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Abstract

Divergence time estimation from multilocus genetic data has become common in population genetics and phylogenetics. We present a
new Bayesian inference method that treats the divergence time as a random variable. The divergence time is calculated from an assembly
of splitting events on individual lineages in a genealogy. The time for such a splitting event is drawn from a hazard function of the truncated
normal distribution. This allows easy integration into the standard coalescence framework used in programs such as Migrate. We explore
the accuracy of the new inference method with simulated population splittings over a wide range of divergence time values and with a
reanalysis of a dataset of 5 populations consisting of 3 present-day populations (Africans, Europeans, Asian) and 2 archaic samples (Altai
and Ust’Isthim). Evaluations of simple divergence models without subsequent geneflow show high accuracy, whereas the accuracy of the
results of isolation with migration models depends on the magnitude of the immigration rate. High immigration rates lead to a time of the
most recent common ancestor of the sample that, looking backward in time, predates the divergence time. Even with many independent
loci, accurate estimation of the divergence time with high immigration rates becomes problematic. Our comparison to other software tools
reveals that our lineage-switching method, implemented in Migrate, is comparable to IMa2p. The software Migrate can run large numbers
of sequence loci (>1,000) on computer clusters in parallel.
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Introduction
In phylogenetics and population genetics, often we need to know
the time when populations split and evolved independently or
when populations started to have reduced gene flow among
them; Wakeley and Hey (1997) define an isolation model (I) in
which the divergence marks the time when the ancestral popula-
tion split into 2 groups of individuals that stop exchanging ge-
netic material with each other. Given that most populations
within a species may still exchange migrants after divergence,
this definition seems overly strict. Consequently, Nielsen and
Wakeley (2001) developed the isolation with migration (IM) model;
in their model, the divergence time marks the change from a pan-
mictic ancestral population to 2 populations linked by gene flow.
In both models, the divergence times of the populations is always
predated by the divergence time of the genes (cf Edwards and
Beerli 2000; Arbogast et al. 2002). Both the isolation model and
the isolation-with-migration model became popular and were
implemented in several software packages: for example IMa (Hey
2010), Lamarc (Kuhner 2006), and BEAST 2 (Bouckaert et al. 2014)
implemented the IM model, whereas BPP (Yang and Rannala

2010) and Momi2 (Kamm et al. 2020) implemented the isolation

model with admixture events.
The isolation with migration model treats the divergence time

as a boundary between 2 models: a structured coalescent popula-

tion with migration and a panmictic, ancestral population. We

describe here an approach that combines migration and diver-

gence within the same structured coalescence framework allow-

ing the boundary to be more fluid. The extent of the boundary is

defined by 2 parameters, the mean of the distribution of the

boundary, the divergence time, and the standard deviation of the

boundary. We implemented the new method in the program

Migrate (Beerli 2006), which was used for all evaluations in this re-

search. The MIT-licensed, open source software Migrate is avail-

able from the website http://popgen.sc.fsu.edu.

Materials and methods
All current coalescence-based methods for estimating a diver-

gence time s between 2 populations treat the time as a boundary

between 2 different models: the panmictic, ancestral population
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modeled using the single population coalescent and a population
with 2 subpopulations using the structured coalescent with mi-
gration. In a Bayesian inference method, the boundary is ad-
justed using a prior distribution.

Here, we propose a different model. We consider the diver-
gence time as a random variable with a normal distribution. The
mean and standard deviation of this distribution are unknown
and estimated. We use this distribution to draw times for diver-
gence events for each lineage. We assume that we know the pop-
ulation or species label of the sampled individuals. Looking
backward in time, each sample lineage will be at risk to switch
labels irreversibly from a “derived” to an “ancestral” state.
Therefore, at a given time in the genealogy, some lineages are in
the ancestral population and some are not. Figure 1 shows an ex-
ample with a divergence times s. If we assume that this time is
fixed, then the figure represents the isolation-with-migration
model. If we assume that we have a normal distributed diver-
gence time with parameters s and r, then individual lineages can
change their state from the “descendant” state to the “ancestor”
state by drawing times from this distribution and inserting a
“divergence” event. This process is similar to how migration
events are drawn.

