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Abstract: β-carotene, a member of the carotenoid family, is a provitamin A, and can be converted
into vitamin A (retinol), which plays essential roles in the regulation of physiological functions in
animal bodies. Microalgae synthesize a variety of carotenoids including β-carotene and are a rich
source of natural β-carotene. This has attracted the attention of researchers in academia and the
biotech industry. Methods to enrich or purify β-carotene from microalgae have been investigated,
and experiments to understand the biological functions of microalgae products containing β-carotene
have been conducted. To better understand the use of microalgae to produce β-carotene and other
carotenoids, we have searched PubMed in August 2021 for the recent studies that are focused
on microalgae carotenoid content, the extraction methods to produce β-carotene from microalgae,
and the bioactivities of β-carotene from microalgae. Articles published in peer-reviewed scientific
journals were identified, screened, and summarized here. So far, various types and amounts of
carotenoids have been identified and extracted in different types of microalgae. Diverse methods
have been developed overtime to extract β-carotene efficiently and practically from microalgae for
mass production. It appears that methods have been developed to simplify the steps and extract
β-carotene directly and efficiently. Multiple studies have shown that extracts or whole organism
of microalgae containing β-carotene have activities to promote lifespan in lab animals and reduce
oxidative stress in culture cells, etc. Nevertheless, more studies are warranted to study the health
benefits and functional mechanisms of β-carotene in these microalgae extracts, which may benefit
human and animal health in the future.

Keywords: microalgae; β-carotene; carotenoids; vitamin A; extraction; bioactivities

1. Introduction

Microalgae are a large group of photosynthetic microorganisms including unicellular
prokaryotic and eukaryotic organisms [1]. They are widely distributed in land and sea, and
are rich sources of nutrients [2,3]. The size of microalgae ranges from 0.2 to 2 µm (picoplank-
ton) up to 100 µm or higher (filamentous forms) [4]. They are mainly autotrophic, but a few
microalgae are heterotrophic due to the degeneration of chloroplasts [5]. Microalgae per-
form photosynthesis to produce organic molecules and support their rapid growth. Their
short mitotic time allows them to be produced on a large scale for the extraction of bioactive
compounds, which have a lot of biological activities in functional food and nutraceuticals,
as summarized in an edited book [6]. Microalgae exist in diverse environmental conditions
and are rich sources of biomolecules such as proteins, fat, and carbohydrates. Microalgae
culture can be industrialized to produce compounds with commercial value [7,8]. As
microalgae synthesize lipids, carbohydrates, proteins, vitamins, and pigments, they are
a food source for plankton [9]. Microalgae are also considered a candidate to fix carbon
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dioxide for biofuel production, and to sequestrate nitrogen oxides and sulfur oxides for
sewage treatment and environmental protection [10]. Due to the immature technology and
high production cost, microalgae biofuel has not been industrialized [11]. On the other
hand, outbreaks of harmful or toxic microalgae can cause red tides and algal blooms in
eutrophication [12].

Recently, microalgae have attracted intensive research interests due to their com-
mercial potential [13]. The diverse bioproducts from microalgae can be widely used for
pharmaceuticals, nutraceuticals, food colorants, and animal feed. At present, microalgae
in the following phyla: Cyanophyta, Chlorophyta, Chrysophyta, and Erythrophyta have been
cultivated or produced in large quantities. The common microalgae with economic values
include Haematococcuspluvialis, chlorella, and spirulina [14,15]. Compared with the higher
plants, microalgae present a series of advantages such as faster growth, higher yield, and
shorter cultivation time. Therefore, they are widely used in the industrial production of
bioactive compounds [16]. It has been estimated that more than 200 bioactive compounds
can be extracted from cyanobacteria, and thousands from eukaryotic microalgae [16].
For example, marine organisms accumulate vitamin D through the consumption of (mi-
cro)algae [17]. In addition, Spirulina is also called a “superfood” because of its contents
of vitamins (E, K, B1, B2, B3, B6, and B12), proteins (phycocyanin, allophycocyanin, and
phycoerythrin) and other bioactive compounds (γ-linolenic acid, palmitic acid, calcium,
selenium, zinc, etc.) [18,19].

Microalgae are one source of carotenoids. Spirulina, Chlorella, Dunaliella, and Haema-
tococcus can produce fucoxanthin, violaxanthin, neoxanthin, α-carotene, β-carotene, and
lutein in large quantities, which are considered provitamin A [20]. β-carotene, a ubiquitous
pigment concerned with the photosynthetic process in microalgae, has shown a variety
of bioactivities [21]. It is the most abundant dietary provitamin A that can be converted
into vitamin A (VA, retinol), which is a micronutrient for human health [22]. The raw
extract and pure compound of β-carotene from microalgae have been studied and shown
to have biological activities such as hepatotoprotection, anti-obesity, anti-inflammation,
immunomodulation, and anti-cancer [23–26]. For example, supplementations of β-carotene
extracts from Spirulina and Dunaliella have been shown to reduce the activity of transami-
nases in CCl4-induced hepatic-damaged Wistar rats [27]. Spirulina is rich in carotenoids,
and the supplementation of Spirulina biomass raises the antioxidant enzymes in the serum
and liver of Wistar rats, showing its antioxidant activity [28].

