiac remodeling remains unknown. After an ischemic event and in
patients with chronic heart failure MMP-13 expression and activity
remains elevated for months or years. This results in pathological
cardiac remodeling progression (Jaffré et al., 2012).
The pharmacological inhibition ofmetalloproteases in animals with

AMI attenuates the remodeling process preserving cardiac function

(Spinale, 2002; Rohde et al., 1999). These data suggest an important
participation of metalloproteases in the remodeling and ventricular
dysfunction, secondary to AMI. Our results show that exogenous
testosterone administration to ORX rats during coronary I/R resulted
in decreased inflammatory infiltrates (P<0.05) and reduced MMP-3
and MMP-13 expression (P<0.05, for both cases). Interestingly,
Finasteride administration (Ki 2.1 μM) (Drury et al., 2009) resulted in
a greater decrease in scar tissue (P<0.05), along with a significant
decrease in MMP-3 (P<0.05) and MMP-13 expression (P<0.01).

These observations suggest that DHT is responsible for the
detrimental effects on cardiac function/morphology induced by
testosterone. This is in agreement with our previous reports showing
DHT as an inductor of myocardial damage (Regouat et al., 2018).

In contrast, 4-OHA (Ki 3.28 μM) administration (Block et al.,
1996) increased MMP-3 (P<0.05) and MMP-13 (P<0.01)
expression. These results suggest that testosterone aromatization is
associated with cardioprotection.

In conclusion, testosterone administration significantly decreased
cardiac remodeling in ORX rats after 30 days of I/R-induced
myocardial damage. In addition, testosterone aromatization was
necessary to preserve its cardioprotective effect. The expression
levels of MMP-3 and MMP-13 were downregulated when 5α-
reduction was inhibited. Our results suggest that testosterone
metabolism deserves more detailed attention when testosterone
effects are explored at the cardiovascular level.

In this study we cannot define whether the changes in MMPs
expression were a consequence of decreased tissue damage or were
caused by enzymatic inhibition. Regardless of this, the beneficial
and significant changes found contribute to the understanding of the
complex paradigm of testosterone 5α-reduction or aromatization on
cardiac remodeling.

MATERIAL AND METHODS
Ethical considerations
All procedures were performed in accordance with the Guide for the Care
and Use of Laboratory Animals approved by the National Institutes of
Health of the United States and by the Official Mexican Standard (NOM-
062-ZOO-1999).

Orchiectomy
55 male Wistar rats were used, of which 50 were bilaterally ORX according
to Svensson et al. (2000). In brief, rats (200–250 g) were anesthetized with
sodium pentobarbital [60 mg/kg, intraperitoneally (i.p.); Abbott Laboratory,
Chicago, IL, USA]. An incision (2 cm) was made in the midline of the
scrotum to expose the testicle. The vas deferens and main arteries and veins
were isolated, ligated and excised. This allowed the elimination of each
testicle and epididymis (Golden et al., 2003). The animals were allowed to
recover in separate cages for 15 days. Animals were kept at the university
bioterium with food and water ad libitum.

Total duration of castration before I/R was 6 weeks.

Ischemia/coronary reperfusion model
The ORX rats (n=50) and the control group (no orchiectomy) (n=5) were
anesthetized with pentobarbital (0.1 m/100 g, i.p.). The rats were ventilated
by a tracheal cannula with air enriched with oxygen using a positive pressure
ventilator (Ugo basile, MODEL 7025). An electric blanket was used to
maintain the rat temperature at 37°C. Left thoracotomy (4–5 left intercostal
space) was performed and the pericardium was opened to expose the heart.
The anterior descending coronary artery was ligated approximately 1 cm
below the atrial appendage with a sterile silk suture (6-0). To avoid coronary
artery damage, a 3–5 mm Teflon tube was placed between the artery and the
silk suture. The blood flow occlusion was maintained for 1 h verified by
color change, subsequently, the Teflon tube was removed to allow
reperfusion and the thorax was closed.