Hazard functions and waiting times
Population genetic inferences commonly use a sample of individ-
uals collected recently, and we are interested in the potential
interactions of these individuals in the past. The coalescent
(Kingman 1982) and its extensions, such as those described by
Strobeck (1987) and Hudson (1991), allowed probabilistic recon-
struction of potential genealogies of the sample taking into ac-
count population sizes, migration rates, and other population
genetic quantities. For example, in population parameter infer-
ence by Beerli and Felsenstein (2001) and Beerli (2006), the times
of coalescence events and migration events are drawn from an
exponential distribution with a rate that is defined by parameters
for population size, migration rate, and the number of sampled
lineages in each population. Looking backward in time, a sample

lineage is at risk of a coalescence event or a migration event. The
risk of coalescence or immigration, switching population labels,
in this framework is constant for a given sample size. We can
think of this process as a hazard that the lineages will fail to
maintain their current status. The hazard function is commonly
used in an engineering or survival context, where the condition
of an object can suddenly change at any given time; the hazard
can be constant, increasing, or decreasing with time. The func-
tion is expressed as a ratio of the probability density function f ð�Þ
and the complement of its cumulative density function Fð�Þ. For
the exponential probability density function, this hazard is a con-
stant, and for the Kingman coalescent, this is

kci
¼ f ðtÞ

1� FðtÞ ¼
kci

e�tkci

1�
ðt

0
kci e

�tkci
dt

¼

kiðki � 1Þ
Hi

e�t
ki ðki�1Þ

Hi
Þ

1�
ðt

0

kiðki � 1Þ
Hi

e�t
ki ðki�1Þ

Hi dt

¼ kiðki � 1Þ
Hi

:

(1)

where Hi is the mutation-scaled effective population size and ki is
the number of lineages in population i at time t (Wright 1951;
Kingman 1982).

In the structured coalescence, migration is treated similarly.
An immigration event happens at the rate Mji for each lineage,
where Mji is the mutation-scaled immigration rate from popula-
tion j into i, which is equivalent to the immigration rate mji di-
vided by the mutation rate l. The total rate of migration is the
sum of all possible migration rates Mji over all the lineages that
have not yet coalesced:

kM:i
¼
Xnp

j¼1

kiMji; (2)

where np is the number of populations and ki is the number of lin-
eages in population i at time t. Since the rate of immigrations and
coalescences kcþm ¼

Pn
i kci þ kM:i is independent of the waiting

time t which elapses before a coalescent or migration event hap-
pens in the interval ½t0; t0 þ u�. It has a probability density func-
tion of the exponential mixture

fcþmðujH;MÞ ¼ e
�
Ð t0þu

t0
kcþmdt

kcþm ¼ e�ukcþm kcþm: (3)

Divergence time as events on lineages
In 2000, Nielsen and Slatkin introduced and later (Hey and
Nielsen 2007) refined a model that adds population splitting, thus
removing the assumption that populations are present for a very
long time without removing the assumption of migration be-
tween the populations. We have developed an alternative to
Nielsen’s and Hey’s approach that allows distributing the analy-
sis onto cluster computers and using large datasets.

We treat the time of splitting as a random variable with a par-
ticular probability density. We chose to use the zero-truncated
normal distribution because it has 2 parameters: mean and stan-
dard deviation. These parameters are commonly used and dis-
cuss quantities of interest. The mean describes the most likely
time of the population divergence and the standard deviation

Population tree

Gene genealogy

BA

C

σ τ

Fig. 1. Visualization of population splitting of 2 populations A and B split
at times s, lineages in A and B split from the ancestral population C: the
divergence time is based on individual lineage population label switching
events (dark star) drawn from a distribution with mean (s) and standard
deviation (r); migration events (white star) are drawn from the standard
structured coalescent.
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describes the uncertainty of that divergence time. We consider
the normal distribution a good choice to discuss divergence
times, but it certainly is not the only possible distribution. We
could have used a Weibull distribution or a Gamma distribution,
both have a natural bound at zero, but their standard parameters
are less familiar to biologists.

Looking backward in time, we know the fate of a lineage sam-
pled today; any individual sampled today must have started out
in an ancestral population; thus, each lineages sampled today is
at risk to switch from the derived to the ancestral population. We
assume that the risk of failure to stay in the derived population is
increasing the further back in time the process moves. This pro-
cess can be expressed with a hazard function of the normal dis-
tribution that is not constant, in contrast to the hazard function
of the exponential distribution. The use of this hazard function
allows us to integrate our population splitting distribution into
our coalescence with migration framework. To express the risk of
switching the population label (population splitting) we calculate
the rate of splitting (divergence) events k0dðtÞ by using the hazard
function of a truncated normal distribution with bounds b0 ¼ 0:0
and b1 as

k0dðtÞ ¼ kNðl;rÞðtÞ ¼

ffiffi
2
p

q
e�
ðl�tÞ2

2r2

r erf l�tffiffi
2
p

r

� �
� erf l�b1ffiffi

2
p

r

� �� �0 (4)

l and r are the parameters of the normal distribution; erf is the
error function

erfðxÞ ¼ 2ffiffiffi
p
p
ðx

0
e�t2

dt: (5)