To date, various methods such as solvent extraction and supercritical fluid extraction
have been developed to extract carotenoids from microalgae for mass production [29].
Despite previous concerns such as efficiency, high solvent-consumption, and long treatment
times [30], methods have been evolved to solve these problems. For example, these
methods have been used to extract carotenoids from vegetables [31]. It was estimated
that about 50% of total β-carotene in Scenedesmus almeriensis can be extracted using a
supercritical carbon dioxide extraction method [32]. The aim of this review is to summarize
β-carotene, its extraction methods, its health value, and the presence of other types of
carotenoids in different microalgae sources. In addition, we wanted to evaluate the studies
that investigated bioactivities of β-carotene obtained from microalgae. Therefore, we
searched the PubMed database in August 2021, retrieved relevant peer-reviewed articles
that discussed the extraction methods of β-carotene, and evaluated the bioactivities of
extracts containing β-carotene and other carotenoids from microalgae in cell and animal
models. We hope to identify gaps for the future use of β-carotene and other carotenoids in
the promotion of human health.

2. Vitamin A (VA) and β-Carotene
2.1. VA and Its Metabolism

VA (retinol) is essential for the general health of humans [33]. Molecules with VA
activities include preformed VA and provitamin A. Preformed VA in the forms of retinyl
esters (REs) and retinol can be found in foods from animal products [22]. Liver and fish oil
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have the highest concentration of preformed VA provitamin A carotenoids, mainly from
plants and microalgae [33]. The most important provitamin A carotenoid is β-carotene,
which is present abundantly in carrots and yellow and green leafy vegetables [33]. Other
provitamin A carotenoids include α-carotene and β-cryptoxanthin. Carotenoids are also
solubilized into micelles in the intestinal lumen from which they are absorbed into duodenal
mucosal cells [22]. Carotenoids (such as β-carotene) after absorption can be converted into
retinal within the enterocytes or absorbed and transported to hepatocytes for cleavage into
retinal (retinaldehyde), which can be reduced into retinol [34].

In the small intestine lumen, dietary REs are hydrolyzed into free retinol and fatty
acids by the intraluminal retinol ester hydrolases [34] and nonspecific pancreatic enzymes
such as pancreatic triglyceride lipase and cholesterol ester hydrolase. Retinol and fatty
acids are absorbed into enterocytes [35], where they are esterified mainly by lecithin:retinol
acyltransferase to form REs and packed into chylomicrons. REs and carotenoids in chy-
lomicrons can be taken up directly by peripheral tissues [22]. The remaining REs and
carotenoids in chylomicron remnants are taken by the liver [22].

The plasma retinol concentration is under homeostatic control, which reflects the
dietary VA intake and hepatic VA reserve [36]. To meet the tissue needs for VA, retinol
released from the liver binds to retinol binding protein 4 (RBP4), which is synthesized in
hepatocytes and responsible for VA transport in the body [22]. Retinol binds to RBP4 in
the blood, and cellular retinol binding proteins in cells [37,38]. Retinol can be oxidized
by retinol dehydrogenase to retinal (retinaldehyde), which can be reduced by alcohol
dehydrogenases/retinol dehydrogenases to retinol again or oxidized by retinaldehyde
dehydrogenase into retinoic acid (RA). RA enters into the cell nucleus and regulates gene
expressions through activations of transcription factors such as RA receptors and retinoid
X receptors, which control cell morphogenesis, differentiation, proliferation, etc. [34]. Fur-
ther oxidization of RA mediated by Cyp26A1 and Cyp26B1 generates polar compounds
without the ability to activate transcription. Retinol can be esterified by lecithin:retinol
acyltransferase into REs for storage [39,40]. When the liver VA content rises, the excretion
of its metabolites in the bile increases. Other VA metabolites are excreted in the urine [22].
In addition, VA can act as an antioxidant to reduce free radicals [41].

In 2001, the American Institute of Medicine defined the Recommended Dietary Al-
lowance (RDA) of VA in micrograms (µg) of retinol activity equivalent (RAE) to illustrate
the different biological activities of retinol and provitamin A carotenoids. One µg of RAE is
equivalent to 1 µg of retinol, 2 µg of supplementary β-carotene, 12 µg of dietary β-carotene,
or 24 µg of dietary α-carotene or β-cryptoxanthin [33]. The RDAs are 900 µg RAE for
men, 700 µg RAE for women, and 770 µg RAE for pregnant women aged between 19 and
50 years old [33]. Adequate VA is defined as plasma retinol levels > 1.05 µmol/L. A retinol
level < 0.7 µmol/L is defined as VA deficiency.

