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Abstract
Visual inputs can distort auditory perception, and accurate auditory processing requires the

ability to detect and ignore visual input that is simultaneous and incongruent with auditory in-

formation. However, the neural basis of this auditory selection from audiovisual information

is unknown, whereas integration process of audiovisual inputs is intensively researched.

Here, we tested the hypothesis that the inferior frontal gyrus (IFG) and superior temporal

sulcus (STS) are involved in top-down and bottom-up processing, respectively, of target au-

ditory information from audiovisual inputs. We recorded high gamma activity (HGA), which

is associated with neuronal firing in local brain regions, using electrocorticography while pa-

tients with epilepsy judged the syllable spoken by a voice while looking at a voice-congruent

or -incongruent lip movement from the speaker. The STS exhibited stronger HGA if the pa-

tient was presented with information of large audiovisual incongruence than of small incon-

gruence, especially if the auditory information was correctly identified. On the other hand,

the IFG exhibited stronger HGA in trials with small audiovisual incongruence when patients

correctly perceived the auditory information than when patients incorrectly perceived the au-

ditory information due to the mismatched visual information. These results indicate that the

IFG and STS have dissociated roles in selective auditory processing, and suggest that the

neural basis of selective auditory processing changes dynamically in accordance with the

degree of incongruity between auditory and visual information.

Introduction
Accurate processing of auditory information supports various aspects of human life, ranging
from survival to social communication. Within the brain, auditory information is not
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processed independently of input from other sensory organs, and auditory processing can be
distorted by visual information [1–7]. For example, people misperceive the spoken syllable
“pa” as “ta” if the auditory information is accompanied by visual input in which the speaker
produces the lip movement “ka” [8]. This phenomenon, known as the McGurk effect, demon-
strates that auditory information is automatically integrated with visual input even if the input
is discrepant from the auditory information [9,10]. Accurate processing of auditory informa-
tion therefore requires the ability to detect and ignore visual information that is incongruent
with the auditory input, to prevent inappropriate audiovisual integration.

We hypothesized that this ability is supported by two dissociated brain regions. Studies
using a unimodal visual stimulus have shown that a target of high saliency (i.e., difference from
its neighboring distractors) is processed mainly in the sensory cortex in a bottom-up manner,
whereas a non-salient distracter-resembling target is processed in a top-down manner with in-
volvement of the higher cortex [11–13]. The discrepancy of a target to distractors is thus
thought to be a primary determinant of the brain regions that are involved in processing the
target. In selective processing of auditory information from audiovisual inputs, the syllable spo-
ken by a voice is more detectable if it has larger mismatch with the syllable predicted from the
lip movement. Thus, target-distractor discrepancy can be defined in audiovisual processing as
the degree of mismatch between actual and visually predicted sounds, which suggests that the
functional separation among brain region holds true for selective auditory processing. Specifi-
cally, bottom-up processing is executed to process target auditory information when the target
has a large discrepancy to the auditory information predicted from visual input, and top-down
processing is executed to process target auditory information when the target has small dis-
crepancy to the predicted auditory information. Audiovisual mismatch has been reported to
induce activity in the inferior frontal gyrus (IFG), especially Brodmann areas 44 and 45, and a
posterior part of the superior temporal sulcus (STS) [14–17], and studies on unimodal auditory
processing have suggested that salient and non-salient auditory targets are processed in the su-
perior temporal and inferior frontal regions, respectively [18,19]. Given these findings, the IFG
and STS should be respectively engaged in top-down and bottom-up processing of target audi-
tory information from audiovisual inputs.

However, studies to date on audiovisual processing have focused on how auditory and visual
information are integrated into a single perception and have not investigated the effects of tar-
get-distractor discrepancy on involved brain areas. In addition, findings on top-down versus
bottom-up processing have been obtained mainly from single modality research. It is thus un-
known whether the neural basis of audiovisual processing changes depending on the discrep-
ancy between auditory information and visual information and whether the IFG and the STS
play dissociated roles in this processing. In the present study, we manipulated the degree of au-
diovisual incongruence and investigated brain activity while subjects selectively processed au-
ditory information from audiovisual inputs. For this investigation, we used
electrocorticography (ECoG). ECoG accurately detects high gamma activity (HGA), which is
strongly associated with neuronal firing [20] and reflects local brain activity [21–27] with a
high spatial resolution. The information provided by ECoG can be used to elucidate the roles
of the IFG and STS in selectively processing auditory information from audiovisual inputs and
to further understand the neural basis of accurate auditory processing.
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Material and Methods

Informed consent
This study was approved by the research ethics committee of the faculty of medicine at the
University of Tokyo (approval number 1797). Written informed consent was obtained from
each patient before testing.

Subjects
Eight consecutive patients with intractable epilepsy underwent subdural electrode implantation
over a wide region of the left lateral surface of the brain for diagnostic purposes at the Universi-
ty of Tokyo Hospital between November 2012 and December 2013. Two patients were exclud-
ed because of prolonged status epilepticus or a low intelligence quotient score on the Wechsler
Adult Intelligence Scale-III (< 65). We studied the remaining six patients (mean age 27.0
years, range 20–37 years; three females). All patients were right-handed, and had normal or
corrected-to-normal vision, normal hearing, and no known history of neurological disease ex-
cept for epilepsy. The Wada test revealed that all patients had left language dominance
(Table 1).

Behavioral task
We prepared movie clips of 2500 ms length to work in the Psychophysics Toolbox in MATLAB
(The Mathworks Inc., Natick, MA, USA). In the movie clips, a Japanese female produced a lip
movement of “pa,” “ka,” “ta,” or “su” while her voice spoke the syllable “pa,” “ka,” or “ta.”
Based on the combination of the lip movement and the voice, there were four conditions: con-
gruent, low-incongruent, high-incongruent, and still face (Fig 1). The individual in this manu-
script has given written informed consent (as outlined in PLOS consent form) to publish these
case details.

In the congruent condition, the auditory stimulus (i.e., the voice speaking the syllable “pa,”
“ka,” and “ta”) was always matched with the visual stimulus (i.e., the speaker’s lip movement).
In the two incongruent conditions, the audiovisual information was mismatched with different
degrees of discrepancy: the speaker made a lip movement of “ka” and “su” in the low- and
high-incongruent conditions respectively, and the voice speaking the syllable “pa” was pre-
sented in both conditions. The syllables “pa” and “ka” are plosive consonant and unrounded
vowels, unlike the syllable “su”, which is a fricative consonant and rounded vowel [28,29].
Compared with the lip movement “ka” (i.e., the low-incongruent condition), the lip movement
“su” (i.e., the high-incongruent condition) is more discrepant from the actual sound of the
“pa.” To evaluate the different degrees of discrepancy, we conducted a pilot test for healthy

Table 1. Demographic and clinical characteristics of the six patients.

