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Abstract: Hydrogen sulfide (H2S) and hydrogen polysulfides are recognized as important signal-
ing molecules that are generated physiologically in the body, including the central nervous system
(CNS). Studies have shown that these two molecules are involved in cytoprotection against oxida-
tive stress and inflammatory response. In the brain system, H2S and polysulfides exert multiple
functions in both health and diseases, including Alzheimer’s disease (AD), Parkinson’s disease
(PD), Huntington's disease (HD), memory decline, and glioma. Mechanistically, S-Persulfidation
(also known as S-sulfuration or S-sulfhydration) of target proteins is believed to be a fundamental
mechanism that underlies H2S-regulated signaling pathways. Cysteine S-Persulfidation is an impor-
tant paradigm of post translational protein modification in the process of H2S signaling. This model
is established as a critical redox mechanism to regulate numerous biological functions, especially
in H2S-mediated neuroprotection and neurogenesis. Although the current research of S-Persulfida-
tion is still in its infancy, accumulative evidence suggests that protein S-Persulfidation may share
similar characteristics with protein S-nitrosylation. In this review, we will provide a comprehensive
insight into the S-Persulfidation biology of H2S and polysulfides in neurological ailments and pre-
sume potential avenues for therapeutic development in these disorders based on S-Persulfidation of
target proteins.
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1. INTRODUCTION
Hydrogen sulfide (H2S) is previously known as an envi-

ronmental  hazard  with  a  rotten  egg  smell  [1].  However,
mounting evidence suggests that H2S, independently of any
transporters, confers a diversity of physiological actions on
various systems [2-7], including the central nervous system
(CNS) [8-11]. H2S is distinctly expressed in mammalian tis-
sues where it could freely cross through the cell membranes
[12]. It has now been well accepted that H2S acts as the third
gaseous  signal  molecule  in  conjunction  with  nitric  oxide
(NO) and carbon monoxide (CO) [13]. As a gasotransmitter,
H2S is taken as a key regulator in a wide spectrum of physio-
logical and pathological processes in the brain tissues [10].
Studies of H2S in the CNS were initiated by the discovery of
sulfides in the brain [14]. In this study, the authors demons-
trated that inhalation of H2S led to increased brain sulfide de-
position;  this  may  be  associated  with  the  mortality  in  rats
[14].  After  that,  H2S biosynthesis  is  detected  in  the  brain,
and H2S is found to facilitate long-term hippocampal poten-
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tiation (LTP) by raising N-methyl-D-aspartic acid receptors
(NMDARs)-induced responses [15]. Besides, it has been un-
veiled that H2S could directly modulate pH homeostasis and
intracellular Ca2+ release in microglial cells, neurons, and as-
trocytes [16-20]. Most importantly, impaired H2S synthesis
participates in the development of various neurological dis-
eases,  such as ischemic stroke,  Alzheimer’s disease (AD),
and Parkinson’s disease (PD) [9].

Polysulfides  are  H2S-derived  endogenous  molecules
with a distinct number of inner sulfur atoms [21]. In brief,
H2S is sequentially oxidized to polysulfides until the number
of sulfur atoms reaches eight, and the sulfur molecules cycl-
ize and separate from polysulfides [22-24].  In comparison
with  H2S,  polysulfides  grant  a  greater  potency  toward  ion
channels,  transcription  factors,  or  tumor  suppressors  [1].
Similar to the effects of H2S, recent studies have demonstrat-
ed that polysulfides also exhibit neuroprotective effects by
sulfurating the target proteins, such as Kelch-like ECH-asso-
ciating protein 1 (Keap1), transient receptor potential cation
channel  subfamily  A  member  1  (TRPA1)  channels,  and
phosphatase and tensin homolog (PTEN), much more potent-
ly than H2S [18, 25]. The significance of polysulfides in the
regulation of neurobiology has been gradually recognized,
especially their roles in S-Persulfidation of target protein cys-
teine  sites  [26,  27].  The  additional  sulfur  of  polysulfides
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could be incorporated into the cysteine residues, termed as
S-Persulfidation,  an important  post-translational  modifica-
tion [25, 28]. For example, polysulfides-induced S-Persulfi-
dation of parkin, a neuroprotective ubiquitin E3 ligase, is re-
markably depleted in the brain tissues of subjects suffering
from with PD, hinting that this collapse might play a critical
role in the pathophysiology of PD [29].

S-Persulfidation, a chemical modification, is character-
ized by adding sulfur atoms to specific cysteine residues of
target proteins,  thus generating persulfide adducts on both
small molecules and proteins [30, 31]. This process is consid-
ered to be a critical step for the biological functions of reac-
tive sulfur species, including H2S and polysulfides [32]. Sim-
ilar to S-nitrosation, S-Persulfidation of target proteins could
be  reversed  by  the  thioredoxin  system  [26,  32],  which  is
closely linked to various neurological diseases [32, 33]. In
this regard, we will summarize the current studies of protein
S-Persulfidation  induced  by  H2S  and  polysulfides  in  the
CNS, and discuss the advanced mechanistic concepts that un-
derpin  the  signaling  events  of  protein  S-Persulfidation  in
neurodegenerative disorders.

2.  PRODUCTION  OF  H2S  AND  POLYSULFIDES  IN
THE CNS

H2S, a weak acid, is slightly dissolved in water and easi-
ly dissociated into H+, HS−, and S2− [15]. It is estimated that
less than 20% of H2S exists as H2S and the remaining 80%
as HS− and S2− under physiological conditions [11]. The ex-
pression of H2S in mammalian brain tissues was first detect-
ed in 1989 [14, 34, 35]. Compelling evidence has demons-
trated that H2S biosynthesis is mainly regulated by cystathio-
nine  β-synthase  (CBS),  cystathionine  γ-lyase  (CSE)  or  3-
mercaptopyruvate sulfurtransferase (3-MST) together with
cysteine aminotransferase (CAT) [3, 21, 36-40]. Excepting
the classic H2S-generating pathway, D-cysteine can be me-
tabolized by D-amino acid oxidase (DAO) to 3-mercaptopy-
ruvate (3-MP), which is decomposed to H2S by 3-MST [41].
The fourth pathway is predominantly observed in the kidney
and cerebellum, where D-cysteine-derived H2S protects the
kidney tissues from the ischemia-reperfusion injury and cere-
bellar neurons from oxidative stress [42-45]. In the embryon-
ic brain, the expression of CBS is low, and it will increase
significantly from the prenatal period to the early postpar-
tum period, and then reduces in the adult brain tissues [46].
The expressions of CBS are ubiquitously localized to the ra-
dial glia/astrocyte lineage, and CBS is indispensable for the
differentiation of glial cells and astrocytes during brain de-
velopment [46]. In the presence of various insults, such as is-
chemia-reperfusion injury or  oxidative stress,  the elevated
CBS and H2S in astrocytes may contribute to the recovery of
injured neurons [46-49]. It is likely that the levels of CSE in
the brain are very low; thus its contribution to neuronal H2S
production might be extremely minimal [50]. As CSE is not
observed in the brain tissues, CBS seems to be the H2S-gen-
erating enzyme in the brain tissues. Nevertheless, the produc-
tion of H2S is still detectable in the brain tissues from mice