2.2. β-Carotene

Carotenes are structurally different polyunsaturated hydrocarbons containing 40 car-
bons and synthesized by plants and microalgae. There are 1167 natural carotenoids, in
which 38~50 can be considered as provitamin A, including β-carotene, β-cryptoxanthin
and α-carotene, etc. [42]. The most abundant dietary provitamin A carotenoid is β-carotene,
which has eight isoprene units and two β-ionone-ring at both ends [43]. Figure 1 shows
the structures and some physicochemical properties of α-carotene (A), β-carotene (B),
β-carotene 5,6-epoxide (C), 9-cis-β-carotene (D), 9-cis-β-carotene (E), and 9-cis-β-carotene
(F), which can be identified in microalgae. Due to its absorbance of light, β-carotene is re-
sponsible for the color in the fungi, fruit, and vegetables such as red pepper and orange [44].
Dietary β-carotene is mainly absorbed in the duodenum portion of the small intestine, a
process that is probably mediated by the class B scavenger receptor [45].
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As β-carotene can be converted to retinol, its metabolism has been studied extensively.
The cleavage of β-carotene symmetrically or asymmetrically leads to the production of reti-
nal (retinaldehyde), which is reduced to retinol [46]. β-carotene cleavages primarily occur
in enterocytes and hepatocytes. In the presence of oxygen, β-carotene-15,15′-oxygenase
(BCO1) can symmetrically oxidize the 15,15′ double bond of β-carotene and generate two
molecules of retinal (retinaldehyde). The 9,10′ double bond of β-carotene is asymmetrically
cleaved by β-carotene 9′,10′-oxygenase 2 (BCO2), which generates a β-apo-10′-carotenal.
Other asymmetrical cleaves may also occur with or without enzyme catalysis and yield
β-apo-8′-carotenal or β-apo-14′-carotenal, but the enzymes involved in these reactions
remain unidentified [47,48]. Recent research suggested that the products of the asymmet-
ric cleavage can be further cleaved by β-carotene-15,15′-oxygenase, which results in the
production of retinal [39]. The mice with BOC1, BCO2, and BCO1/BCO2 knockout have
been compared. BOC1 knockout appears to disrupt the β-carotene homeostasis, and the
production of β-apo-10′ carotenol is BCO2-dependent. β-apo-10′ carotenol can be esterified
and transported as retinol [49].

3. Microalgae as a Source of Carotenoids and Other Bioactive Compounds
3.1. The Applications of Carotenoids and Other Components Extracted from Microalgae

Raw extracts and pure compounds from microalgae have been studied and shown
to have numerous applications and biological activities such as anti-obesity, anti-diabetes,
anti-inflammation, immunomodulation, and anti-cancer [24,25,50]. For example, supple-
mentation of Spirulina has been shown to reduce the body weight of overweight and obese
human subjects [51,52] and increase the lipoprotein lipase activity and insulin secretion
in hyperlipidemic rats [53]. Spirulina is rich in carotenoids, and the supplementation of
Spirulina biomass raises antioxidant enzymes in the serum and liver of Wistar rats, showing
its antioxidant activity [28].

Carotenoids have been considered as antioxidants, and they act to block the damages
initiated by reactive oxygen species and maintain the integrity of cell membrane and
organelles [54]. This has led people to believe thatβ-carotene and other carotenoids may help
to reduce the risk chronic diseases, such as diabetes, cancer, and cardiovascular diseases [54].

Carotenoids including α- and β-carotene and α-tocopherol are detected in the human
dermis and epidermis, as reviewed in [55]. The presence of carotenoids in the skin is
thought to protect damages caused by the photooxidative processes. Carotenoids and
other antioxidants can eliminate reactive oxygen species and absorb UV light, which can
be achieved through dietary supplements and tropical applications [55]. In addition to
β-carotene, other carotenoids can be extracted from microalgae. For example, astaxanthin
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can be extracted from microalga Haematococcus pluvialis. It has been shown that astaxanthin
can decrease the oxidative stress and reduce damage caused by oxidative metabolism
to skin and delay skin aging [56]. At the same time, Astaxanthin can also help repair
damaged skin [57] and accelerate wound healing in mice [58]. Therefore, β-carotene and
other antioxidants play important roles to maintain skin health.

Oxidized β-carotene copolymers may act as an antibacterial growth promoter to
enhance the feed intake and growth in broilers [59]. The oxidized β-carotene copolymers
at 2 ppm and higher supplemented in feeds improved feed conversion, average daily gain,
feed intake, and body weight in tested broilers [59].