To calculate the probability that no splitting event happens in
the interval ½t0; t0 þ u� we integrate and get

fdðujl; r; t0Þ ¼ e
�
Ð t0þu

t0
k0dðt0þtÞdt

k0dðt0 þ uÞ (6)

¼ e�kdðt0 ;t0þuÞk0dðt0 þ uÞ (7)
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2
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Combining these individual waiting times for coalescence, im-
migration, and splitting leads to the overall probability density
for the waiting time u to the next event in the interval ½t0; t0 þ u�

f ðujH;M; l; r; t0Þ ¼ e�ukcþm�kdðt0 ;t0þuÞ
�
kcþm þ k0dðt0 þ uÞ

�
: (9)

Genealogy-probability calculations
The posterior density distribution pðqjDÞ for all parameters q

given the data D, such as mutation-scaled population size H,
mutation-scaled immigration rates M, divergence time mean l,
and standard deviation r, is

pðqjDÞ ¼
pðqÞ

Ð
Gf ðGjqÞpðDjGÞdG

pðDÞ : (10)

The genealogy G is an ultrametric tree with branch lengths
augmented with migration and divergence events. We approxi-
mate the posterior distributions with histograms for each param-
eter q collected through the Markov chain Monte Carlo run. The

Metropolis-Hastings acceptance/rejection steps will need calcula-
tions of the likelihood of the genealogy pðDjGÞ and the parameters
pðGjqÞ (Beerli and Felsenstein 1999; Beerli 2006). The likelihood of

the genealogy is calculated using the familiar likelihood pruning
algorithm used in phylogenetics (Felsenstein 1981). We discuss
the evaluation of pðGjqÞ in the next section.

Probability of events and calculation of the
probability density of a genealogy given all
parameters
The coalescence process reduces the number of lineages when
looking backward in time; coalescent, migration, and divergence

events are independent from the events before them. Thus, we
can calculate the probability density of a genealogy G given all
parameters f ðGjqÞ as the product over all time intervals, with

q ¼ h;M; l; r, we get

f ðGjqÞ ¼
YI

i

pðti � ti�1jG; ti�1; qÞ: (11)

The calculation of pðti � ti�1jG; ti�1; qÞ is more involved. For

each time interval, we calculate the exponential waiting time for
any event, calculate the probability that the particular event type
recorded on the genealogy is drawn, and also need to adjust for
how many possible events of the same type can be drawn. If we

have a time interval that ends with a coalescent event, then, in
the most general case, we calculate

pðt1 � t0; eventcjG; ti�1; qÞ ¼ kðt0; t1Þe
�
Ð t1

t0
kðt0 ;tÞdt

nc
1
k
2

� �
nc ¼ pðtc < tm ^ tc < tdÞ

(12)

where kðt0; t1Þ is the sum of all rates for all parameters, for ex-

ample this includes Equations (1), (2), and (4). There are similar
formulae for cases when the interval ends with a divergence
event or ends with an immigration event. In a model with only
coalescence and migration events, this simplifies greatly be-

cause nc ¼ pðtc < tm ^ tc < tdÞ and reduces to pðtc < tmÞ because
divergence events are not present. Details of this evaluation
are described in the supplement (http://github.com/pbeerli/
divergencesupplement). Including a hazard function that

changes with time t for the divergence parameters leads to a
more complicated situation. The probability that a divergence
event comes before a coalescent or a migration event is

nd ¼ pðtd < tc ^ td < tmÞ
¼
ð1

0
pðtc > t0 þ uÞ pðtm > t0 þ uÞ k0dðt0 þ uÞfdðujl; r; t0Þdu:

(13)

The td ¼ t0 þ u is the time of a divergence event, tc is the time
of a coalescent event, and tm is the time of a migration event. The
k0dðt0 þ uÞ and fdðujl; r; t0Þ are defined in Equations (4) and (6).