Patient Age, y /Sex Epilepsy focus Language dominant side VIQ Electrodes, n

1 37/F Bilateral temporal lobe Left 73 173

2 26/F Left MTL Left 92 180

3 20/M Left occipital lobe Left 71 179

4 24/F Left MTL Left 65 179

5 25/M Left MTL Left 99 164

6 30/M Left STG Left 104 179

VIQ = verbal intelligence quotient on the Wechsler Adult Intelligence Scale-III, MTL = medial temporal lobe, STG = superior temporal gyrus.

doi:10.1371/journal.pone.0122580.t001
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subjects (mean age 29.9 years, range 27–34 years; two females; S1 Fig). The healthy subjects’
performance was worse in the low-incongruent than high-incongruent condition, supporting
our assumption that the high-incongruent condition should have larger discrepancy. This per-
formance profile was similar with those of patients in this study. In the still-face condition, the
mouth of the female speaker remained closed while the voice “pa” was presented. This condi-
tion was included to ensure that the patient kept their attention on the visual stimulus, and the
trials in this condition were not included in any analysis.

After watching each movie clip, patients were asked to report the syllable they heard by
pressing a corresponding key. The choices were “pa,” “ka,” “ta,” or “no lip movement.” Thus,
the correct answer was always “pa” in the low- and high-incongruent conditions, where the
voice speaking the syllable “pa” was presented. In the still-face condition, the patient was asked
to answer “no lip movement,” which guaranteed that the subject looked at lip movement of the

Fig 1. Experimental details. Patients were shown movie clips in which a Japanese female produced a lip movement of “pa,” “ka,” “ta,” or “su”with a voice
speaking the syllable of “pa,” “ka,” or “ta.” In the congruent condition, the syllable spoken by the voice was congruent with the lip movement. In the incongruent
conditions, the audiovisual information wasmismatched: In the low-incongruent condition the voice “pa”was presented with the lip movement “ka” and in the
high-incongruent condition the voice “pa”was presented with the lip movement “su”. A fixation point was presented for between 500 and 1500ms before the
onset of the movie clip. The interval between the onset of the movie clip and the onset of the audio was 1000ms. The total length of eachmovie clip was
2500ms.

doi:10.1371/journal.pone.0122580.g001
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speaker. Patients were not told that the lip movements and the voice of the speaker could
be incongruent.

The congruent, low-incongruent, high-incongruent, and still-face conditions were con-
ducted in a randomized order with an occurrence ratio of 0.45, 0.30, 0.15, and 0.1, respectively.
The total number of these trials ranged from 66 to 264, depending on each patient’s condition.

The movie clips were 640 × 480 pixels and shown at a rate of 30 frames per second on a
monitor placed about 70 cm in front of the patient. Sound was delivered at an intensity of ap-
proximately 75 dB through earphones that were digitalized at 44.1 kHz. The onset of the voice
was 1 s after the onset of the movie clip. The onset of mouth movement was 270 to 570 ms be-
fore the onset of the voice, reflecting a natural articulation in recording. The total length of all
clips was 2500 ms. The interval between clips ranged from 500 to 1500 ms. For the experiment,
the patient was seated on a chair in an electrically shielded room.

To investigate the effects of the speaker’s lip movement on patients’ perception of the sylla-
ble spoken by the voice, we compared the percentage of correct answers between the congruent
and incongruent conditions, averaging the low- and high-incongruent conditions, and between
the two incongruent conditions. All comparisons of behavioral data were performed using a
two-tailed paired t-test (Fig 2). The obtained p-values were corrected for multiple comparisons
across the electrodes (false-discovery rate correction, p< 0.05).

Fig 2. Behavioral results. Average percentages of trials with accurate recognition of target auditory information were 100% (SE = 0.00%), 31.6%
(SE = 11.0%) and 46.7% (SE = 13.9%) in the congruent, low-incongruent and high-incongruent conditions, respectively, A two-tailed paired t-test revealed
that all the differences were significant (false-discovery rate correction, p< 0.05). Error bars indicate standard error of the mean.

doi:10.1371/journal.pone.0122580.g002
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Besides the conditions described above, patients also performed the auditory-only condition
in which only the voice (i.e., “pa,” “ka,” or “ta”) was presented with the speaker’s mouth
masked. We asked patients to answer the voice they heard, similarly to the aforementioned au-
diovisual conditions, in order to analyze effects of visual information on selective auditory pro-
cessing. The auditory-only condition consisted of 30 to 60 trials per patient (Fig 1).

Data acquisition
Each patient underwent electrode implantation approximately four weeks before resection sur-
gery. The patients had grid- and strip-type subdural electrodes placed over the left lateral fron-
tal, temporal, and occipital regions. Based on previous findings on the involvement of the
lateral surface of the left hemisphere in audiovisual processing [4,17,30], we focused solely on
ECoG electrodes in these regions. The grid electrodes consisted of silastic sheets with 60 plati-
num electrodes of 1.5 mm diameter with 5 mm spacing (Unique Medical, Tokyo, Japan). Elec-
trode locations were identified by post-implantation computed tomography (CT) registered to
pre-implantation magnetic resonance imaging (MRI) based on the mutual information meth-
od using Dr.-View/Linux (Asahi-Kasei Information Systems, Tokyo, Japan) [31]. The three-di-
mensional brain surface was reconstructed using Real INTAGE (Cybernet Systems, Ltd.,
Tokyo, Japan). There were no epileptic seizure events during or in the 24 h before ECoG re-
cordings. ECoG data were sampled at 2000 Hz using a multi-channel EEG system (EEG 1200,
Nihon Koden Corp., Tokyo, Japan). The band-pass filter for the data acquisition was set to
0.08–600 Hz. Event triggers that indicated movie clip onset and voice onset were recorded. A
reference electrode was placed on the inner surface of the dura mater over the right parietal
lobe.

Data processing and analysis
All ECoG data were analyzed using a custom script written in Matlab R2012b. First, we exclud-
ed the electrodes with continuous extrinsic noise from further analyses. Then, we rejected the
data epochs with singular noise and epileptiform spikes. The average number of investigated
electrodes per patient was 176 (SE = 2.33).

To obtain the event-related spectral perturbation (ERSP) of each epoch, we used wavelet
analysis implemented in the EEGLAB toolbox [32]. ERSP means the event-related changes in
amplitudes in oscillatory brain activity for each frequency [33,34]. The ECoG signals were con-
volved with Hanning-windowed sinusoidal wavelets. The number of wavelet cycles increased
with frequency (starting at three cycles in 6 Hz) for optimal time-frequency domain. We ana-
lyzed epochs from 1500 ms before voice onset to 1500 ms after voice onset in 5–200 Hz fre-
quency range. We used the default parameters for Morlet wavelet cycles in EEGLAB. The
ERSP time-frequency matrices were expressed as percent changes from averaged baseline activ-
ities between 1350 to 1050 ms before voice onset, during which a fixation point was presented
at the center of the screen. We illustrated the ERSP time-frequency matrices of the congruent,
incongruent and difference conditions, which was made by subtracting the averaged spectro-
grams in the congruent condition from the averaged spectrograms in the incongruent condi-
tions (Fig 3). As represented by Fig 3, the spectrogram of each patient showed a remarkable
event-related change in the high gamma band, whereas we found little power changes in other
frequency bands.