Carotenoids extracted from microalgae can be used as a pigment duo to its orange or
red color. They are safer and healthier natural dyes than artificial dyes and are commonly
used in the food and cosmetic industries [60]. β-carotene has been commonly added to
soft drinks, cheese, and butter for coloring [61]. On the other hand, carotenoids such
as astaxanthin have been used as an additive in feed to enhance the color of salmon
flesh [61,62]. Canthaxanthin extracted from Chlorella zofingiensis is a natural dye and is
commonly used as a feed additive to intensify the skin color of fish, including salmonid
and crustacean [63].

Lutein is another carotenoid xanthophylls mainly extracted from Chlorella protothecoides.
Lutein can be used to protect eyes from damage caused by short-wavelength visible light
phototoxicity, thereby decreasing the risk of having cataract and age-related macular
degeneration [64]. Lutein can also be used as a feed additive to improve the color of poultry
egg yolks and feathers [65].

In addition to carotenoids, proteins and polyunsaturated fatty acids (PUFA) from
microalgae can also have health benefits. For example, phycocyanin, a water-soluble and
non-toxic protein isolated from Spirulina, can decrease the plasma levels of total choles-
terol, triglycerides, and malondialdehyde in diabetic mice [66]. Phycocyanin exhibits
anti-inflammatory activities through inhibiting cyclooxygenase-2 expression and cytokines
production in lipopolysaccharide-activated macrophages [67,68]. Furthermore, microalgae
are also one source ofω3 PUFAs, such as eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA). Spirulina and Chlorella are valuable sources of ω3-PUFAs [69]. To date, mi-
croalgae Cryptocodinium cohnii has been used to produce DHA-rich oil [70]. Microalgae
of the genus Nannochloropsis are already exploited in aquaculture for their high content
in PUFAs [70]. Studies have shown that PUFAs can reduce the incidence of cardiovascu-
lar disease [71].

3.2. Studies on the Carotenoid Content in Microalgae and Bioactivities

The carotenoids in microalgae include astaxanthin, β-carotene, canthaxanthin, zeax-
anthin, purple xanthin, lutein, fucoxanthin, etc. β-carotene and zeaxanthin are widely
distributed. High levels of β-carotene are present in Dunaliella salina [72,73]. The con-
tent of carotenoids in microalgae is high, which usually account for 0.1–0.2% of the total
dry matter of microalgae [74]. Dunaliella salina produces up to 13% of its biomass as
β-carotene. The content of astaxanthin was up to 7% of the biomass in Haematococcus
pluvialis, and nearly 5% of the biomass in Coalstrella striolata [14]. Table 1 shows the contents
of α-carotene, β-carotene, β-carotene 5,6-epoxide, 9-cis-β-carotene, 13-cis-β-carotene, and
15-cis-β-carotene that are identified in some microalgae. All the studies used high-performance
liquid chromatography (HPLC) to analyze the presence of the indicated α-carotene,
β-carotene, and its derivative or isomers. Some of them used mass spectrometry to further
identify them [42,75–77].
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Table 1. Contents of α-carotene, β-carotene, β-carotene-5,6-epoxide, 9 or 13 or 15 -cis-β-carotene, and total carotenoids in different microalgae sources.

Strains Units/Analysis α-Carotene β-Carotene β-Carotene-5,6-epoxide 9, 13 or 15-cis-β-carotene Total Ref.

Chlorella sorokiniana µg/g DW/HPLC-PDA-MS
for analysis

71 156 42 (9-cis) 1408
[75]Scenedesmus bijuga 41 166 13 54 (9-cis), 16 (13-cis) 1196

Chlorella zofingiensis
mg/g

DW/HPLC-APCI-MS/MS
for analysis

0.09 0.29

[76]
Selenastrum bibraianum 0.08 0.16

Desmodesmus denticulatus var. linearis 0.21 0.4
Coelastrum sphaericum 0.11

Mougeotia sp. 0.14

Scenedesmus µg/g DW/HPLC–PDA–
MS/MS for

analysis

42 778 21 124 (9-cis), 47 (13-cis) 2651
[42]Chlorella 352 49 40 (9-cis), 17 (13-cis) 1977

Aphanothece 368 62 46 (9-cis), 17 (13-cis) 1399

Nannochloropsis limnetica

mg/g DW/HPLC
chromatograms for

analysis

0.28 3.0

[78]

Mougeotia. salina 0.084 2.22 5.1
Nannochloropsis oceanica 0.1–1.7

Nannochloropsis sp. 0.67 8.6
Nannochloropsis oceanica 0.3–1.1
Nannochloropsis oculata 0.07–0.14

Mougeotia salina 2.22
Nannochloropsis limnetica 0.28

Nannochloropsis spp. 0.3

Porphiridium cruentum
mg/100 g DW/HPLC

chromatograms for
analysis

53 167

[79]
Isochrysis galbana 53 1760

Phaeodactylum tricornutum 34 1022
Tetraselmis suecica 42 43 297

Nannochloropsis gaditana 100 447

Dunaliella tertiolecta mg/g
DW/HPLC-APCI-MS/MS

for analysis

0.04 0.62 0.13 (9-cis), 0.06 (13-cis),
0.02 (15-cis) 3.4

[77]

Heterochlorella luteoviridis 0.47 0.50 0.13 (9-cis), 0.12(13-cis),
0.04 (15-cis) 3.47
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Table 1. Cont.