with a deficiency of CBS [51, 52]. This leads to a third path-
way  that  the  brain  H2S production  can  be  regulated  by  3-
MST along with CAT [53,  54].  3-MST is  found to be ex-
pressed in pyramidal neurons in the cerebral cortex, Purkinje
cells in the cerebellum, mitral cells in the olfactory bulb, and
also  in  the  hippocampus  and  retinal  neurons  [55,  56].  Al-
though 3-MST is localized in both mitochondria and cyto-
sol, the 3-MST/CAT pathway might mainly give rise to H2S
in the mitochondria [57, 58]. Interestingly, overexpression
of  3-MST  along  with  CAT  may  noticeably  yield  more
bound sulfane sulfur, a cellular storage form of H2S, but not
increased in neuron cells expressing functionally defective
mutant enzymes [55]. In addition, CBS overexpression only
slightly raises the content of bound sulfane sulfur [55, 59].
These findings suggest that the 3-MST/CAT pathway rather
than CBS may be a major resource for H2S production in the
brain.  These published papers provide a novel  perspective
on the modulation of brain H2S generation.

As to the metabolic ways of H2S, it has been recommend-
ed that the fate of H2S’s catabolism may comprise several
pathways,  including  methylation  to  methanethiol  and
dimethyl sulfide, reactions with metalloor cysteine-contain-
ing proteins in cells  [60],  and oxidation to sulfate (Fig.  1)
[11,  61].  As  aforementioned,  H2S  could  also  be  stored  as
bound sulfane sulfur in cells, such as polysulfides and persul-
fides  [18,  59].  However,  this  may  be  taken  as  an  internal
storage of  H2S rather  than its  metabolic  catabolism.  Com-
pared with the biosynthesis of H2S, the metabolic approach-
es  of  this  gaseous  mediator  are  not  fully  understood  yet.
Therefore, further validation is required to examine the ex-
act  metabolic  turnover  of  H2S  in  experimental  settings  of
physiological and pathophysiological conditions.

Polysulfides, novel H2S-derived molecules, are generat-
ed in  mammal cells  viaeither  enzymatic  or  non-enzymatic
pathways [21]. Besides, polysulfides could also be formed
by the chemical interactions between H2S and NO [62-64].
However, this crosstalk between H2S and NO might be re-
sponsible for the production of polysulfides in mammalian
tissues as such a reaction could occur under physiological
conditions [63]. In the brain, oxidation of H2S-derived poly-
sulfides is revealed to activate the TRPA1 channels approxi-
mately 300 times more potent than H2S in astrocytes [18]. In-
triguingly,  the  same  group  also  demonstrates  that  interac-
tions of H2S with NO generate polysulfides to activate the
TRPA1 channels [65]. This study offers a novel insight into
the potential mechanisms for polysulfides production upon
an interaction between H2S and NO. It is noted that the pro-
portion of polysulfides produced by these pathways remains
undefined, and the regulatory mechanism of polysulfides for-
mation have yet to be fully elucidated. Therefore, a better un-
derstanding of polysulfide production and functions will cer-
tainly facilitate the therapeutic potential of H2S-related com-
pounds in neurological diseases.
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Fig. (1). The metabolic turnover of H2S. The endogenous synthe-
sis of H2S is synthesized by CBS, CSE, 3-MST, D-cysteine with
DAO. In the mitochondria, H2S could be oxidized to persulfides by
sulfide  quinone  oxidoreductase  (SQR).  The  persulfides  is  then
oxidized to sulfite (H2SO3) using sulfur dioxygenase, and H2SO3 is
then metabolized to H2S2O3 with the aid of rhodanese. The appropri-
ate production and clearance of H2S is essential for normal cellular
functions.  CBS,  cystathionine  β-synthase;  CSE,  cystathionine  γ-
lyase; 3-MST, 3-mercaptopyruvatesulfurtransferase; CAT, cysteine
aminotransferase; DAO, D-amino acidoxidase; 3-mercapto pyru-
vate, 3-MP; SQR, sulfide quinone oxidoreductase. (A higher resolu-
tion  /  colour  version  of  this  figure  is  available  in  the  electronic
copy of the article).

3. A BRIEF OVERVIEW OF PROTEIN S-PERSULFI-
DATION

S-Persulfidation  (also  termed  as  S-perthiolation  or  S--
sulfhydration) is a modification of specific cysteine residues
of target proteins by H2S or polysulfides [24]. In the process
of S-Persulfidation, the thiols could be transformed to persul-
fides, whereby R may be small molecules or proteins [31].
More studies have revealed that S-Persulfidation is a crucial
post-translational modification that contributes to H2S-medi-
ated signal transduction in mammalian systems [44, 49]. In
view of its chemistry characteristics, H2S is directly unable
to react with protein cysteine residues to give rise to persul-
fides. However, persulfides could be generated by the inter-
actions of H2S with oxidative cysteine residues, including di-
sulfides,  sulfenic acid,  and nitrosothiol.  Notably,  the reac-
tions of H2S occur majorly through its anion (HS-), the main
form  of  H2S  in  aqueous  solutions.  The  reactions  between
H2S and low molecular weight disulfides (including cysteine
and glutathione disulfide) may produce mixture products in
a slow and reversible manner [66]. It should be emphasized
that the concentrations of protein disulfides and low molecu-
lar weight disulfides in the cytosol are quite low. As a result,

the formation of polysulfides may be predominantly located
in the endoplasmic reticulum rather than the cytosol [67].