Then, a finite impulse response filter was first applied to the ECoG data from each electrode
of each patient to extract the signals containing high gamma band activity ranging from 70 to
150 Hz [35]. Hilbert transformation was performed on the filtered data and power estimates
were computed using the absolute value of these complex numbers [36]. We smoothed the
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Fig 3. A representative result of time-frequency analysis (patient 3). The result indicates that the neural
activity for processing audiovisual mismatch appeared mainly in the high gamma band (70–150Hz).

doi:10.1371/journal.pone.0122580.g003
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power with a 100-ms boxcar kernel [37] before epoching to illustrate the ERSP in the high
gamma band, but did not smooth the power used for statistical analysis. To illustrate temporal
dynamics of HGA in the IFG and STS, the percentage changes of HGA in the IFG and STS
electrodes (S2 Fig) from the baseline period are calculated on a single trial basis across all pa-
tients (Fig 4). We decided that the target periods were from 0 to 500 ms and from 500 to 1000
ms after voice onset, and the baseline was same as the ERSP calculation. We calculated the per-
centage change in HGA from the baseline to each target period. Hereafter, when we mention
increases in HGA, it means the percentage change of HGA from the baseline period.

We compared increases in HGA between the congruent and incongruent conditions to in-
vestigate the neuronal activity for audiovisual mismatch processing. A one-tailed t-test was
performed for each electrode to examine whether the HGA increase was larger in the incongru-
ent conditions than in the congruent condition or not. For each patient, the obtained p-values
were corrected for multiple comparisons across the electrodes (false-discovery rate correction,
p< 0.05). In the later target period from 500 to 1000 ms after voice onset, we observed quite a
large number of electrodes with significantly larger HGA in the incongruent conditions than in
the congruent condition, in contrast with few electrodes with significant HGA in the earlier tar-
get period from 0 to 500 ms (see Result section for details). On the basis of these results, we
concentrated only on the later period (500–1000 ms) in subsequent analyses.

Three different syllables (i.e., “pa,” “ka,” or “ta”) were used in the congruent condition,
therefore we compared the HGA increase across these syllables. There were four electrodes at
which the increase or decrease in activity differed across syllables (p< 0.05, one-way ANOVA,
false-discovery-rate corrected) [37]. We excluded data from these electrodes from all
further analyses.

Visualization of electrodes on a template brain and selection of
electrodes
To elucidate the brain regions involved in audiovisual mismatch processing, we compared
HGA increases in the incongruent conditions than those in the congruent condition in each
electrode applying an unpaired one-tailed t-test with an FDR correction on all trials, and
mapped the electrodes that showed a significantly greater HGA increase in the incongruent
conditions than in the congruent condition onto a template brain (Fig 5). We next selected the
electrodes in the IFG and STS for later comparison. An electrode was regarded as an IFG elec-
trode if more than half of the electrode was located over the IFG. The STS was defined as the
part of the STS that is posterior to the foot of a line perpendicular from the intersection be-
tween the Sylvian fissure and central sulcus. The electrodes were not actually placed into sulci;
therefore we selected electrodes whose center was located within 1.5 mm of the lateral surface
of the STS. The average number of the electrodes in the IFG and STS was 28.7 (SE = 1.87) and
10.0 (SE = 1.43), respectively (S2 Fig).

Association between HGA and speech perception
We compared the HGA increase between success and error trials in the incongruent conditions
to analyze the association of incongruent voice-induced HGA with accurate perception of the
syllable spoken by the voice. Here, we classified the behavior not into the McGurk (fusion) or
non-McGurk (non-fusion), but into the correct or incorrect answer (success or error trial). For
each electrode, we calculated the average and standard deviation increase in HGA across all pa-
tients and divided the difference between this average and the increase in HGA in a trial by the
standard deviation. This procedure resulted in a standard HGA score for each trial, eliminating
individual difference. A two-tailed paired t-test was used to compare the average standard
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Fig 4. Temporal dynamics of high gamma activity (HGA). The percentage changes of HGA in the inferior
frontal gyrus and superior temporal sulcus are calculated in the congruent (blue) and incongruent (red)
conditions, respectively. Shading means the standard error of mean. N represents the number of trials. The
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scores of success and error trials across all electrodes of all patients. This was performed sepa-
rately for the IFG and STS.

Results

Behavioral results
We compared the accuracy in judging the syllable spoken by a voice between conditions of dif-
ferent audiovisual congruency to examine the effects of visual information on auditory process-
ing. The percentage of trials in which the patient correctly identified the syllable spoken by the
voice was 100% (SE = 0.00%), 31.6% (SE = 11.0%) and 46.7% (SE = 13.9%) in the congruent,
low-incongruent and high-incongruent conditions, respectively, and all the differences were

horizontal black bar indicates the epoch in which the increase in HGA was greater in the incongruent
conditions than in the congruent condition (p< 0.0001). The results suggest that audiovisual mismatch
increased HGA in later period (500–1000 ms after voice onset).

doi:10.1371/journal.pone.0122580.g004

Fig 5. Distribution maps of the high gamma activity (HGA). All the electrodes with a significantly greater HGA increase in the incongruent condition than
in the congruent condition are shown on a template brain in the low-incongruent (upper) and high-incongruent (lower) conditions. The shapes of the electrode
markers indicate individual patients. The bar charts beside the template brain image show the average percentage of electrodes that showed a significant
HGA increase in the inferior frontal gyrus (IFG; orange), superior temporal sulcus (STS; purple), and other (gray) regions respectively. In the early period, in
both the low- and high-incongruent conditions, only a few of the 1054 electrodes exhibited a significant HGA increase (left). In the later period, more
electrodes showed a significant HGA increase. The increase was localized in the IFG in the low-incongruent condition (p = 0.0462; right upper) and in the
STS in the high-incongruent condition (p = 0.0254; right lower). Error bars indicate standard error of the mean.

doi:10.1371/journal.pone.0122580.g005
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significant (Fig 2). It was confirmed that not only the classic McGurk condition, that is the
combination of auditory “pa” and visual “ka,” but also the non-classic McGurk condition, or
auditory “pa” and visual “su,” are related with decreased accuracy in auditory recognition. In
the auditory-only condition (and still-face condition), every patient gave correct answers in all
trials (SE = 0.00%). These results suggested that the patients paid enough attention during the
recording regardless of task conditions. This indicates that an incongruent lip movement of
speaker prevented patients from accurately processing the spoken syllable and that this effect
was dependent on the degree of audiovisual incongruence.

Spectral power of the high gamma band
To detect the brain regions that processed mismatch between auditory and visual inputs, we
compared the increase in HGA between trials with and without audiovisual mismatch. HGA
increased more in trials in the incongruent conditions than in the congruent condition, partic-
ularly in the epoch from 500 to 1000 ms after voice onset (Fig 4).