Since pðtc > t0 þ uÞ; pðtm > t0 þ uÞ become e�ukc and e�ukm , respec-
tively, we can write
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nd ¼
ð1

0
e�ukcþm k0dðt0 þ uÞ ekdðt0 ;t0þuÞdu: (14)

Unfortunately, the integral in Equation (14) and its equiva-
lents, nc and nm, cannot be solved analytically. The problem stems
from the time dependence of the divergence rate k0dðt0 þ uÞ.
Looking for a faster way to compute these quantities, we use an
approximation. Instead of solving the integral in Equation (6) nu-
merically, we approximate using the midpoint rule. We replaced
the midpoint t0 þ u=2 with a fixed value t0 þ � where epsilon � u:

fdðujl; r; t0Þ ¼ e
�
Ð t0þu

t0
k0dðtÞdt

k0dðt0 þ uÞ
�e�uk0dðt0þ�Þk0dðt0 þ �Þ:

(15)

This approximation leads to a simpler formulation of
Equation (14) which now becomes:

nd �
ð1

0
e�ukcþm k0dðt0 þ �Þ e�uk0dðt0þ�Þdu: (16)

All ki are constant with respect to du and, therefore, the inte-
gral can be solved using the substitution rule, and we get

nd �
k0dðt0 þ �Þ

kcþm þ k0dðt0 þ �Þ
: (17)

A comparison for different values of h, M, and divergence
times l shows that the integral 14 and the ratio 17 lead to very
similar values (Fig. 2).

This result simplifies Equation (12) for the coalescent with di-
vergence and migration. The general equation for all events
becomes

pðujG; t0; qÞ ¼ e�uðkðk�1Þ
H þkMþkdðt0 ;t0þ�ÞÞ

k0dðt0 þ �Þ
k

ðdivergenceÞ
2
H

ðcoalescentÞ
M ðmigrationÞ

:

8>>><
>>>:

(18)

These formulas are used in Equation (11) to calculate the
probability of a genealogy given all the parameters f ðGjqÞ. The
topology and all the times of all the events are fixed in this ge-
nealogy, so we can use the time interval u between events to
replace �.

The exposition in the section used only one rate for each of
the event types; in reality, there may be many rates for each type;
for example a model with 2 contemporary populations, 1 ances-
tral population, and gene flow among the contemporary

populations will lead to 3 coalescent rates, 2 immigration rates,
and 1 rate for the divergence time and its standard deviation.

Implementation
The approach was implemented into the program Migrate (Beerli
2006). New parameter values were drawn from prior distribu-
tions, for example from an exponential distribution with fixed
mean or a uniform distribution with a lower and upper bound.
The genealogy-change proposal was described by Beerli and
Felsenstein (1999), the procedure remains the same except that
for the proposal of a new event and its time. In earlier versions of
Migrate, the time was drawn by solving formula (3) for the time
interval u using a random number on the interval ð0; 1� as the
probability, and then the probability of a particular event at that
time t0 þ u was calculated. The hazard function for the splitting
rate added considerable complexity. Instead of proposing a time
for any possible event and then choosing among events, we pro-
pose a time for each possible event independently and pick the
event that comes first. For example, the proposed interval u of
the splitting time using formula (8) is

u ¼ l� t0 �
ffiffiffi
2
p

r erf�1 erf
b1 � lffiffiffi

2
p

r

� �
ðr� 1Þ þ erf

l� t0ffiffiffi
2
p

r

� �
r

 !
: (19)

Thus, for every change of the genealogy we need to propose
times for coalescence, migration, and divergence events. Among
these times, we pick the event with the shortest time. This ap-
proach allows us to draw the events at the correct frequency
without calculating the complex ratio described in the earlier sec-
tion; both, the earlier and this new calculations take about the
same amount of time.

In contrast to other programs, Migrate does not need a specific
guide tree to specify the order of the splitting events. It uses an
extension of the adjacency matrix introduced into Migrate in 2001
(Beerli and Felsenstein 2001). This matrix defines the connections
among the populations by migration events and or divergence
events. It can specify particular divergence models without the
need to define the order of the splitting times; for example for a
model in which 2 island populations were colonized indepen-
dently from a mainland population, Migrate does not force the
user to specify an order of the time of the colonization events.
We caution that our approach is not equivalent to exploring all
possible population trees. Comparisons of different population
trees are possible by treating each population tree as a new hy-
pothesis and run each of these hypotheses independently, fol-
lowed by Bayesian model comparison (Beerli and Palczewski
2010; Palczewski and Beerli 2014). Tutorials, source code and
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Fig. 2. Numerical comparison of the full integral solution 14 (dashed curves) and the midpoint approximation 17 (black lines) of probabilities of
occurrence for (from left) mutation-scaled population size h (with fixed parameters M ¼ 100; l ¼ 0:005; r ¼ l; t0 ¼ 0), mutation-scaled immigration rate
M (with h ¼ 0:01; l ¼ 0:005; r ¼ l; t0 ¼ 0), and mutation-scaled divergence time l (with h ¼ 0:01;M ¼ 100; r ¼ l; t0 ¼ 0).
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executables can be found on the Migrate website (http://popgen.
sc.fsu.edu).