A negative correlation is identified between cysteine resi-
due activities and their acid dissociation constant (pKa) [23].
Typically, the S-Persulfidation sites are demonstrated to ex-
ist at cysteine residue sites with low pKa, albeit some S-Per-
sulfidation  modifications  occur  on  cysteine  residue  sites
with higher pKa [23]. In other words, the cysteine residue
sites with low pKa seem to be more reactive with S-Persulfi-
dation since they are present in the form of thiolate anions
(S-)  under  physiological  circumstances.  However,  the  low
pKa cysteines are more susceptible to oxidants such as hy-
drogen peroxide (H2O2) that are responsible for the forma-
tion of sulfenic acid (SOH), sulfinic acid (SO2H), or sulfonic
acid (SO3H) derivatives [68-70]. Under the H2O2 challenge,
the intracellular persulfide contents are upregulated; this rise
could be prevented by inhibition of CBS or CSE [71]. In this
process,  the  production  of  protein  sulfenic  acids  (P-SOH)
could be further oxidized to sulfinic acids (P-SO2H) and sul-
fonic acids (P-SO3H), which are irreversible oxidized prod-
ucts of the original protein cysteine adducts [72, 73]. S-Per-
sulfidation of target proteins might induce the formation of
P-SSO2H (perthiosulfinic) and P-SSO3H (perthiosulfonic) un-
der an oxidative environment [71]. Both of them could be re-
duced to thiols, thereby recovering their physiological func-
tions in cells [31, 74]. Polysulfide species (such as H2Sn or
RSnSH) are important molecules that could deliver the sulfur
atom to the specific cysteine residues, causing protein S-Per-
sulfidation and consecutive signal transduction events [18,
67, 75]. Kimura and colleagues have suggested that the en-
dogenous polysulfides  are  primarily  generated from 3-MP
by 3-MST [76]. The same group further demonstrated that
the endogenous polysulfides could be produced from H2S by
3-MST  and  rhodanese  [77].  Besides  3-MST,  other  sulfur
transfer enzymes are also responsible for the production of
endogenous  persulfide  species;  such  enzymes  include  sul-
fide  quinone  oxidoreductase  (SQR),  CSE,  CBS,  and  cys-
teine desulfurase [31, 78, 79]. The cysteine could also be cat-
alyzed by prokaryotic and mammalian cysteinyl-tRNA syn-
thetases (CARSs), contributing to the formation of cysteine
persulfide and polysulfides [80]. The production of polysul-
fides by CARSs could act as central mediators to induce en-
dogenous protein S-Persulfidation.

In  addition  to  S-Persulfidation,  the  cysteine  residues
might  undergo  other  modifications,  such  as  glutathionyla-
tion, palmitoylation, and nitrosylation. Therefore, it is of ut-
most importance to effectively distinguish the distinct post--
translational  modifications.  Despite  that,  it  is  still  a  chal-
lenge  to  differentiate  the  persulfide  group  from  the  thiol
group  due  to  their  analogous  reactivity.  There  are  several
strategies for the detection of S-Persulfidation, such as modi-
fied  biotin  switch  assay,  maleimide  assay,  tag-switch
method, or mass spectrometry assay, and these methods are
well-reviewed [1, 6, 12, 50, 81-83]. As of yet, the specificity
and sensitivity of the currently available methods for detect-
ing S-Persulfidation might be questionable. Hence, it is need-
ed to develop more novel and specific approaches for the ex-
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act  identification  of  S-Persulfidation.  To  date,  it  is  highly
possible that a combination of the currently available meth-
ods, together with mass spectrometry may provide accurate
avenues for the detection of target protein S-Persulfidation.

4. S-PERSULFIDATION BY H2S IN THE CNS

A variety of high-quality review papers have document-
ed that H2S protects against neurologic disorders, including
traumatic brain injury, ischemia-reperfusion injury, stroke,
AD, PD, Huntington’s disease (HD), and Down syndrome
[84-91]. It is expected that H2S therapy might become a po-
tential treatment regimen in the near future on the basis of
pre-clinic and clinical studies. The favorable effects of H2S
on  neurological  diseases  might  be  dependent  on  various
mechanisms involving anti-oxidative, anti-inflammatory and
anti-apoptotic  effects,  inhibition of  endoplasmic reticulum
stress and calcium overload [50]. Also, S-Persulfidation is re-
commended as an important model of action of H2S where
H2S adds a sulfur atom to the cysteine residues of target pro-
teins, which is being employed to investigate H2S-mediated
signaling pathways in various brain disorders [82].  There-
fore, we will next focus on the roles of H2S-mediated S-Per-
sulfidation of target proteins in neuropathology.

4.1. S-Persulfidation by H2S in PD

PD, a neurodegenerative disorder in the middle-elderly
population,  is  manifested  by  motor  system  abnormalities
[92, 93]. A growing number of studies have identified that
the pathologies of PD involve dopamine neuron degenera-
tion in the substantia nigra, early reduction of dopaminergic
uptake  in  the  frontal  lobes,  the  cholinergic  disturbance  in
both brainstem and corticostriatal pathways [94-97]. Howev-
er, to date, there is no consensus on the etiopathogenesis of
PD [98]. The ambiguous pathogenesis of PD leads to limited
clinical treatment options, thus causing immeasurable socioe-
conomic burdens and family suffering [99, 100]. Therefore,
it is urgent to investigate the potential mechanisms that un-
derlie  the  evolution  of  PD,  and  it  is  essential  to  establish
more standardized management of PD.

Accumulating lines of evidence demonstrate a favorable
role  of  H2S in  the  pathologies  of  PD,  suggesting  that  H2S
may be a new frontier for the treatment of PD [8, 81, 101,
102]. The endogenous levels of H2S are found to be down-
regulated in the substantia nigra from 6-hydroxydopamine
(6-OHDA)-induced PD rats or 1-methy-4-phenyl-1,2,3,6-te-
trahydropyridine (MPTP)-induced PD mice [102, 103]. The
decreased H2S production may be ascribed to the diminished
H2S generating enzyme, CBS, in the substantia nigra of PD
models [102]. Evidence for H2S-mediated therapies against
PD is achieved from the exogenous administration of H2S-re-
leasing donors [8, 81, 101, 102, 104-108]. Multiple mech-
anisms are speculated to be responsible for the therapeutic
roles of H2S in PD [107, 109, 110]. Among which, dysregu-
lation of protein S-Persulfidation contributes to the pathogen-
esis of PD [12, 81]. As such, treatment with H2S donors may
be beneficial in the treatment of PD by stimulating the trans-