In the target period from 0 to 500 ms after voice onset, the average percentage of electrodes
with larger HGA in the low-incongruent condition than in the congruent condition was
0.575% (SE = 0.525%), 1.85% (SE = 1.69%) and 0.00% (SE = 0.00%) in the IFG, STS, and the
other regions (non-IFG/STS regions), respectively, and the average percentage of electrodes
with larger HGA in the high-incongruent condition was 0.00% (SE = 0.00%) in all regions. The
increase in HGA was more prevalent in the later period, from 500 to 1000 ms after voice onset,
where the average percentage of electrodes with larger HGA in the low-incongruent condition
than in the congruent condition was 12.8% (SE = 5.22%), 4.23% (SE = 2.47%) and 3.24%
(SE = 1.13%) in the IFG, STS, and non-IFG/STS regions, respectively, and the average percent-
age of electrodes with larger HGA in the high-incongruent condition was 14.5% (SE = 5.62%),
20.8% (SE = 6.92%) and 3.07% (SE = 0.950%), respectively. Since we focused on higher-order
processing (i.e., audiovisual mismatch processing), the target epoch might be later 500 to 1000
ms than simple voice perception [38], although previous ECoG study also revealed high-fre-
quency brain activity in similarly later period [39–41].

Mapping the electrodes that exhibited a significant difference between incongruent and con-
gruent trials onto a template brain revealed that the HGA increase was localized in the IFG and
STS (Fig 5). A one tailed t-test showed that in the low-incongruent condition, the percentage of
electrodes that exhibited the increase in HGA in the incongruent condition compared to the
congruent condition was more likely to be observed in the IFG than non-IFG/STS regions
(p = 0.0462), and in the high-incongruent condition, the percentage of electrodes that exhibited
the increase in HGA was larger in the STS than in the non-IFG/STS regions (p = 0.0254; Fig 5).

We also performed behavior-based analysis to examine whether the HGA increase in the
IFG and STS was associated with degrees of audiovisual mismatch. We compared the standard-
ized increase in HGA between success and error trials in the high and low incongruent condi-
tions. In the high-incongruent condition, there was no significant difference in the HGA
standardized increase in the IFG between success and error trials (p = 0.999, two-tailed paired
t-test), but the HGA standardized increase in the STS was significantly larger in success trials
than in error trials (p = 0.0291, two-tailed paired t-test). The opposite pattern was observed for
the low-incongruent condition, where there was no significant difference in the HGA standard-
ized increase in the STS between success and error trials (p = 0.132, two-tailed paired t-test),
but the HGA standardized increase in the IFG was larger in success trials than in error trials
(p = 4.76E-9, two-tailed paired t-test; Fig 6). These results suggest a dissociated role of the STS
and IFG in processing audiovisual information with large and small discrepancy, respectively.

Dissociated Role of IFG and STS in Audiovisual Mismatch Processing
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Discussion
In the present study we investigated whether the IFG and STS were involved in top-down and
bottom-up processing of target auditory information from audiovisual inputs. For this pur-
pose, we recorded the HGA in these regions in the left hemisphere while patients judged the
syllable spoken by a voice while viewing lip movements of the speaker. The results showed that
the IFG exhibited stronger HGA when the speaker’s voice was judged accurately only if the au-
ditory information was not clearly different from that predicted from the speaker’s lip move-
ment. By contrast, the STS exhibited stronger HGA when the speaker’s voice was judged
accurately only if there was a large discrepancy between the spoken syllable and the lip move-
ment (Fig 6). Targets of a small and large discrepancy to distractors are processed in a top-
down and bottom-up manner, respectively [11–13]; therefore, these results may suggest that
the roles of the IFG and STS are top-down and bottom-up processing of target auditory infor-
mation from among audiovisual inputs, respectively. In other words, the neural basis of audito-
ry processing changes dynamically in accordance with the degree of incongruence between
auditory and visual information.

Fig 6. Relation between high gamma activity (HGA) and voice perception. Across all electrodes of all patients, average standard increases in HGA were
statistically compared between success and error trials. In the inferior frontal gyrus (IFG), the voice-induced standardized increase in HGA was significantly
higher in correct trials than in incorrect trials in the low-incongruent condition (p = 4.76E-9, two-tailed paired t-test). In the superior temporal sulcus (STS), the
voice-induced standardized increase in HGA was significantly higher in correct trials than in incorrect trials in the high-incongruent condition (p = 0.0291, two-
tailed paired t-test). N represents the number of electrodes in the IFG and STS. The y axis shows the average percentage of standardized power change in
HGA. Error bars indicate standard error of the mean.

doi:10.1371/journal.pone.0122580.g006
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These findings further our understanding of the role of the STS and IFG in audiovisual pro-
cessing. The STS is an auditory-visual association area located between the auditory and visual
cortices, and non-human primate and human studies have reported its involvement in audiovi-
sual processing [42–46]. Specifically, STS neurons in the monkey were responsive to both audi-
tory and visual stimuli [47–50]. The human STS showed stronger activation when subjects
processed audiovisual information than when they processed unimodal input [51–54], and
STS activity was more enhanced if there was a discrepancy between auditory and visual infor-
mation (e.g., a voice speaking the syllable “pa” and lip movements corresponding to the syllable
“ka”) than if there was no discrepancy between auditory and visual information [55]. These
findings suggest that the STS is important for processing audiovisual mismatch [56,57]. The re-
sults of this study revealed that HGA in the STS was associated with auditory processing per-
formance if there was a clear difference between the auditory and visual inputs, but not if the
difference between auditory and visual inputs was small. Considering that a highly discrepant
target is processed in a sensory-driven manner [11–13], the STS would play a key role in bot-
tom-up detection of the audiovisual mismatch, not audiovisual mismatch processing generally.
Taken together with the findings from the unimodal literature [18], this indicates that the supe-
rior temporal region is involved in bottom-up detection of unimodal and cross-modal mis-
match. Here, we need to note that congruent “su” or visual-only “su” was not presented in this
study. Therefore, the effect of visual “su” was not clear in the high-incongruent condition. In
other words, this study left a possibility that “su” was a more powerful stimulus than “pa” and
the significant response in the STS was due to this factor, rather than congruence
or incongruence.

Previous studies have also identified involvement of the IFG in audiovisual processing
[17,58]. Brain activity in the IFG was higher when processing audiovisual stimuli than when
processing unimodal stimuli [30,59,60], and incongruent audiovisual inputs further increased
IFG activity [16,30,61,62]. These properties are similar to those of the STS, and do not show
the functional difference between the IFG and STS. However, in this study, we showed that ac-
curate processing of target auditory information induced a larger amount of HGA in the IFG
only if the target stimulus resembled the auditory information predicted from the visual input
(Fig 6). Considering the properties of processing for a less discrepant target, a primary role of
the IFG in audiovisual processing would be top-down detection of audiovisual mismatch.

Evidence from previous studies have suggested that gamma-band activity is involved in bot-
tom-up processing only, and that top-down information is processed through beta-band oscil-
lations [63–65]. Based on these studies, it is possible that the activity shown in the STS and IFG
simply represent different points along the same processing stream to detect incongruencies.
In other studies, it is reported that the pre-stimulus beta-band activity plays an important role
in subjects’ perception in the McGurk paradigm [66]. Thus, beta-band activity or pre-stimulus
period activity, on which we did not focus in this study, may have more impact on our recogni-
tion. To address this issue we must conduct the temporal analysis, connectivity study and corti-
cal stimulation for the future study.