Simulation
Simulations were performed over a wide range of (true) diver-
gence times s from 1=512� Ne to 8:0� Ne generations between 2
populations with a combined size of H ¼ 0:02; each population
had 20 samples; each simulated locus had 1,000 bp. We per-
formed 3 sets of simulations. The first simulation set explored
the accuracy of a simple divergence model (Fig. 3a). For each di-
vergence time, 4 replicate datasets were simulated using the pro-
gram ms (Hudson 2002) to generate the genealogies. Our own
program migdata (available on github.com/pbeerli/popsimulate.-
git) used these genealogies to generate sequence data. To explore
effects of the number of loci, we generated 2- and 10-locus data-
sets for all divergence times. For a subset of divergence times, we
also generated 1,000-locus datasets. The second simulation set
explored the interaction of immigration and divergence. We used
a scenario with 2 populations exchanging 1 migrant every 16 gen-
eration, 4Nm ¼ 0:25, and 1 migrants every 4 generations,
4Nm ¼ 1:0, respectively (Fig. 3c). The immigration numbers guar-
antee the long-term maintenance of population structure. The
third simulation set explored the effect of the estimation of the
standard deviation of the divergence time. We ran simulations
using our own simulator speciessim.py (available on github.com/
pbeerli/speciessimulate) using the same setting of the divergence
times as before, but changed the standard deviation of the diver-
gence time to values of r ¼ s=104; r ¼ s=2, and r ¼ s for datasets
of 10 loci and compared these with the simulations of ms which
simulates divergence times only with r ¼ 0.

All datasets were analyzed with Migrate using the Felsenstein
1984 finite mutation model for all runs. We picked an exponen-
tial prior for the mean of the divergence time distribution with an
upper bound that was 3� larger than the oldest divergence time
simulated; the same prior was used for all different divergence
times; in preruns, we established that the prior choice does not
change the general results. Our choice of prior and its width was
done so that we could run all simulations with as little changes
of options as possible. For run with real data we suggest that the
range of the priors are evaluated with test runs, the divergence
time l in Migrate is scaled by mutations; it is on the same scale as
the mutation-scaled population size H. The choice of the prior for
the standard deviation is more consequential when immigration
is coestimated, large prior ranges interact with immigration-rate
estimation; consequently we picked a small prior range for the
standard deviation for the second set of simulations and also for
the comparison with other programs. Simulation were run on a
computer cluster at the Florida State University Research

Computing Center with various number of computer cores, the
10-locus simulations were run on 21 computer cores. After exper-
imentation with run-length we established that runs longer than
15 min are sufficient for our simulation data sets. The 1,000-locus
datasets were run on 501 cores and took about 3 h 20 min.

Comparison with other program estimating
divergence times among populations
We compared our approach with IMa2p (Sethuraman and Hey
2016), BPP (Yang and Rannala 2010), and Momi2 (Kamm et al.
2020) using simulated data from population models shown in
Fig. 3, a and c with immigration rates of 4Nm ¼ 0:0; 4Nm ¼
0:25; 4Nm ¼ 1:0 and divergence times of ½0:125; 0:5; 1:0; 2:0; 3:0; 4:0
; 5:0; 6:0; 7:0; 8:0� � 4Ne generations. The run conditions for all pro-
grams are available in the electronic supplement and the data
converter from the Migrate format to the other programs is avail-
able from https://github.com/pbeerli/dataconverters.

An example using samples of human
populations
We showcase the potential of our method reanalyzing a dataset
of modern and archaic human populations. A larger dataset that
includes our samples was analyzed by Kamm et al. (2020).
Preliminary analyses with Migrate suggested that fitting a very
complex model with only a few individuals may be prone to over-
fitting and difficult to interpret. Therefore, we decided to prune
the problem to an analysis that is simpler and also easier to judge
whether the results are appropriate. We used the VCF data of
chromosome 21 provided by Jack Kamm. We analyze all SNPs
(n¼ 131,249) as linked SPS on loci of length of 100,000 bp. This
lead to a data set of 336 loci (dataset is available at http://github.
com/pbeerli/divergencesupplement). The resulting dataset con-
sisted of 5 populations with a total of 9 individuals: 3 present-day
populations (3 Mbuti, 2 Sardinians, 2 Han), and 2 ancient DNA
samples: the Altai Neanderthal and modern human from
Ust’Ishim, Siberia.