sulfuration  pattern  [8].  As  an  E3  ligase,  parkin  is  able  to
ubiquitinate  the  target  proteins  for  proteasome-induced
degradation; mutations of parkin lead to dopaminergic cell
death during the progression of PD [111, 112]. Snyder and
coworkers have confirmed that S-Persulfidated parkin is re-
markably  depleted  in  the  brain  tissues  from  PD  patients
[29],  implying  that  disrupted  parkin  activities  might  be
pathogenic in the development of PD. Its S-Persulfidation is
associated with its normal catalytic activity, whereas nitrosy-
lated parkin impairs its activity [29, 113]. It can be proposed
that the restored S-Persulfidation of parkin by H2S enhances
its  catalytic  activity,  thus  exerting  neuroprotective  effects
against PD (Fig. 2) [29]. The protein p66Shc acts as a criti-
cal modulator in mitochondrial redox signaling, and its dys-
regulation  is  involved  in  the  pathophysiology  of  PD
[114-116]. Our group found that H2S inhibited overproduc-
tion  of  mitochondrial  reactive  oxygen  species  (ROS)  in
H2O2/D-galactose-incubated SH-SY5Y cells by S-Persulfida-
tion of p66Shc as mutation of cystein-59 within p66Shc abol-
ished the antagonistic effects of H2S on mitochondrial ROS
production [117]. Given the importance of oxidative stress
in the evolution of PD [118], our results suggest that p66Shc
S-Persulfidation  mediates  the  antioxidant  actions  of  H2S,
thus protecting against the development of PD. Although the
roles of H2S-mediated protein S-Persulfidation in the patho-
genesis of PD are still in its early stage, it is believed that in-
tensive investigations will be inspired by such findings.

Fig.  (2).  Effects  of  S-Persulfidation  on  parkin  in  PD.  Under
healthy conditions, an E3 ubiquitin ligase, the parkin activity is en-
hanced by S-Persulfidation and induces target protein degradation
caused by ubiquitination. In PD, the activity of parkin is decreased
by  S-Persulfidation  of  reactive  cysteine  residues  within  parkin,
thus causing accumulation of target protein, such as a-synuclein,
and subsequent neurotoxicity. (A higher resolution / colour version
of this figure is available in the electronic copy of the article).

4.2. S-Persulfidation by H2S in HD

HD is characterized by the expansion of polyglutamine
repeats in the protein huntingtin within the corpus striatum
[119, 120]. Mutant huntingtin triggers its aggregates, lead-
ing to  disrupted cognitive  and motor  functions  along with
psychiatric disturbances [121]. The transcriptional factor spe-
cificity  protein  1  (Sp1)  is  a  potent  regulator  of  CSE [122,
123], and this transcriptional factor is sequestered and inacti-
vated by mutant huntingtin in early HD [124], resulting in
cell redox imbalance because of depleted cysteine biosynthe-
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sis. Indeed, the expression of CSE is diminished in HD brain
tissues,  indicating that  H2S might  play an essential  role in
the pathophysiology of HD [125, 126]. Aside from the defi-
ciency of cysteine biosynthesis, the dysfunction of cysteine
and cystine transporters is also observed in HD, all of which
are responsible for elevated ROS production in cells due to a
cysteine deficit [127, 128]. In response to amino acid limita-
tion and endoplasmic reticulum stress, CSE is also modulat-
ed by activating transcription factor 4 (ATF4), this signaling
pathway is impaired in HD as aberrant cysteine biosynthesis
and transport contribute to oxidative stress-induced neuro-
toxicity [129]. In addition, the expression of CSE, a critical
enzyme in the metabolism of cysteine, is downregulated in
brain  tissues  of  spinocerebellar  ataxia  type  3  patients,
whereas thevoverexpression of CSE suppresses the detrimen-
tal effects of spinocerebellar ataxia type 3, a disease that is
caused by a CAG repeat expansion in the ataxin-3 (ATXN3)
gene [130]. Most importantly, CSE overexpression recovers
protein S-Persulfidation and inhibits oxidative stress, there-
by improving spinocerebellar ataxia type 3-associated tissue
degeneration [130]. On the basis of these observations, we
speculated that appropriate regulation of the reverse transsul-
furation pathway is essential for the maintenance of cellular
redox  homeostasis,  thus  conferring  neuroprotection.  Al-
though  not  conducted  experimentally,  S-Persulfidation  of
cysteine  residues  within  the  target  proteins,  such  as  hunt-
ingtin and ATXN3, most likely mediates the protective ef-
fects of H2S against HD, which may merit further investiga-
tion.

4.3. S-Persulfidation by H2S in AD

AD is a prevalent neurodegenerative disease that leads
to cognitive dysfunction and memory loss in affected indivi-
duals [131, 132]. The pathophysiology of AD is closely asso-
ciated with the generation of neurofibrillary tangles and ac-
cumulation  of  amyloid  plaques,  especially  in  the  cerebral
cortex and the hippocampus [133, 134]. Aggregation of β-
amyloid (Aβ) and Tau proteins could induce the formation
of amyloid plaques and neurofibrillary tangles, respectively
[135, 136]. Mutations of the amyloid precursor protein (AP-
P),  presenilin-1  and  2  are  frequently  encountered  in  AD
[137]. APP undergoes sequential proteolysis with the aid of
proteases (also termed secretases), including α, β and γ secre-
tases [138]. Similar to other several neurodegenerative dis-
eases, AD is also tightly associated with elevated oxidative
stress [139-141]. Increased lipid peroxidation, DNA damage
and protein nitration are found to be engaged in the progres-
sion of AD [142-145]. Besides, mitochondrial dysfunction,
transcriptional dysregulation, and aberrant nitrosylation oc-
cur at multiple levels in the progression of AD [33]. Regard-
less of the intensive research on the underlying mechanisms
of AD, its etiologies are not fully elucidated.