This study has several other methodological limitations. The HGA responses in this study
were later (500–1000 ms after auditory onset) than the time window (60–200 ms) of the audio-
visual syllables perception shown by previous researches [67]. Such a difference in latencies
seems to support our view that the HGA responses in this study are associated with mismatch
detection or judgment, not a simple perception. The temporal window used in this analysis
was, however, too long to lead to a reliable speculation on the origin of the activities. In addi-
tion, the speculation on the top-down and bottom-up processing in this study lacks a detailed
temporal analysis which could discriminate sequential involvements of distributed functional
cortical areas. We need to address these issues in the future study.
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Finally, since our study was performed for patients with intractable epilepsy, we must con-
sider this pathological factor. Many researches were conducted using the data from patients
with intractable epilepsy, and effects of pathological brain lesions and uses of anti-epileptic
drugs have been discussed [68]. In our cases, Patient 1 and 6 had epileptic foci close to the STS.
They showed the lowest and highest cognitive performance in our tasks, respectively (S3 Fig).
This might have influenced the results to some extent. In addition, since we focused on the
higher-order processing, we need to evaluate whether the patients carry out the tasks as well as
healthy subjects do. The behavioral results of patients in this study were similar with those of
healthy subjects (S1 Fig). Our data, therefore, seems reliable, although careful consideration is
needed to generalize the results of this study.

Conclusions
This study showed for the first time that the neural basis of processing target auditory informa-
tion from audiovisual inputs changed dynamically between the IFG and STS, according to the
target-distractor discrepancy. This finding was obtained using ECoG to measure HGA, which
is correlated with neuronal firing, in extensive lateral surface regions with high temporal and
spatial resolution. It is difficult to achieve all measurements from other brain imaging tech-
niques such as functional magnetic resonance imaging (fMRI); however, ECoG is not able to
assess activity in areas where electrodes are not placed, such as intrasulcus activity [69]. There-
fore, further research is required to combine other brain imaging techniques with ECoG, and
this will provide a more comprehensive understanding of the neural basis for selective process-
ing of auditory information from audiovisual inputs.

Supporting Information
S1 Dataset. Data Standardized HGA in the IFG and STS.
(PDF)

S1 Fig. Behavioral results of ten healthy subjects. Average percentages of trials with accurate
recognition of target auditory information were 99.3% (SE = 0.4%), 18.5% (SE = 8.2%), and
56% (SE = 10.7%) in the congruent, low-incongruent, and high-incongruent conditions, re-
spectively. A two-tailed paired t-test revealed that all the differences were significant (false-dis-
covery rate correction, p< 0.05). This performance profile was similar with those of patients in
the study. Error bars indicate standard error of the mean.
(TIF)

S2 Fig. The location of electrodes. The total number of electrodes in this study was 1054,
which are shown on a template brain. The inferior frontal gyrus (IFG; pars opercularis and tri-
angularis) and the posterior part of superior temporal sulcus (STS) had 172 (yellow) and 60
(purple) electrodes respectively; and there were 822 (green) electrodes in the non-IFG/
STS regions.
(TIF)

S3 Fig. Behavioral results of six patients. Since the presented voice was “pa” in both condi-
tions, we judged that patients could process the voice adequately if they chose “pa.”
(TIF)

S4 Fig. Distribution maps of the high gamma activity in uni/multi-sensory inputs. The elec-
trodes which showed a significantly greater HGA increase from baseline period (1350–1050 ms
before voice onset) to the target period (0–1000 ms after voice onset) in the auditory-only
(left), congruent (middle), and incongruent (right) conditions (Bonferroni correction across all
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electrodes of each patient, p< 0.05). The HGA increases were localized in the superior tempo-
ral sulcus in all conditions (p = 0.0036, 0.012, and 0.034 for auditory-only, congruent, and in-
congruent conditions, respectively), but not in the inferior frontal gyrus. The shapes of the
electrode markers indicate individual patients.
(TIF)

Acknowledgments
The authors thank the patients who participated in this study.

Author Contributions
Conceived and designed the experiments: TU KS TW TI. Performed the experiments: TU NK
TM TW TI. Analyzed the data: TU. Contributed reagents/materials/analysis tools: KK NS.
Wrote the paper: TU.

References
1. Beauchamp MS, Nath AR, Pasalar S. fMRI-Guided transcranial magnetic stimulation reveals that the

superior temporal sulcus is a cortical locus of the McGurk effect. J Neurosci. 2010; 30: 2414–2417. doi:
10.1523/JNEUROSCI.4865-09.2010 PMID: 20164324

2. Arnal LH, Morillon B, Kell CA, Giraud AL. Dual neural routing of visual facilitation in speech processing.
J Neurosci. 2009; 29: 13445–13453. doi: 10.1523/JNEUROSCI.3194-09.2009 PMID: 19864557

3. vanWassenhove V, Grant KW, Poeppel D. Visual speech speeds up the neural processing of auditory
speech. Proc Natl Acad Sci U S A. 2005; 102: 1181–1186. PMID: 15647358

4. Sekiyama K, Kanno I, Miura S, Sugita Y. Auditory-visual speech perception examined by fMRI and
PET. Neurosci Res. 2003; 47: 277–287. PMID: 14568109

5. Bertelson P, Vroomen J, de Gelder B, Driver J. The ventriloquist effect does not depend on the direction
of deliberate visual attention. Percept Psychophys. 2000; 62: 321–332. PMID: 10723211

6. Spence C, Driver J. Attracting attention to the illusory location of a sound: reflexive crossmodal orienting
and ventriloquism. Neuroreport. 2000; 11: 2057–2061. PMID: 10884070

7. Smith E, Duede S, Hanrahan S, Davis T, House P, Greger B, et al. Seeing is believing: neural represen-
tations of visual stimuli in human auditory cortex correlate with illusory auditory perceptions. PLoS One.
2013; 8: e73148. doi: 10.1371/journal.pone.0073148 PMID: 24023823

8. McGurk H, MacDonald J. Hearing lips and seeing voices. Nature. 1976; 264: 746–748. PMID: 1012311

9. Lifshitz M, Aubert Bonn N, Fischer A, Kashem IF, Raz A. Using suggestion to modulate automatic pro-
cesses: from Stroop to McGurk and beyond. Cortex. 2013; 49: 463–473. doi: 10.1016/j.cortex.2012.08.
007 PMID: 23040173

10. Shiffrin RM, Schneider W. Controlled and automatic human information processing: II. Perceptual
learning, automatic attending and a general theory. Psychological review. 1977; 84: 127.

11. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev
Neurosci. 2002; 3: 201–215. PMID: 11994752

12. Kastner S, Ungerleider LG. Mechanisms of visual attention in the human cortex. Annu Rev Neurosci.
2000; 23: 315–341. PMID: 10845067

13. Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;
18: 193–222. PMID: 7605061

14. McGettigan C, Evans S, Rosen S, Agnew ZK, Shah P, Scott SK. An application of univariate and multi-
variate approaches in FMRI to quantifying the hemispheric lateralization of acoustic and linguistic pro-
cesses. J Cogn Neurosci. 2012; 24: 636–652. doi: 10.1162/jocn_a_00161 PMID: 22066589

15. Nath AR, Beauchamp MS. A neural basis for interindividual differences in the McGurk effect, a multi-
sensory speech illusion. Neuroimage. 2012; 59: 781–787. doi: 10.1016/j.neuroimage.2011.07.024
PMID: 21787869

16. Hein G, Doehrmann O, Muller NG, Kaiser J, Muckli L, Naumer G. Object familiarity and semantic con-
gruency modulate responses in cortical audiovisual integration areas. J Neurosci. 2007; 27: 7881–
7887. PMID: 17652579

Dissociated Role of IFG and STS in Audiovisual Mismatch Processing

PLOS ONE | DOI:10.1371/journal.pone.0122580 March 30, 2015 15 / 18

http://dx.doi.org/10.1523/JNEUROSCI.4865-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20164324
http://dx.doi.org/10.1523/JNEUROSCI.3194-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19864557
http://www.ncbi.nlm.nih.gov/pubmed/15647358
http://www.ncbi.nlm.nih.gov/pubmed/14568109
http://www.ncbi.nlm.nih.gov/pubmed/10723211
http://www.ncbi.nlm.nih.gov/pubmed/10884070
http://dx.doi.org/10.1371/journal.pone.0073148
http://www.ncbi.nlm.nih.gov/pubmed/24023823
http://www.ncbi.nlm.nih.gov/pubmed/1012311
http://dx.doi.org/10.1016/j.cortex.2012.08.007
http://dx.doi.org/10.1016/j.cortex.2012.08.007
http://www.ncbi.nlm.nih.gov/pubmed/23040173
http://www.ncbi.nlm.nih.gov/pubmed/11994752
http://www.ncbi.nlm.nih.gov/pubmed/10845067
http://www.ncbi.nlm.nih.gov/pubmed/7605061
http://dx.doi.org/10.1162/jocn_a_00161
http://www.ncbi.nlm.nih.gov/pubmed/22066589
http://dx.doi.org/10.1016/j.neuroimage.2011.07.024
http://www.ncbi.nlm.nih.gov/pubmed/21787869
http://www.ncbi.nlm.nih.gov/pubmed/17652579


17. Ojanen V, Mottonen R, Pekkola J, Jaaskelainen IP, Joensuu R, Autti T, et al. Processing of audiovisual
speech in Broca's area. Neuroimage. 2005; 25: 333–338. PMID: 15784412

18. Zekveld AA, Heslenfeld DJ, Festen JM, Schoonhoven R. Top-down and bottom-up processes in
speech comprehension. Neuroimage. 2006; 32: 1826–1836. PMID: 16781167

19. Binder JR, Liebenthal E, Possing ET, Medler DA, Ward BD. Neural correlates of sensory and decision
processes in auditory object identification. Nat Neurosci. 2004; 7: 295–301. PMID: 14966525

20. Ray S, Crone NE, Niebur E, Franaszczuk PJ, Hsiao SS. Neural correlates of high-gamma oscillations
(60–200 Hz) in macaque local field potentials and their potential implications in electrocorticography. J
Neurosci. 2008; 28: 11526–11536. doi: 10.1523/JNEUROSCI.2848-08.2008 PMID: 18987189

21. Crone NE, Hao L, Hart J Jr., Boatman D, Lesser RP, Irizarry R, et al. Electrocorticographic gamma ac-
tivity during word production in spoken and sign language. Neurology. 2001; 57: 2045–2053. PMID:
11739824

22. Axmacher N, Schmitz DP, Wagner T, Elger CE, Fell J. Interactions between medial temporal lobe, pre-
frontal cortex, and inferior temporal regions during visual working memory: a combined intracranial
EEG and functional magnetic resonance imaging study. J Neurosci. 2008; 28: 7304–7312. doi: 10.
1523/JNEUROSCI.1778-08.2008 PMID: 18632934

23. Keil A, Gruber T, Muller MM. Functional correlates of macroscopic high-frequency brain activity in the
human visual system. Neurosci Biobehav Rev. 2001; 25: 527–534. PMID: 11595272

24. Tallon-Baudry C, Bertrand O. Oscillatory gamma activity in humans and its role in object representation.
Trends Cogn Sci. 1999; 3: 151–162. PMID: 10322469

25. Kunii N, Kamada K, Ota T, Kawai K, Saito N. Characteristic profiles of high gamma activity and blood
oxygenation level-dependent responses in various language areas. Neuroimage. 2013; 65: 242–249.
doi: 10.1016/j.neuroimage.2012.09.059 PMID: 23032488

26. Eliades SJ, Crone NE, AndersonWS, Ramadoss D, Lenz FA, et al. Adaptation of High-Gamma Re-
sponses in Human Auditory Association Cortex. J Neurophysiol. 2014; 112: 2147–2163 doi: 10.1152/
jn.00207.2014 PMID: 25122702

27. Speier W, Fried I, Pouratian N. Improved P300 speller performance using electrocorticography, spec-
tral features, and natural language processing. Clin Neurophysiol. 2013; 124: 1321–1328. doi: 10.
1016/j.clinph.2013.02.002 PMID: 23465430

28. Ogata S, Murai K, Nakamura S, Morishima S. Model-based lip synchronization with automatically trans-
lated synthetic voice toward a multi-modal translation system. 2001: 28–31

29. Association IP. Handbook of the International Phonetic Association: A guide to the use of the Interna-
tional Phonetic Alphabet: Cambridge University Press; 1999

30. Olson IR, Gatenby JC, Gore JC. A comparison of bound and unbound audio-visual information pro-
cessing in the human cerebral cortex. Brain Res Cogn Brain Res. 2002; 14: 129–138. PMID: 12063136

31. Kunii N, Kamada K, Ota T, Kawai K, Saito N. A detailed analysis of functional magnetic resonance im-
aging in the frontal language area: a comparative study with extraoperative electrocortical stimulation.
Neurosurgery. 2011; 69: 590–596; discussion 596–597. doi: 10.1227/NEU.0b013e3182181be1 PMID:
21430585

32. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics in-
cluding independent component analysis. Journal of neuroscience methods. 2004; 134: 9–21. PMID:
15102499

33. Stefanics G, Haden G, Huotilainen M, Balazs L, Sziller I, Beke A, et al. Auditory temporal grouping in
newborn infants. Psychophysiology. 2007; 44: 697–702. PMID: 17532802

34. Makeig S. Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones.
Electroencephalogr Clin Neurophysiol. 1993; 86: 283–293. PMID: 7682932

35. Flinker A, Chang EF, Kirsch HE, Barbaro NM, Crone NE, Knight RT. Single-trial speech suppression of
auditory cortex activity in humans. J Neurosci. 2010; 30: 16643–16650. doi: 10.1523/JNEUROSCI.
1809-10.2010 PMID: 21148003