Strains Units/Analysis α-Carotene β-Carotene β-Carotene-5,6-epoxide 9, 13 or 15-cis-β-carotene Total Ref.

Eustigmatos magnus mg/g DW for total and %
of total carotenoids for

individuals/HPLC
chromatograms for

analysis

53 25

[80]

Eustigmatos polyphem 51 14
Eustigmatos vischeri 53 19
Vischeria helvetica 58 25
Vischeria punctata 57 33
Vischeria stellata 62 55

Chlorella pyrenoidosa
µg/g DW/HPLC

chromatograms for
analysis

2466 2155 580 (9-cis) [81]

Note: APCI, atmospheric pressure chemical ionization; DW, dry weight; HPLC, high-performance liquid chromatography; MS, mass spectrometry; PDA, photodiode array; Ref.,
references.
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The initial research on using microalgae as a potential commercial source of β-carotene
began in the 1960s [82]. Later on, microalgae have been considered as a commercial source
of glycerol [83]. So far, chemically synthesized carotenoids are the major products, which
are about 97–98% of the total market [84]. The synthetic β-carotene products contain only
all-trans isomer [85]. Molecules with β-carotene activities in microalgae are mixture of
all-trans (β-carotene in this manuscript) and cis isomers. The cis isomers have stronger
antioxidant capacities than the all-trans one. Table 1 summarizes the contents of α-carotene,
β-carotene, and its derivatives, β-carotene 5,6-epoxide, 9-cis-β-carotene, 9-cis-β-carotene,
and 9-cis-β-carotene in microalgae. Obtaining carotenoids from natural raw materials is
favored by more and more consumers. The production of natural carotenoids to increase
product values has become the new direction for researchers. Companies in Australia, Israel,
and the United States of America have started to produce β-carotene from microalgae [85].
In the 1980s, β-carotene extracted from microalgae and dried powders of microalgae rich in
β-carotene were marketed by companies in the United States of America and Australia [86].
The products have been used as coloring for natural foods and animal feeds, and natural
β-carotene supplementation [62]. In addition to α- and β-carotene, other carotenoids are
also detected in various microalgae, as shown in Table 2. HPLC is used to analyze the
presence of those carotenoids. Mass spectrometry is also used in some studies shown in
Table 2 [42,75–77]. As we can see, the contents of carotenoids such as lutein, zeaxanthin
and antheraxanthin are very high in certain microalgae sources. Although more than
40,000 microalgae species have been identified, only a few of them have been used in
commercial microalgae production for obtaining carotenoids and proteins, showing the
future potential expansion of the field [9].



Foods 2022, 11, 502 9 of 19

Table 2. Contents of carotenoids other than α- and β-carotene in different microalgae sources.

Strains Unit/Analysis Total Lutein Zea Anth Luth Vio Vau Fuco Ech Asx Neo Crx Ddx Dtx Ctx Ref.

Chlorella sorokiniana
µg/g DW/HPLC-PDA-MS for analysis 1408 909 45 54 131 [75]

Scenedesmus bijuga 1196 671 36 33 15 151

Chlorella zofingiensis

mg/g DW/HPLC-APCI-MS/MS for
analysis

0.49 5.7 0.11 0.18

[76]
Selenastrum bibraianum 1.73 0.41 1.34 0.03

Desmodesmus denticulatus var.
linearis 8.46 0.07

Coelastrum sphaericum 2.75 15 0.42 0.21
Mougeotia sp. 1.56 0.92 3.48 0.73

Scenedesmus
µg/g DW/HPLC–PDA–MS/MS for

analysis

2651 776 332 38 55 32 273 61 24 21 10
[42]Chlorella 1977 184 271 19 17 13 716 21 15 22 104

Aphanothece 1399 33 103 14 597 10 52

Nannochloropsis limnetica mg/g DW/HPLC chromatograms for
analysis

3.0 0.14 0.34 1.2 0.18 0.42 0.14 0.003
[78]Mougeotia salina 5.1 0.58 1.7 0.01 0.05 0.14 0.14

Nannochloropsis sp. 8.6 6.4

Porphiridium cruentum

mg/100 g DW/HPLC chromatograms
for analysis

167 107 6.5

[79]
Isochrysis galbana 1760 1643 40 25

Phaeodactylum tricornutum 1022 913 32 44
Tetraselmis suecica 297 85 82

Nannochloropsis gaditana 447 10 337

Heterochlorella luteoviridis mg/g DW/HPLC-APCI-MS/MS for
analysis 3.4 1.8 0.08 0.08 0.59