5

RESEARCH ARTICLE Biology Open (2019) 8, bio041905. doi:10.1242/bio.041905

B
io
lo
g
y
O
p
en



Animalswere randomlyassigned in the following groups: (1) vehicle control
(n=10), (2) testosterone (testosterone enanthate) (n=10), (3) testosterone and
Finasteride (n=10), (4) testosterone and 4-hydroxyandrostenedione (n=10), (5)
testosterone, Finasteride and 4-hydroxyandrostenedione (n=10). A group of
not ORX rats with I/R (n=5) was also included. Unless otherwise indicated,
the reagents were purchased from Sigma-Aldrich. The treatments were
administered subcutaneously every 72 h for 30 days. The doses used were
previously determined (data not shown): testosterone (346 ng/kg), Finasteride
(Finas, 1.8 μg/kg) and 4-OHA (1.8 μg/kg).

At the end of the treatments, five rats per group were randomly chosen for
cardiac viability analysis. The remaining five rats were used for histological
and immunohistochemical analysis.

Myocardial damage evaluation
The heart was removed under anesthesia, administration of 0.5 ml of
154 mM KCl was used to stop the heart during diastole, and then the atria
and larger vessels were eliminated. The ventricles were kept at −20°C for
2 h and processed into 2-mm-thick cross-sections. Sections were incubated
in a 1% triphenyl tetrazolium solution for 20 min at 37°C, followed by
immersion in 4% paraformaldehyde (pH 7.4). The images were analyzed in
ImageJ 1.50i Software (NIH, USA) in a double-blind condition. The cardiac
damage was calculated by determining the relationship between the
infarcted area (unstained) and the total area (IA/AT) (Downey).

Histological analysis
The isolated hearts were immediately sectioned into four equal-sized parts,
incubated in 4% paraformaldehyde and embedded in paraffin (Paraplast®).

Hematoxylin-Eosin staining
Sections of 5 μm were stained with Hematoxylin-Eosin for histopathological
evaluation. Imageswere obtainedusing aNikonPlanFluor opticalmicroscope
and a digital camera. The quantitative analysis of inflammatory cell infiltration
was performed using ImageJ software. Three infiltrated sections were
analyzed for each heart and treatment group.

Immunohistochemistry
Slices (5 μm) were dewaxed in xylene to remove paraffin and rehydrated
with graded alcohol (100%, 95%, 90%, 80% and 70%) and finally 100 mM
phosphate buffer, pH=7.4, at room temperature on three consecutive
occasions for 5 min each. Then the slices were incubated in phosphate buffer
2% albumin for 1 h. Subsequently, the sections were incubated with primary
antibody against MMP-3 (sc-6839 goat polyclonal antibody, Santa Cruz
Biotechnology, dilution 1:100) or with primary antibody against MMP-13
(sc-30073, rabbit polyclonal antibody, Santa Cruz Biotechnology, dilution
1:100). Next, the sections were washed with 100 mM phosphate buffer
solution, pH 7.4, at room temperature on three consecutive occasions for
5 min. Incubation was carried out with secondary antibodies coupled to
horseradish peroxidase (sc-3837 anti-goat IgG and sc-3851 anti-rabbit IgG,
Santa Cruz Biotechnology, respectively, 1 h at room temperature). The
slices were washed and incubated in diaminobenzidine solution (5 mg
diaminobenzidine and 5 μl peroxide 30%) in 10 ml of 100 mM phosphate
buffer, pH 7.4, at room temperature for 10 min. The sections were
counterstained with Hematoxylin-Eosin.

Images were acquired by using a Nikon Plan Fluor microscope and
evaluated with the ImageJ digital analyzer (1.50i) (https://imagej.nih.gov/ij/).
Seven sections of each heart were analyzed.

Statistical analysis
The data are presented as themean±standard deviation of themean (s.d.). For the
graphic representation and the statistical analysis of the results, the GraphPad
Prism 6.01 program was used. We used the D’Agostino–Pearson test for
normality. The statistical significance between the experimental groups was
determined with an analysis of variance (ANOVA). The F-test was used to
perform comparisons. TheP-value <0.05was considered statistically significant.

Acknowledgements
The authors would like to thank PhD Carlos M. Galán Baéz and Jericó J. Bello Bello
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