36. Chandrasekaran C, Ghazanfar AA Different neural frequency bands integrate faces and voices differ-
ently in the superior temporal sulcus. J Neurophysiol. 2009; 101: 773–788. doi: 10.1152/jn.90843.2008
PMID: 19036867

37. Chang EF, Niziolek CA, Knight RT, Nagarajan SS, Houde JF. Human cortical sensorimotor network un-
derlying feedback control of vocal pitch. Proc Natl Acad Sci U S A. 2013; 110: 2653–2658. doi: 10.
1073/pnas.1216827110 PMID: 23345447

38. Mottonen R, Schurmann M, Sams M. Time course of multisensory interactions during audiovisual
speech perception in humans: a magnetoencephalographic study. Neurosci Lett. 2004; 363: 112–115.
PMID: 15172096

Dissociated Role of IFG and STS in Audiovisual Mismatch Processing

PLOS ONE | DOI:10.1371/journal.pone.0122580 March 30, 2015 16 / 18

http://www.ncbi.nlm.nih.gov/pubmed/15784412
http://www.ncbi.nlm.nih.gov/pubmed/16781167
http://www.ncbi.nlm.nih.gov/pubmed/14966525
http://dx.doi.org/10.1523/JNEUROSCI.2848-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18987189
http://www.ncbi.nlm.nih.gov/pubmed/11739824
http://dx.doi.org/10.1523/JNEUROSCI.1778-08.2008
http://dx.doi.org/10.1523/JNEUROSCI.1778-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18632934
http://www.ncbi.nlm.nih.gov/pubmed/11595272
http://www.ncbi.nlm.nih.gov/pubmed/10322469
http://dx.doi.org/10.1016/j.neuroimage.2012.09.059
http://www.ncbi.nlm.nih.gov/pubmed/23032488
http://dx.doi.org/10.1152/jn.00207.2014
http://dx.doi.org/10.1152/jn.00207.2014
http://www.ncbi.nlm.nih.gov/pubmed/25122702
http://dx.doi.org/10.1016/j.clinph.2013.02.002
http://dx.doi.org/10.1016/j.clinph.2013.02.002
http://www.ncbi.nlm.nih.gov/pubmed/23465430
http://www.ncbi.nlm.nih.gov/pubmed/12063136
http://dx.doi.org/10.1227/NEU.0b013e3182181be1
http://www.ncbi.nlm.nih.gov/pubmed/21430585
http://www.ncbi.nlm.nih.gov/pubmed/15102499
http://www.ncbi.nlm.nih.gov/pubmed/17532802
http://www.ncbi.nlm.nih.gov/pubmed/7682932
http://dx.doi.org/10.1523/JNEUROSCI.1809-10.2010
http://dx.doi.org/10.1523/JNEUROSCI.1809-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/21148003
http://dx.doi.org/10.1152/jn.90843.2008
http://www.ncbi.nlm.nih.gov/pubmed/19036867
http://dx.doi.org/10.1073/pnas.1216827110
http://dx.doi.org/10.1073/pnas.1216827110
http://www.ncbi.nlm.nih.gov/pubmed/23345447
http://www.ncbi.nlm.nih.gov/pubmed/15172096


39. Burke JF, Long NM, Zaghloul KA, Sharan AD, Sperling MR, Kahana MJ. Human intracranial high-fre-
quency activity maps episodic memory formation in space and time. Neuroimage. 2014; 85 Pt 2: 834–
843. doi: 10.1016/j.neuroimage.2013.06.067 PMID: 23827329

40. Perrone-Bertolotti M, Kujala J, Vidal JR, Hamame CM, Ossandon T, Bertrand O, et al. How silent is si-
lent reading? Intracerebral evidence for top-down activation of temporal voice areas during reading. J
Neurosci. 2012; 32: 17554–17562. doi: 10.1523/JNEUROSCI.2982-12.2012 PMID: 23223279

41. Conner CR, Chen G, Pieters TA, Tandon N. Category Specific Spatial Dissociations of Parallel Pro-
cesses Underlying Visual Naming. Cereb Cortex. 2014: 2741–50 doi: 10.1093/cercor/bht130 PMID:
23696279

42. Szycik GR, Stadler J, Tempelmann C, Munte TF. Examining the McGurk illusion using high-field 7
Tesla functional MRI. Front Hum Neurosci. 2012; 6: 95. doi: 10.3389/fnhum.2012.00095 PMID:
22529797

43. Beauchamp MS, Lee KE, Argall BD, Martin A. Integration of auditory and visual information about ob-
jects in superior temporal sulcus. Neuron. 2004; 41: 809–823. PMID: 15003179

44. Ghazanfar AA, Chandrasekaran C, Logothetis NK. Interactions between the superior temporal sulcus
and auditory cortex mediate dynamic face/voice integration in rhesus monkeys. J Neurosci. 2008; 28:
4457–4469. doi: 10.1523/JNEUROSCI.0541-08.2008 PMID: 18434524

45. Kayser C, Logothetis NK. Directed Interactions Between Auditory and Superior Temporal Cortices and
their Role in Sensory Integration. Front Integr Neurosci. 2009; 3: 7. doi: 10.3389/neuro.07.007.2009
PMID: 19503750

46. Cusick CG. The superior temporal polysensory region in monkeys. Extrastriate cortex in primates:
Springer; 1997. pp. 435–468.

47. Barraclough NE, Xiao D, Baker CI, OramMW, Perrett DI. Integration of visual and auditory information
by superior temporal sulcus neurons responsive to the sight of actions. J Cogn Neurosci. 2005; 17:
377–391. PMID: 15813999

48. Benevento LA, Fallon J, Davis BJ, Rezak M. Auditory—visual interaction in single cells in the cortex of
the superior temporal sulcus and the orbital frontal cortex of the macaquemonkey. Exp Neurol. 1977;
57: 849–872. PMID: 411682

49. Bruce C, Desimone R, Gross CG. Visual properties of neurons in a polysensory area in superior tempo-
ral sulcus of the macaque. J Neurophysiol. 1981; 46: 369–384. PMID: 6267219

50. Hikosaka K, Iwai E, Saito H, Tanaka K. Polysensory properties of neurons in the anterior bank of the
caudal superior temporal sulcus of the macaque monkey. J Neurophysiol. 1988; 60: 1615–1637. PMID:
2462027

51. Stevenson RA, James TW. Audiovisual integration in human superior temporal sulcus: Inverse effec-
tiveness and the neural processing of speech and object recognition. Neuroimage. 2009; 44: 1210–
1223. doi: 10.1016/j.neuroimage.2008.09.034 PMID: 18973818

52. Calvert GA, Campbell R, Brammer MJ. Evidence from functional magnetic resonance imaging of cross-
modal binding in the human heteromodal cortex. Curr Biol. 2000; 10: 649–657. PMID: 10837246

53. Wright TM, Pelphrey KA, Allison T, McKeownMJ, McCarthy G. Polysensory interactions along lateral
temporal regions evoked by audiovisual speech. Cereb Cortex. 2003; 13: 1034–1043. PMID:
12967920

54. Van Atteveldt N, Formisano E, Goebel R, Blomert L. Integration of letters and speech sounds in the
human brain. Neuron. 2004; 43: 271–282. PMID: 15260962