[77]
Dunaliella tertio-lecta 3.5 1.3 0.14 0.79

Eustigmatos magnus

mg/g DW for total and % of total
carotenoids for individuals/HPLC

chromatograms for analysis

25 2.6 1.9 2.1 15 12

[80]

Eustigmatos polyphem 14 3.2 2.2 4.9 2.5 13
Eustigmatos vischeri 2.5 1.9 2.6 3.5 10 14
Vischeria helvetica 25 1.2 2.3 4.2 12 11
Vischeria punctata 33 1.7 2.4 4.7 11 12
Vischeria stellata 55 1.6 1.8 3.6 13 7.6

Chlorella pyrenoidosa µg/g DW/HPLC chromatograms for
analysis 140376 2170 38 259 335 [81]

Note: Anth, antheraxanthin; APCI, atmospheric pressure chemical ionization; Asx, astaxanthin; Ctx, canthaxanthin; Crx, cryptoxanthin; Ddx, diadinoxanthin; Dtx, diatoxanthin; DW, dry
weight; Exh, echinenone; Fuco, fucoxanthin; HPLC, high-performance liquid chromatography; Luth, luteoxanthin; MS, mass spectrometry; Neo, neoxanthin; PDA, photodiode array;
Ref., references; Vau, vaucheriaxanthin; Vio, violaxanthin; Zea, zeaxanthin.
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4. Industrial Extraction of β-Carotene from Microalgae

The production of carotenoids from microalgae includes microalgae culture, harvest-
ing, extraction, and purification. To obtain carotenoids from microalgae, the following
steps are usually performed: collection, drying treatment, cell crushing, and extraction.
The disruption of the cell wall mechanically is followed by extraction using organic sol-
vents. Other methods include pressure solvent extraction, supercritical/subcritical fluid
extraction, in situ extraction, and two-phase extraction, as shown in Figure 1 [29,30]. People
have extensively studied the extraction methods to obtain carotenoids from microalgae and
have made some progresses. The yield of β-carotene relied on the total carotenoid mixture
obtained and removal of undesired materials.

Figure 2 summarizes the general process of β-carotene extraction from Dunaliella
salina. It starts by growing Dunaliella salina. The growth of Duncaliella salina generally
happens in facilities that are designed to operate in a closed circuit using seawater or fresh
water. The facility can recirculate the culture medium for 10–14 days. Alternatively, this
medium can be continuously collected on a daily basis [87]. After that, the biomass of
microalgae is harvested and immediately freeze-dried. The dried matters are disintegrated
to release the cellular content (steps 1 to 3). Various methods are applied to extract the
dried matter, which yield crude extracts containing total carotenoids (step 4), which include
β-carotene, canthaxanthin, astaxanthin, lutein, and others, as shown in Tables 1 and 2.
To obtain ingredients enriched in β-carotene or purified β-carotene, contaminants have
to be removed. Methods include filtration of the solubilized extract with acetone, direct
saponification of the extract with calcium hydroxide to remove chlorophyll, or membrane
filtration (steps 5) [88–91]. The conventional purification method widely used at present is
to enrich β-carotene by removing chlorophyll directly with calcium hydroxide via saponifi-
cation. Some scholars modified it by introducing calcium hydroxide saponification and
filtration steps before step 4 (solvent extraction), which saponifies microalgae mass for
2–6 h to remove chlorophyll in an inert gas and at 50–100 ◦C [29]. Subsequently, β-carotene
is extracted after the filtration of saponified residues using halogenated hydrocarbon sol-
vents (e.g., methylene chloride) or hydrophobic solvents (e.g., n-hexane or petroleum ether)
and recrystallized in methane chloride/methanol [92]. Using a two-phase bioreactor is a
good method recently developed to extract β-carotene from microalgae. It uses biocompati-
ble organic solvent to extract β-carotene specifically without damaging microalgae cells,
and to obtain relatively pure β-carotene, directly bypassing the steps that are set for the
collection of total carotenoids and saponification (steps 2, 3 and 5) [93–95]. A method with
advantages of high extraction rate, general, rapid, environmental protection, and low cost
is still yet to be developed.