H2S is proposed to be an important contributor to the de-
velopment of AD [146-148]. It is reported that the high lev-
els of homocysteine (a precursor of cysteine when acted on
by CBS and CSE) are taken as a high risk factor for AD pro-
gression. It is reasonable that the decreased CBS activity ac-

counts  for  the  abnormal  homocysteine  deposition  [149,
150]. The CBS-mediated homocysteine transsulfuration path-
way is responsible for the development of AD [151], and the
formation of H2S is actually hampered because of the dis-
turbed CBS-mediated homocysteine transsulfuration in pa-
tients with AD [149, 152, 153]. As a matter of fact, the plas-
ma level of H2S tends to be lower in AD patients and the de-
creased H2S level may be correlated with the severity of AD
[151]. A number of studies have confirmed that H2S plays a
protective  role  in  the  management  of  AD.  Schreier  et  al.,
have found that H2S exerts a strong ability to counteract the
cytotoxic lipid oxidation product 4-hydroxynonenal (HNE)
in SH-SY5Y neuronal cells [154], an elevated cytotoxic in
the  brain  tissues  of  severe  AD  patients  [155,  156].  H2S
donor  sodium  hydrosulfide  (NaHS)  is  documented  to  im-
prove spatial learning and memory impairment in a mouse
model  of  AD  [157].  Furthermore,  the  administration  of
NaHS  slows  down  the  development  of  experimental  AD
models viaregulation of oxidative and nitrosative stress, in-
flammation and apoptosis [158]. A myriad of studies have al-
so demonstrated that H2S influences Aβ formation and toxici-
ty through various ways, such as APP glycosylation, γ secre-
tase, cell cycle re-entry, inflammation response, and mito-
chondrial member potential [52, 159-162]. Thus, H2S might
represent a new entity to delay AD progression through nu-
merous signaling pathways. Nevertheless, it is noteworthy to
mention that the precise roles of H2S in the pathogenesis of
AD  remain  largely  uncertain.  Therefore,  more  studies  are
needed  before  its  transformation  to  a  clinical  therapy  for
AD.

Neuroinflammation and excessive Aβ deposition syner-
gistically contribute to the development and progression of
AD [163]. The intervention, neuroinflammation and Aβ ac-
cumulation might provide a potential approach for AD thera-
py [163, 164]. Signal transducer and activator of transcrip-
tion 3 (STAT3) is revealed to participate in neuroinflamma-
tion  and  Aβ  pathogenesis  during  the  progression  of  AD
[165, 166]. Cathepsin S (Cat S) is predominantly expressed
in the microglial cells and its inhibition produces neuropro-
tective effects in AD [167, 168]. We recently found that H2S
attenuated adenosine triphosphate (ATP)-induced ROS pro-
duction,  inflammation  response,  and  Aβ1-42  generation
viainactivation of STAT3 and Cat S in both BV-2 and pri-
mary cultured microglial cells [169]. Moreover, we demons-
trated that the S-Persulfidation of Cat S at cysteine-25 was
required  for  H2S-mediated  effects  in  the  context  of  ATP
[169]. Our results provided a novel understanding of the pos-
sible contribution S-Persulfidation of Cat S to the neuropro-
tective effects of H2S. In addition to the direct S-Persulfida-
tion of Cat S,  the Akt is  S-Persulfidated at  cysteine-77 by
H2S, and Akt S-Persulfidation is also detected in the post-
mortem brains from AD patients [170]. Very recently, in a
transgenic knockin mouse that lacked sulfhydrated Akt, de-
creased dendritic spine loss and improved cognitive dysfunc-
tions were observed by reducing dendritic localization of hu-
man  Tau  is  phosphorylated  at  S199  [170],  representing  a
novel posttranslational modification of Akt, which primarily
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contributes to synaptic dysfunction in AD. These above find-
ings suggest that S-Persulfidated proteins, such as Cat S and
Akt, might exert a vital role in the pathological functions of
AD.

A common feature of AD is aggravated oxidative burden
in  neuronal  cells,  and  supplementation  of  H2S  donor  pre-
vents  neuronal  cell  death  induced  by  oxidative  stress  [47,
171, 172]. H2S is also able to relieve oxidative injury by sti-
mulating glutathione biosynthesis and aldehyde dehydroge-
nase 2 expressions [173, 174].  Additionally,  the upregula-
tion of nuclear factor erythroid 2-related factor 2 (Nrf2) by
H2S plays a vital role in the maintenance of cellular redox
balance [175, 176]. As described earlier, H2S induces the in-
creased  Nrf2  activation  by  inducing  S-Persulfidation  of
Keap1  and  subsequent  Keap1/Nrf2  disassociation
[177-182].  However,  whether  Keap1  S-Persulfidation  by
H2S could be extrapolated to the treatment of AD requires in-
-depth research.

The  α-amino-3-hydroxy-5-methylisoxazole-4-propionic
acid receptors (AMPARs) are key elements for fast excitato-
ry synaptic transmission, and their dynamic regulation is ma-
jorly responsible for adaption of the CNS to environment sti-
mulations [183, 184]. The dysfunction of AMPARs is one of
the pathological factors for the development of AD [185]. A
downregulation of AMPAR GluR1 subunit expression is a
hallmark in pathological molecular alterations in AD [186].
Restoration of AMPAR GluR1 subunit or inhibition of AM-
PAR endocytosis  may  be  promising  new strategies  to  im-
prove spatial memory deficits in the Tg2576 AD mouse mod-
el [187, 188]. Bath application of H2S and Na2S4 obviously
promotes the surface insertion of AMPAR GluR1 subunit in
the  hippocampal  tissues,  and this  is  abolished in  the  pres-
ence of dithiothreitol (DTT), hinting an involvement of the
S-Persulfidation-dependent  mechanism  [189].  However,
AMPAR is not directly S-Persulfidated by H2S, but the phos-
phorylation  levels  of  GluR1  at  serine-831  and  serine-845
sites are activated by H2S [189]. Despite this, H2S could di-
rectly increase the S-Persulfidation levels of postsynaptic sig-
nal molecules that control GluR1 phosphorylation, including
protein phosphatase type 2A (PP2A), protein kinase A (P-
KA), protein kinase C, and calcium/calmodulin-dependent
protein  kinases  II  (CaMKII)  [189].  This  observation
suggests that H2S promotes the surface delivery of AMPARs
viaS-Persulfidation-mediated  mechanisms.  In  this  regard,
H2S-mediated S-Persulfidation of specific reactive thiols in
target postsynaptic proteins indirectly regulates AMPARs in
the hippocampus area, which may provide a new perspective
of the pathophysiological functions of H2S in AD. Although
the  mechanisms  that  underlie  S-Persulfidation-dependent
regulation of kinase activity remain unclear, H2S may stimu-
late phosphorylation of these kinases viaS-Persulfidation of
themselves.