Results
Simulation
Splitting time estimation
The inference code was evaluated using simulations over a wide
range of divergence times and 2 different migration rates after
the population split. Figure 4a compares the estimated popula-
tion split time ŝ with the population split time s used to simulate
the data without migration. The estimates track the simulated
split times well, although the estimates of large divergence times
are underestimated. As expected, the estimates from 2-locus
data sets show more spread than those from 10- or 1,000-locus
datasets. A comparison of the 95% credibility intervals of runs
with 2, 10, and 1,000 loci shows this trend: standardizing the
credibility interval with the observed mode (p97:5%�p2:5%

pmode
) leads to

averages of 2.48 for 2 loci (N ¼ 280; std ¼ 1:21), 1.07 for 10 loci
(N ¼ 280; std ¼ 1:29), and 0.47 for 1,000 loci (N ¼ 23; std ¼ 0:59).

Splitting time estimation under the isolation with migration
model
The simulation results with migration deliver a more compli-
cated message. Simulations with low recurrent immigration rates
(4Nm ¼ 0:25) during the time interval from today to the popula-
tion split track the true population split often quite well but has a
considerable fraction of runs that underestimate the divergence
time (Fig. 4b). With higher immigration rate (4Nm ¼ 1:0), ŝ

1 2

1

1 2

3

1 2

1

1 2

3

(a)

τ

(b) (d)(c)

Fig. 3. Simulation and analysis scenarios: a) population 2 splits off from
population 1; b) the ancestral population 3 splits into 2 contemporary
populations; c and d) immigration. Models (a) and (c) were used to
simulate data. Models (a) and (c) use population 1 as being ancestral and
present-day. Models (b) and (d) have an additional parameter for
ancestral population size.
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underestimates the true divergence time of datasets that were
created using a high divergence time and overestimates the di-
vergence time for very recent divergences.

Effect of simulated uncertainty of splitting time
Our approach allows the estimation of the splitting time and the
standard deviation of the splitting time. All current simulation
methods, except our own speciessim.py simulator, assume a de-
fined time when the ancestral population splits into offspring
populations. Our simulation and estimation model allow uncer-
tainty about this time, a small standard deviation, such as
r ¼ 1=10; 000, will result in simulated data sets that mimic the
standard simulation method in ms. Large standard deviation
leads to datasets with skewed distributions of divergence times
because the divergence time cannot be negative (looking back-
ward in time), and such times had to be redrawn to generate the
simulated genealogies. About 15.8% of all random draws from a
Normal distribution will be smaller than s� r. This resulted in
datasets that come from older divergence times on average and
will result in higher divergence time estimates than the diver-
gence time s used to generate the datasets (Fig. 4c).

Exploration of the splitting time bias in the IM model
If the immigration rate is high, population divergences that hap-
pened far in the past are problematic to estimate because in com-
parisons (Fig. 4b) we detect a bias toward more recent split time
estimates than those simulated. To investigate this bias, we have
simulated genealogies with sample sizes of 40 and 100 with the
same parameters used to create the data reported in Fig. 4b and
recorded the number of lineages present at the time of popula-
tion split (70 time points between split times of s from 1=512�
4Ne to 8:0� 4Ne generations). Figure 5 reports the percentage of
datasets that have 2 or more lineages available at these 70 time
points (N¼ 1,000 for each time point). The graphs for 4Nm ¼ 0:25
(low) and 4Nm ¼ 1:0 (high) differ starkly in the percentages with
high divergence times. With high immigration rates (4Nm ¼ 1:0)
the chance of having the sample coalesced to a single lineage
increases considerably. For example, fewer than 20% of the
datasets have information about a divergence time of 4Ne gener-
ations. Once a sample coalesces into a single lineage all infor-
mation about the historical processes is lost and any inferred

result will only come from the prior, thus is independent of the
data. Increasing the number of individuals from 40 to 100 for
each dataset does not improve the number of available lineages
at the divergence time. With low immigration rates, the time of
the most recent common ancestor is beyond the divergence
time; thus, the remaining lineages may have information about
the splitting time.