The supercritical carbon dioxide extraction method has been used widely to extract
β-carotenes and carotenoids from microalgae such as Dunaliella salina [91,96], Chlorella
vulgaris [91], Scenedesmus almeriensis [32], Synechococcus sp. [97], Nannochloropsis sp. [98],
and Spirulina platensis [99]. The ratio of 9-cis-β-carotene and β-carotene (all-trans) is used
to predict the antioxidant activity of Dunaliella salina extracts [96]. This method has also
been used to obtain other compounds such as 25 aroma compounds from sugar cane [100],
alkadienes from Botryococcus braunii and γ-linolenic acid from Arthrospira maxima [91], lipids
from Nannochloropsis sp. [98]; flavonoids, VA, and α-tocopherol from Spirulina platensis [99];
and indolic derivative and PUFAs from Dunaliella salina [101]. We acknowledge that
this may not be a thorough list of supercritical carbon dioxide extraction methods as
we have been focused on the studies of biological activities of β-carotene extracted in
this manuscript.
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ogenesis, anti-cancer, and anti-inflammatory effects. Fucoxanthin has anti-angiogenesis, 
and heart-protection effects [102,103]. As humans cannot synthesize carotenoids, β-caro-
tene has to come from the diet [104]. β-carotene has been recognized by the FDA, the Eu-
ropean Community, Japan, the WHO, and other international organizations and experts 
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Figure 2. Flow chart of β-carotene extraction from Dunaliella salina. Microalgae are grown and
collected (step 1), dried (step 2), and disintegrated (step 3). Step 4 is to extract total carotenoids
using a variety of methods such as organic solvent extraction, pressurized solvent extraction, or
supercritical fluid extraction using the similar compatibility principle of organic solvents. The
supercritical fluid extraction method selectively recovers carotenoids by controlling the density of
supercritical CO2. Due to the high diffusion-coefficient and low viscosity of supercritical CO2, the
extraction time is shorter. Alternatively, in situ or aqueous two-phase extraction can be used to
enrich or purify β-carotenoids directly. In addition, saponification and filtration steps can happen
before solvent extraction. Step 5 is to remove the chlorophyll component using saponification with
calcium hydroxide. After the removal of insoluble matter via filtration, β-carotene is purified using
halogenated hydrocarbon solvents (e.g., methylene chloride) or hydrophobic solvents (e.g., n-hexane
or petroleum ether). Alternative, the total carotenoids are solubilized in pure acetone and filtered
through a 0.45 µm membrane. In situ extraction and two-phase extraction directly extract β-carotene
without collecting, drying, or breaking microalgae cells. In the stress condition, β-carotene can be
selectively extracted continuously by adding biocompatible organic phases to microalgae.

5. Studies of Bioactivities of β-Carotene in Microalgae

Carotenoids have a broad spectrum of biological activities. β-carotene has anti-
angiogenesis, anti-cancer, and anti-inflammatory effects. Fucoxanthin has anti-angiogenesis,
and heart-protection effects [102,103]. As humans cannot synthesize carotenoids, β-carotene
has to come from the diet [104]. β-carotene has been recognized by the FDA, the Euro-
pean Community, Japan, the WHO, and other international organizations and experts as a
precursor of VA, a food additive, and a nutritional supplement [105]. Naturally derived
β-carotene has high biological activity, which can be used in eye diseases, anti-oxidation,
anti-aging, cancer prevention, pigmentation in animals, and the enhancement of the animal
reproducibility and immune functions [102,106,107]. Streptozotocin-induced diabetic rats
have been treated with Dunaliella salina extract prepared through pressurized liquid extrac-
tion for up to 3 days [108]. The extract without the analysis of the presence of carotenoids
appeared to show beneficial effects but did not improve the glucose levels [108].

To summarize the bioactivity of β-carotene from microalgae, β-carotene and mi-
croalgae were used as keywords to search the PubMed database and retrieved relevant
literature in August 2021. We have limited our search to the studies that have described
the methods, analyzed the content for the presence of β-carotene, and tested the bio-
logical activities of the biomass, extracts, or purified product and attributed those ac-
tivities to β-carotene. The search resulted in 255 articles, which include 15 articles that
used cells and animals in the experiments. Two of them were irrelevant. The remaining
13 articles include 1 drosophila study [3], 8 rat studies [27,28,109–114], 1 cow study [115],
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2 human cell line studies [116,117], and 1 antibacterial activity study [118], as summarized in
Table 3. The organic solvent extraction is still the main extraction method that is used in
10 articles [27,28,109–111,113,114,116–118]. HPLC is used in majority of these studies (9/13)
to analyze the extract and determine the presence of β-carotene and other carotenoids
and bioactive compounds [3,27,109,111,114–118]. One article used supercritical carbon
dioxide extraction to obtain carotenoids, identified the presence of β-carotene isoforms, an-
alyzed their biological activities, and determined the underlying functional mechanism [3].
The presence of β-carotenes isoforms is attributed to the extract’s ability to extend the
drosophila lifespan [3]. Two articles directly used freeze-drying microalgae powder for
research [112,115]. It appears that all these studies only included total carotenoids from
microalgae, which the biological activities can be attributed to. Although the presence
of β-carotene in the extracts or microalgae mass was confirmed, the purified β-carotene
from microalgae has not been used and studied. Therefore, whether the biological activity
really can be attributed to β-carotene is still an open question. The synthetic β-carotene
is all-trans, which is considered less biologically active than the cis-β-carotenes [119–121].
The naturally extracted β-carotene contains both all-trans and cis isoforms, which have a
higher market prospect and value than the synthetic ones [122,123]. Clearly, future studies
using purified β-carotene from microalgae are anticipated and worth being investigated.