4.4. S-Persulfidation by H2S in Brain Memory Functions

Memory impairment is present in several neurodegenera-
tive disorders, which is induced by numerous pathophysio-
logical mechanisms, including neuroinflammation and aging

[190-193]. IL-1β, a well-known pro-inflammatory cytokine,
is widely observed in the brain [194, 195], and brain-derived
IL-1β plays a dispensable role in the process of learning and
memory viaregulation of postsynaptic density 95 (PSD95), a
critical  scaffold  protein  that  regulates  synaptic  stability,
strength, and plasticity [196-199]. The brain memory impair-
ment  in  response  to  IL-1β  is  mediated  by  CBS-generated
H2S production as gene ablation of CBS ameliorates IL-1β-
induced  neurological  impairments  in  mice  [200].  At  the
molecular level, the induction of H2S by IL-1β modifies glyc-
eraldehyde- 3-phosphate dehydrogenase (GAPDH) essential-
ly viaS-Persulfidation at cysteine-150, which enhances the
binding  of  the  E3  ligase  Siah  to  the  S-Persulfidated
GAPDH, thereby inducing ubiquitination-mediated degrada-
tion  of  PSD95  in  IL-1β-induced  cognitive  dysfunction
[200].  GAPDH can not  be  S-Persulfidated by IL-1β when
CBS is  absent;  the degradation of  PSD95 will  be less  and
IL-1β-triggered  synaptic  dysfunction  and  memory  impair-
ment are markedly relieved [200]. This study establishes a
novel signaling pathway whereby IL-1β evokes the degrada-
tion of neuronal PSD95 by GAPDH S-Persulfidation in an
H2S-dependent  manner  (Fig.  3).  The  S-Persulfidation  of
GAPDH by H2S may provide a therapeutic strategy for the
prevention  and treatment  of  neurological  disorders-related
memory impairment whereby the overproduction of IL-1β
manifests the pathologies of such diseases.

Fig.  (3).  S-Persulfidation of  GAPDH mediates  synaptic  func-
tion. The proinflammtory cytokine IL-1β upregulates CBS-generat-
ing H2S production, and leads to S-Persulfidation of GAPDH. This
event results in the binding of GAPDH to siah1, an E3 ubiquitin lig-
ase, which triggers PSD95 toward for degradation. The dysregula-
tion of PSD95 plays an important role in learning and memory dys-
function.  CBS,  cystathionine  β-synthase;  IL-1β:  interleukin-1β;
GAPDH: glycolytic enzyme glyceraldehyde 3-phosphate dehydro-
genase; PSD95: post-synaptic density 95 protein; Siah1: seven in
absentia homolog-1. (A higher resolution / colour version of this
figure is available in the electronic copy of the article).

LTP, a cellular model for memory, is regulated by vari-
ous  redox  signaling  molecules  in  which  they  act  as  dou-
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ble-edged swords [201-203]. In the presence of several thiol
agents, such as DTT and glutathione, the LTP is increased
and  the  aging-associated  synaptic  dysfunctions  are  enor-
mously reversed [204-206], suggesting that the endogenous
reducing agents might serve as a physiological mediator in
synaptic plasticity. The D-serine released from astrocytes is
one of the governing coagonists of synaptic NMDARs by sti-
mulating its glycine modulatory sites [207-209]. Serine race-
mase (SR) is one of the main synthetases of D-serine [210].
The sulfide generation and protein S-Persulfidation are in-
duced after high-frequency stimulation, which are necessary
for  NMDARs-dependent  induction  of  LTP  viathe  mainte-
nance of D-serine [211]. The S-Persulfidation and disinhibi-
tion  of  SR  by  both  H2S  and  polysulfides  stimulate  NM-
DARs-dependent LTP; this may be beneficial for hippocam-
pus-dependent memory (Fig. 4) [211]. Actually, the levels
of H2S and SR S-Persulfidation are diminished significantly
in aged rats, and exogenous administration of H2S restores
the S-Persulfidation of SR, followed by upregulation of D-
serine and improvement of age-related deficits in hippocam-
pus LTP [211]. In summary, this study suggests that H2S-in-
duced posttranslational modification of SR appears to play a
pivotal role in NMDARs-dependent synaptic plasticity, and
H2S-based therapies may be effective for the management of
memory loss in aging animals (Fig. 4). Excepting the S-Per-
sulfidation of SR, other mechanisms underlying H2S-mediat-
ed regulation of D-serine await in-depth research. For exam-
ple, activation of TRPA1 by polysulfides may promote the
release of D-serine and NMDARs-dependent LTP [18, 212,
213]. These findings allow us to suppose a possible role for
H2S-linked  TRPA1  S-Persulfidation  in  synaptic  plasticity
and memory function; this hypothesis is further confirmed
by a finding that polysulfides activate the TRPA1 channels
by  S-Persulfidating  cysteine  residues  within  the  channels,
thereby inducing Ca2+  influx in rat  astrocytes (Fig.  4)  [18,
28, 44].

4.5. Roles of H2S in other Neurological Disease

Amyotrophic lateral sclerosis (ALS), a detrimental neu-
rodegenerative disease, is an important cause of the selective
degeneration of upper and lower motor neurons [214]. Re-
cently  published  results  have  revealed  that  abnormal  au-
tophagy,  vesicle  trafficking,  RNA  metabolism,  and  cy-
toskeleton  dynamics  act  as  functional  pathways  in  ALS
pathogenesis [215]. Human genetic studies have demonstrat-
ed  that  mutation  of  Cu/Zn  superoxide  dismutase  (SOD1)
gene mainly aggregates and causes motor neurons death in
the process of ALS [216, 217]. The levels of H2S are higher
in the spinal fluid of ALS patients, and the upregulated lev-
els of H2S are also observed in the tissues from mice bearing
the familial ALS mutation SOD1G93A [218]. In spinal cord
cultures, H2S is toxic for motor neurons through increasing
intracellular Ca2+ levels [218]. Interestingly, pharmacologi-
cal inhibition of H2S obviously enhances the lifespan of fe-
male mice bearing the familial ALS mutation SOD1G93A,
but not in male ALS mice [219]. This observation suggests
that the relationship between gender and H2S needs to be ad-

equately  considered  in  the  development  of  ALS.  These
studies unravel H2 S as an important mediator of motor neu-
ron damage in the setting of ALS.