Comparison with other programs
Three sets of simulated data for immigration rates of 4Nm ¼
½0:0; 0:25; 1:0� were used to compare the results of 4 different pro-
grams: Migrate, IMa2p, BPP, and Momi2. Figure 6 shows the results
for these comparisons. Divergence times can be well estimated
by all programs when recurrent gene flow is zero and the true di-
vergence time is smaller than 2Ne generations. All programs
show a bias when the true divergence times become large com-
pared to the population size of the sampled populations, Migrate
and IMa2p in particular show a smaller bias than the others.
Results become more unpredictable when gene flow is larger
than zero. Migrate and IMa2p become more variable in their esti-
mates, but for many datasets with large true divergence times

(a) (b) (c)

Fig. 4. Comparison of estimated divergence time ŝ with the true divergence time sT. a) Results of 2-, 10-, and 1,000-locus data. The data were simulated
and analyzed using the model shown in Fig. 3a. Units of ŝ and sT are in Ne� generations. b) The data were simulated using the model shown in Fig. 3c,
and analyzed using models Fig. 3, c and d. The number of immigrants per generation was 4Nm ¼ 0:25 and 4Nm ¼ 1:0, respectively. Units of ŝ and sT are
in 4Ne� generations. c) The 10-locus data were simulated without immigration but with 4 different standard deviations for the splitting time
(r ¼ s; r ¼ s=2; r ¼ s=104, and r ¼ 0).

Fig. 5. Percentages of simulated datasets with 2 or more lineages in the
sample at divergence time s. For each divergence time s 1,000 datasets
were simulated.
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the estimates reveal also large divergence times. BPP and Momi2
fail to recover divergence time with recurrent gene flow; both
program are not designed to estimate divergence time under re-
current gene flow but only allow for pulses of gene flow. With

immigration rates of 4Nm ¼ 1:0, all programs fail to estimate ac-
curate divergence times. Migrate and IMa2p deliver very similar
results. Both are overestimating divergence times when the true
divergence is small and underestimating when the true diver-
gence times are large.

Application to a human dataset
The 5 population dataset was originally run on a large cluster
computer using 336 compute nodes, 1 for each locus. After recog-
nizing that a 100x shorter run delivers the same results we ran
our test cases on a Macbook Pro 2020 using 8 cpu-cores with run-
times under 30 min. The pattern of the divergence times are not
surprising (Fig. 7), perhaps except that in our experiments the
population model that splits the archaic Ust’Ishim from the
African Mbuti an then the Han Chinese population from the
Ust’Ishim had a much higher marginal likelihood (Beerli and
Palczewski 2010) than models that suggested that both, the
Ust’Ishim and the Han, independently split from the Mbuti. A
comparison of our result with Momi2 revealed that the divergence
time estimates depend on the assumption of the overall popula-
tion size. Our approach and also Momi2 estimated about 100,000
individuals for each populations which seems high but since
Migrate is not estimating the mutation rate, this may be an arti-
fact of the application of an independent mutation of 1:25� 10�8

per generation. Using a total population size of 250,000 Momi2
delivers similar divergence estimates (for a table with the param-
eter estimates see http://github.com/pbeerli/divergencesupple
ment).

Discussion
We have developed a model to incorporate population splitting
and population admixture. Our algorithm differs from other algo-
rithms because we treat the splitting times as random variables
with truncated Normal distributions. This method allows a wide
range of analyses, such as having populations split from an an-
cestral population or having population split from a population
that is the same today and in the past.

The joint estimation of divergence time and population sizes
without immigration from large genetic datasets seems feasible
with little error. Our simulations assumed informative loci and
no complications with the finite mutation model. However,
Migrate can handle site rate variation and more complex muta-
tion models than the F84 model used in the simulations. We as-
sume that Migrate has similar vulnerabilities as IM when tested
with deviations of the model (cf. Strasburg and Rieseberg 2010).

Migrate runs each locus as an independent unit and thus can
easily run large datasets, such as the 1,000 loci datasets used in
the simulations, in reasonable time on a cluster computer: the
1,000-locus datasets for Fig. 4a were run on 501 computer cores
and finished in about 3–4 h. The comparisons of the data with 2,
10, and 1,000 loci show that with informative loci, we may not
need to have many loci to extract the most likely parameter
value, although the standard deviations of the 1,000-locus runs
are smaller than the 2 or 10 locus datasets.