55. Hocking J, Price CJ. The role of the posterior superior temporal sulcus in audiovisual processing.
Cereb Cortex. 2008; 18: 2439–2449. doi: 10.1093/cercor/bhn007 PMID: 18281303

56. Arnal LH, Wyart V, Giraud AL. Transitions in neural oscillations reflect prediction errors generated in au-
diovisual speech. Nat Neurosci. 2011; 14: 797–801. doi: 10.1038/nn.2810 PMID: 21552273

57. Blank H, von Kriegstein K. Mechanisms of enhancing visual-speech recognition by prior auditory infor-
mation. Neuroimage. 2013; 65: 109–118. doi: 10.1016/j.neuroimage.2012.09.047 PMID: 23023154

58. Campbell R. The processing of audio-visual speech: empirical and neural bases. Philos Trans R Soc
Lond B Biol Sci. 2008; 363: 1001–1010. PMID: 17827105

59. Skipper JI, NusbaumHC, Small SL. Listening to talking faces: motor cortical activation during speech
perception. Neuroimage. 2005; 25: 76–89. PMID: 15734345

60. Sohoglu E, Peelle JE, Carlyon RP, Davis MH. Predictive top-down integration of prior knowledge during
speech perception. J Neurosci. 2012; 32: 8443–8453. doi: 10.1523/JNEUROSCI.5069-11.2012 PMID:
22723684

61. Irwin JR, Frost SJ, Mencl WE, Chen H, Fowler CA. Functional activation for imitation of seen and heard
speech. Journal of neurolinguistics. 2011; 24: 611–618. PMID: 21966094

Dissociated Role of IFG and STS in Audiovisual Mismatch Processing

PLOS ONE | DOI:10.1371/journal.pone.0122580 March 30, 2015 17 / 18

http://dx.doi.org/10.1016/j.neuroimage.2013.06.067
http://www.ncbi.nlm.nih.gov/pubmed/23827329
http://dx.doi.org/10.1523/JNEUROSCI.2982-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23223279
http://dx.doi.org/10.1093/cercor/bht130
http://www.ncbi.nlm.nih.gov/pubmed/23696279
http://dx.doi.org/10.3389/fnhum.2012.00095
http://www.ncbi.nlm.nih.gov/pubmed/22529797
http://www.ncbi.nlm.nih.gov/pubmed/15003179
http://dx.doi.org/10.1523/JNEUROSCI.0541-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18434524
http://dx.doi.org/10.3389/neuro.07.007.2009
http://www.ncbi.nlm.nih.gov/pubmed/19503750
http://www.ncbi.nlm.nih.gov/pubmed/15813999
http://www.ncbi.nlm.nih.gov/pubmed/411682
http://www.ncbi.nlm.nih.gov/pubmed/6267219
http://www.ncbi.nlm.nih.gov/pubmed/2462027
http://dx.doi.org/10.1016/j.neuroimage.2008.09.034
http://www.ncbi.nlm.nih.gov/pubmed/18973818
http://www.ncbi.nlm.nih.gov/pubmed/10837246
http://www.ncbi.nlm.nih.gov/pubmed/12967920
http://www.ncbi.nlm.nih.gov/pubmed/15260962
http://dx.doi.org/10.1093/cercor/bhn007
http://www.ncbi.nlm.nih.gov/pubmed/18281303
http://dx.doi.org/10.1038/nn.2810
http://www.ncbi.nlm.nih.gov/pubmed/21552273
http://dx.doi.org/10.1016/j.neuroimage.2012.09.047
http://www.ncbi.nlm.nih.gov/pubmed/23023154
http://www.ncbi.nlm.nih.gov/pubmed/17827105
http://www.ncbi.nlm.nih.gov/pubmed/15734345
http://dx.doi.org/10.1523/JNEUROSCI.5069-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22723684
http://www.ncbi.nlm.nih.gov/pubmed/21966094


62. Kaiser J, Hertrich I, Ackermann H, Mathiak K, Lutzenberger W. Hearing lips: gamma-band activity dur-
ing audiovisual speech perception. Cereb Cortex. 2005; 15: 646–653. PMID: 15342432

63. Bastos AM, UsreyWM, Adams RA, Mangun GR, Fries P, Friston KJ. Canonical microcircuits for predic-
tive coding. Neuron. 2012; 76: 695–711. doi: 10.1016/j.neuron.2012.10.038 PMID: 23177956

64. Friston KJ, Bastos AM, Pinotsis D, Litvak V. LFP and oscillations-what do they tell us? Curr Opin Neuro-
biol. 2014; 31C: 1–6. doi: 10.1016/j.conb.2014.05.004 PMID: 25079053

65. Roopun AK, Middleton SJ, CunninghamMO, LeBeau FE, Bibbig A, et al. A beta2-frequency (20–30
Hz) oscillation in nonsynaptic networks of somatosensory cortex. Proc Natl Acad Sci U S A. 2006; 103:
15646–15650. PMID: 17030821

66. Keil J, Muller N, Ihssen N, Weisz N. On the variability of the McGurk effect: audiovisual integration de-
pends on prestimulus brain states. Cereb Cortex. 2012; 22: 221–231. doi: 10.1093/cercor/bhr125
PMID: 21625011

67. Bernstein LE, Auer ET Jr., Wagner M, Ponton CW. Spatiotemporal dynamics of audiovisual speech
processing. Neuroimage. 2008; 39: 423–435. PMID: 17920933

68. Mukamel R, Fried I. Human intracranial recordings and cognitive neuroscience. Annu Rev Psychol.
2012; 63: 511–537. doi: 10.1146/annurev-psych-120709-145401 PMID: 21943170

69. Matsuo T, Kawasaki K, Osada T, Sawahata H, Suzuki T, et al. Intrasulcal electrocorticography in ma-
caque monkeys with minimally invasive neurosurgical protocols. Frontiers in systems neuroscience.
2011; 5: 34. doi: 10.3389/fnsys.2011.00034 PMID: 21647392

Dissociated Role of IFG and STS in Audiovisual Mismatch Processing

PLOS ONE | DOI:10.1371/journal.pone.0122580 March 30, 2015 18 / 18

http://www.ncbi.nlm.nih.gov/pubmed/15342432
http://dx.doi.org/10.1016/j.neuron.2012.10.038
http://www.ncbi.nlm.nih.gov/pubmed/23177956
http://dx.doi.org/10.1016/j.conb.2014.05.004
http://www.ncbi.nlm.nih.gov/pubmed/25079053
http://www.ncbi.nlm.nih.gov/pubmed/17030821
http://dx.doi.org/10.1093/cercor/bhr125
http://www.ncbi.nlm.nih.gov/pubmed/21625011
http://www.ncbi.nlm.nih.gov/pubmed/17920933
http://dx.doi.org/10.1146/annurev-psych-120709-145401
http://www.ncbi.nlm.nih.gov/pubmed/21943170
http://dx.doi.org/10.3389/fnsys.2011.00034
http://www.ncbi.nlm.nih.gov/pubmed/21647392


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