Fig. (4). A putative mechanism of H2S/polysulfides involving in
the induction of LTP. The cysteine disulfide bond of NMDARs is
reduced by H2S, thus enhancing its activity. Polysulfides derived
from H2S further induce the formation of bound sulfane sulfur in
the  cysteine  residues  of  NMDARs  and  further  facilitate  NM-
DARs-dependent induction of LTP. In astrocyte, activation of TR-
PA1 by polysulfides derived from H2S may promote the release of
D-serine and NMDARs-dependent LTP, this effect may be mediat-
ed by S-Persulfidating the cysteine-422 and cysteine-622 of TR-
PA1.  Also,  the  S-Persulfidation  and  disinhibition  of  SR by  both
H2S and polysulfides stimulate NMDARs-dependent induction of
LTP,  and  SR  is  one  of  the  main  synthetases  of  D-serine.  NM-
DARs:  N-methyl-D-aspartate  subtype  glutamate  receptors;  TR-
PA1: transient receptor potential cation channel subfamily A mem-
ber 1; CBS, cystathionine β-synthase; 3-MST, 3-mercaptopyruvate-
sulfurtransferase; CAT, cysteine aminotransferase; SR: serine race-
mase; LTP: long-term potentiation. (A higher resolution / colour
version of this figure is available in the electronic copy of the arti-
cle).

In accordance with the results obtained from ALS, the el-
evated H2S generation is also detected in Down syndrome, a
disease manifested by trisomy of chromosome 21 (a chromo-
some on which CBS is located) [220].  The levels of urine
thiosulfate, a catabolic product of H2S, are also upregulated
in subjects with Down syndrome [221]. The expression of
CBS is localized in astrocytes adjacent to the senile plaques,
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indicating involvement of H2S in this disease process [220].
A recent report has shown that overproduction of H2S dis-
rupts Complex IV activity, mitochondrial electron transport,
ATP synthesis and fibroblasts cell proliferation, inducing sig-
nificant destruction in mitochondrial function of Down syn-
drome [222]. As a consequence, inhibition of CBS-derived
H2S  offers  an  attractive  approach  for  the  pharmacological
treatment of Down syndrome-associated mitochondrial dys-
function. It is concluded that higher concentrations of H2S
may be detrimental in both ALS and Down syndrome. How-
ever,  the  S-Persulfidation-related  mechanisms  by  H2S  are
scarce in both diseases. At the molecular level, we should de-
velop proteomic approaches to solve the sites of H2S-mediat-
ed S-Persulfidation and its interplay with the pathogenesis
of ALS and Down syndrome.

It has been accepted that H2S promotes tumor prolifera-
tion  in  some  types  of  cancer,  while  it  inhibits  tumor  cell
growth in other cancer types [61]. Glioblastoma is a malig-
nant brain tumor type with a poor prognosis [223]. Current-
ly, effective and sufficient therapeutic strategies for glioblas-
toma  are  unavailable  due  to  the  poor  understanding  of  its
pathological mechanisms [224]. The roles of H2S in glioblas-
toma development and progression are recently disclosed by
cell and animal experiments. Injection of H2S donor NaHS
aggravates  the  physical  symptoms  of  glioma-bearing  rats
viaupregulating  hypoxia-inducible  factor  1α  (HIF-1α)  ex-
pression and neovascular formation [225]. Incubation of C6
glioma cells with NaHS (400 µM) facilitates the cell prolifer-
ation and inhibits cell apoptosis, and this may be mediated
by the p38 MAPK/ERK1/2-COX-2 pathway [226]. The tu-
mor-promoting effects  of  H2S are  challenged by a  finding
that  the  administration  of  NaHS  inhibits  cell  proliferation
and induces apoptosis of C6 gliomas cells through the p38
MAPK signaling pathway [227]. In accordance, the silenc-
ing  of  CBS,  a  major  H2S-generating  enzyme  in  the  brain,
promotes  the  growth  of  human  glioma  tumor  cells  [228].
However, whether the level of CBS is altered in human glio-
ma tissues is not examined. Considering that 3-MST expres-
sion is obviously enhanced in gliomas tissue [229], we can
not exclude a possibility that 3-MST, a crucial enzyme for
H2S production in the brain system, may be upregulated on
CBS silencing, thus compensatory H2S from 3-MST might
promote the growth of glioma cells in the absence of CBS.
However, the direct effects of 3-MST on glioma behaviors
are unknown. Therefore, the exact roles of CBS and 3-MST
in glioma development will be an interesting field to explore
in  the  near  future.  Doxorubicin  exerts  cytotoxicity  toward
rat C6 glioma cells [230], this effect may be attributed to an
elevation of H2S contents as the pro-apoptotic effects of H2S
at high millimolar doses are accompanied by an increase in
the generation of ROS and a decrease in the gluthatione con-
centration, leading to activation of the caspase 3-mediated
apoptotic pathway [231-233]. All in all, the effects of H2S
on glioma biology remain controversial, and these unsolved
matters need to be answered in further studies. Overwhelm-
ing evidence suggests that H2S-mediated S-Persulfidation of
target proteins are demonstrated to be involved in a plethora

of signaling transduction during the development and pro-
gression  of  different  types  of  cancer  [61].  Unfortunately,
this post-translational modification paradigm is unexplored
in  H2S-mediated  effects  on  glioblastoma.  Consequently,
H2S-mediated  protein  S-Persulfidation  that  is  relevant  to
glioblastoma biology will become a focus of future research.

In agreement with the above findings, although H2S is an
important dominator in the pathologies of stroke and trau-
matic brain injury from accumulative studies [10,  52,  88],
no extensive investigations are performed to determine the
possible effects of H2S-mediated S-Persulfidation of target
proteins in both neurodegenerative diseases. It is shown that
sulfane  sulfur  in  astrocytes  is  obviously  lower  in  stroke-
prone spontaneously hypertensive rats, and this decrease is
further diminished by CBS inhibitor [234], implying that the
formation  of  S-Persulfidation  by  H2S  may  be  involved  in
this  disease  development.  More  original  experiments  are
warranted to provide novel insights into how potential S-Per-
sulfidation  on  specific  cysteine  residues  by  H2S  could  in-
duce benefits to the pathological changes in stroke and trau-
matic brain injury.