It seems straightforward to use an immigration with diver-
gence model (IM; Nielsen and Slatkin 2000), but little exploration
about the power of the inference has been conducted. Strasburg
and Rieseberg (2010) highlighted that assumption misspecifica-
tion can lead the program IM (Hey 2010) to deliver biased
answers. Recently, Quinzin et al. (2015) evaluated the program IM
and observed that divergence time estimates are more accurate if
migration is low and if the populations are large compared to the

Neanderthal Mbuti Ust’Isthim Han Sardinian

Fig. 7. Population splitting among 5 populations. Three populations were
sampled at present time whereas 2 populations are archaic. The gray
lines mark 50% credibility interval for each divergence time. The scale of
the Y-axis is linear below the dashed line and logarithmic above.

(a) Migrate IMA2p

 Bpp Momi2

(b)

(c) (d)

Fig. 6. Comparison of estimated divergence time ŝ and the true sT for a)
Migrate, b) IMa2p, c) BPP, and d) Momi2. The data were simulated using
the model shown in Fig. 3c and analyzed using models Fig. 3, c and d.
The number of immigrants per generation was 4Nm ¼ 0:0; 4Nm ¼ 0:25,
and 4Nm ¼ 1:0, respectively.
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divergence time. We find similar patterns with Migrate and IMa2p.
In addition, our coalescent simulations with migration show a
deeper problem with such inferences, even when assumptions
are met. Looking backward in time, once all samples have coa-
lesced, no information is left to estimate parameters. In a model
with immigration and population splitting there has to be a bal-
ance so that we can see the effects of one or the other: if the mi-
gration rates are very small, then all sample lineages, looking
backward in time, will have joined the ancestral population be-
fore having experienced a migration event. In contrast, with high
immigration rates, it becomes very likely that all lineages have
coalesced into 1 lineage before the expected splitting time.
Figure 5 shows that many sample data never experience a popu-
lation split. It will certainly be difficult to estimate an event that
did not leave a trace in the sample. Hence, the estimated diver-
gence times will not reflect the true splitting time and will be too
close to the sampling date. However, with small immigration
rates it is possible to recover splitting times that are further in
the past (Fig. 4b). The same simulations also show that it is
unproblematic to estimate splitting times that are old when there
is no immigration. The results for Migrate and IMa2p that use re-
current gene flow in their models contrast considerably with the
results of BPP and Momi2 that model geneflow using pulses of
migrants. It seems important to highlight this model difference
when describing results of these programs. Our results for
Migrate, IMa2p, BPP, and Momi2 suggest that one should use cau-
tion when using models with immigration and population split-
ting times. This dependency is independent of the estimation
method and certainly will include other than the tested methods,
too. We believe that this dependency has and will lead to incor-
rect reports of divergence times: divergence times are reported to
be more recent than they really are.

The ancient human dataset D1 is based on transversions only.
Our method can analyze complete sequences taking into account
average base frequencies of the data and finite mutation models;
here, we simply used the F84 model, but more sophisticated mod-
els such as Tamura-Nei are possible; currently, we do not know
of a good comparison of site-frequency-based methods and
finite-mutation models in a genomic context. We acknowledge
that our method becomes very time consuming with large num-
ber of loci and also large numbers of samples. The use of large
computer clusters allowing to run independent loci in parallel
helps to analyze such problems.

We have presented an alternative to current estimations of di-
vergence time among populations. Our method not only allows
considering the splitting times but even allows to date admixture
of a population from 2 or more ancestral populations. The simu-
lations suggest that fairly variable data are needed. Estimation of
splitting times alone is robust over a wide range of simulated
splitting times, whereas models that allow migration and split-
ting times (IM model) simultaneously suffer considerable difficul-
ties estimating splitting times that are far in the past when
population sizes are small and immigration rates are high. These
difficulties are caused by the sparsity of lineages far in the past, a
situation that is well known (Heled and Drummond 2008).
Improving these estimates will depend on the number of loci, the
number of individuals, and data with different sampling dates.

Data availability
The code to recreate the simulated datasets and the data for the
human example data are available in the public repository on
http://github.com/pbeerli/divergencesupplement. Original

simulation datasets can be supplied on request. An elaboration
on some of the equations is available from http://github.com/
pbeerli/divergencesupplement. The software Migrate is available
at the Migrate website http://popgen.sc.fsu.edu, and simulation
software is available at http://github.com/pbeerli/popsimulate
and http://github.com/pbeerli/speciessimulate.
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