5. S-PERSULFIDATION BY POLYSULFIDES IN THE
CNS

Polysulfides are identified to be abundantly expressed in
the brain, and exhibit a higher oxidation capability than the
sulfur atom in H2S as they contain sulfane sulfur [25, 65].
The levels of polysulfides in the brain are found to be in mi-
cromolar concentrations using high-performance liquid chro-
matography  (HPLC)  analysis,  this  dose  of  polysulfides  is
enough to activate the TRPA1 channels [18]. Even though it
is still unclear whether polysulfides are actively transported
into cells, polysulfides are known to easily pass through the
plasma membranes [18, 23]. Similar to H2S, polysulfides are
also involved in neurodegenerative diseases, including PD,
HD, ethylmalonyl encephalopathy, and even in brain cancer
[29, 235, 236].

Studies have established that polysulfides may directly
target  several  molecules,  such  as  Keap1/Nrf2  complex
[237], a tumor suppresser PTEN [23], GAPDH, an enzyme
that catalyzes glycolysis [238], and a vascular tension regula-
tor  protein  kinase  G1α [239].  Apart  from being  important
signaling molecules, polysulfides also function as a neuro-
protective modulator  by activating the channels,  enzymes,
and transcription factors through S-Persulfidation of the tar-
get proteins [28, 42, 50, 240]. Polysulfides activate the TR-
PA1  channels  by  S-Persulfidated  cysteine  residues  within
the channels, thereby inducing Ca2+ influx in rat astrocytes
(Fig. 4) [18]. The actions of polysulfides are attenuated by
inhibitors of TRPA1 or silencing of TRPA1, implying that
the responses of polysulfides are attributed to TRPA1 activa-
tion. Once activated in astrocytes, the release of D-serine to
the  synapse  enhances  the  activity  of  NMDARs and facili-
tates the induction of LTP [212, 241].

The imbalance in cellular redox state is an important rea-
son for oxidative stress, which is also a common etiological
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factor  in  neurological  diseases  [242,  243].  Under  normal
homeostatic conditions, Keap1 is a redox-sensitive ubiquitin
ligase substrate adaptor that represses the activity of the tran-
scription factor Nrf2 [178, 181, 244]. Upon oxidative stress,
Keap1 S-sulfhydration by polysulfides induces Nrf2 dissoci-
ation from Keap1, which upregulates the nuclear transloca-
tion of Nrf2 and the subsequent expressions of antioxidant
genes [237], thus conferring beneficial effects against oxida-
tive injury in Neuro2A cells.  In addition, the activation of
the PI3K/Akt pathway is necessary for polysulfides for the
translocation of Nrf2 to the nucleus [237]. With the growing
identification of anti-oxidative protein, S-sulfhydration, by
polysulfides, significant advancements in the roles and mech-
anisms of polysulfides in modulating cellular responses to
oxidative  stress  in  the  neurodegenerative  process  will  be
made.

A recent study has detected the higher levels of polysul-
fides  in  glioblastoma-bearing  ipsilateral  hemispheres,  but
not  in  glioblastoma-free  control  hemispheres  using  sur-
face-enhanced  Raman  spectroscopy  [235].  Although  it  is
still unknown, for the accurate molecular entities of polysul-
fides in glioma cells, they might be involved in the patholo-
gies of glioma. GAPDH is an enzyme that catalyzes glycoly-
sis, an orchestrated process in the development of chemother-
apy resistance in some types of malignancies, including glio-
ma [245-248]. For this reason, inhibition of GAPDH activity
has  gained  considerable  attention  as  an  attractive  strategy
for  cancer  therapy  [249,  250].  Interestingly,  polysulfides
treatment significantly inhibits the activity of GAPDH, by
S-Persulfidation  of  GAPDH  at  cysteine-156  and  cys-
teine-247  [238].  Accordingly,  it  will  be  exciting  to  know
whether targeting S-Persulfidation of GAPDH by polysul-
fides alters the glycolysis process in brain gliomas. This hy-
pothesis, therefore, requires further research. Furthermore,
polysulfides are shown to inhibit the activity of PTEN by in-
ducing the generation of a cysteine disulfide bond [23]. The
development and progression of glioblastoma are intimately
related to abnormal PTEN expression [251], as dysregulated
PTEN may participate in glioma initiation, progression, and
treatment resistance [252, 253]. On these grounds, the pro-
tein  S-Persulfidation  by  polysulfides  may  be  an  attractive
therapeutic avenue for the prevention of brain gliomas. Fur-
ther investigations are needed to verify this assumption.

CONCLUSION AND FUTURE PERSPECTIVES
Over  the  last  decade,  an  important  post-translational

modification induced by H2S and polysulfides, named S-Per-
sulfidation, has been well accepted. S-Persulfidation is a nov-
el redox pathway to exhibit diverse biological processes in
H2S/polysulfides  signaling.  There  is  no  doubt  that  the
studies  on  protein  S-Persulfidation  are  increasingly  pro-
posed as the future research direction in the field of gaso-
transmitters  for  the coming years.  However,  there are still
several  issues  to  be  resolved.  (1)  The  production  and
metabolism pathways of polysulfides in the brain are largely
unknown. Solving this problem might provide novel insights
into the biochemistry of H2S and facilitate the therapeutic ap-

plication of H2S-derived compounds.  (2) In the process of
protein S-Persulfidation, both small-molecule based persul-
fides and protein persulfides are correspondingly generated,
and such species are highly reactive. The metabolic regula-
tion of these species is largely unknown. (3) It is interesting-
ly to know how brain cells differentially use H2S and poly-
sulfides at the appropriate time points. (4) More scientific ap-
proaches with higher specificity and sensitivity are urgently
required to detect protein S-Persulfidation. (5) More protein
cysteine sites of S-Persulfidation are necessary to be clari-
fied  in  the  CNS.  (6)  The  interactions  of  S-Persulfidation
with other post-translational modifications, such as S-nitrosy-
lation, deserve to be elucidated in neuropathy. (7) The clini-
cal  relevance of  S-Persulfidation in neurological  disorders
needs to be explored in detail.

It is anticipated that a comprehensive understanding of
protein S-Persulfidation will be helpful in identifying the un-
derlying mechanisms in which S-Persulfidation could bene-
fit various neurological disorders. Importantly, the S-Persul-
fidated proteins could serve as potential targets for the thera-
peutic intervention of neurological disorders, thus advancing
the  development  of  H2S/polysulfides-based  agents  in  the
near future.
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