Table 3. Microalgae studies that included extraction methods, identified β-carotenes, and determined
their biological activities in cells or animal models at the same time.

Strains Materials/Analysis Isoforms Subjects Used Results Ref.

D. salina

Lyophilized biomass
and extracts using

supercritical CO2 and
pre-pared by red

light
treatment/HPLC

(UV-vis, 3D image)
chromatograms for

analysis

all-trans and
9-cis-β-carotene

Male and female
Drosophila

melanogaster Dahomey

Extract extends the
median lifespan,

which is attributed to
the improvement of

mitochondrial
functions by

9-cis-β-carotene

[3]

D. salina

Pressurized fluid
extraction and
hexane/HPLC

chromatograms for
analysis

β-carotene

Bacteria: P. syringae
pv. tomato

EPS3, B. subtilis ET-1,
P. carotovorum subsp.

carotovorum
DSM30168

Hexane extract
inhibits bacterial

growth, and re-duces
speck spot diseases

in tomato plants.

[118]

S. platensis and
D. salina

Hexane:isopropyl
alcohol (1:1 vol/vol)

extraction/HPLC
chromatograms for

analysis

β-carotene in
S. plantensis;

carotenoids and
xanthophyl in

D. salina

Male and female
Wistar rats

The extract of
D. Salina has better
hepato-protective

activity than that of
S. plantensis.

[27]

D. Salina

Hexane:ethyl acetate
(80:20)

extraction/HPLC
chromatograms and
GC/MS for analysis

β-carotene (15.2% of
the algal extract)

Adult male albino
Wistar rats

D. salina extract
protects against

TAA-induced hepatic
fibrosis in rats.

[109]

S. platensis
Spray-dried

mass/HPLC for
analysis

Diet with 5%
spray-dried

S. platensis that
contain β-carotene

Cows

Supplementation of
S. platensis leads to
higher β-carotene
content in the milk

than the control
group.

[115]
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Table 3. Cont.

Strains Materials/Analysis Isoforms Subjects Used Results Ref.

D. Salina

Hexane: ethyl acetate
(80:20)

extraction/Repeated
chromatographic

analysis

Carotenoids Male Wistar rats

Extracted carotenoids
protects age-induced
hepatic steatosis via

regulating redox
status, inflammation,

and apoptosis in
senescence rats.

[110]

D. Salina

n-Hexane: isopropyl
alcohol (1:1)

extraction/HPLC for
analysis

Carotenoids Wistar rats

Extracted carotenoids
have better

antioxidant activity
than synthetic

carotene in rat liver
homogenates.

[111]

D. Salina

Lyophilized
pellets/Absorption
spectroscopy at 443

and 475 nm to
confirm the presence
β-carotene isomers

9-cis- and
11-cis-β-carotene Male Wistar rats

9-cis-β-carotene in
algae pellets might

have anti-cancer
activity.

[112]

S. platensis,
H. pluvialis, and

B. braunii

Extracted with
acetone, chloroform,

methanol, and
petroleum ether
separately, and
pooled/MS for

detection

Carotenoids and
chlorophyll Male Wistar rats

The treated rats have
higher antioxidant

enzymes, and
activities in the blood

and liver than the
controls.

[28]

P. lutheri, P. palmata,
P. dioica and C. crispus

Extracted with
methanol:chloroform
1:1 (v/v), then water
added to collect the

organic phase/HPLC
chromatograms for

analysis

Extracts have 34–42%
total fatty acids as n-3

PUFA and 5–7% as
pigments, including

chlorophyll a,
β-carotene and

fucoxanthin.

Human THP-1
macrophage cells

Crude extracts inhibit
lipopolysaccharide-

induced
inflammatory

responses in human
THP-1 macrophage

cells.

[116]

S. platensis

Lyophilized algae
were extracted with
ethyl ether and then

methanol/Absorption
spectroscopy for

analysis

Extracts (per liter
solvent) have 96.3 mg

phenolic, 18 mg
tocopherol and

27.5 mg β-carotene.

Male Wistar rats

Extracts show
antioxidant activity

both in vitro and
in vivo.

[113]

B. braunii (LB 572)

Acetone
extract/HPLC

chromatograms for
analysis

The extract has
4.7–7.6 µg/mg

carotenoids and
11–12.7 µg/mg
polyphenols.

Male Wistar rats

The extract acts as
antioxidant to

reduces free radicals
and hydroxy radicals

and prevent lipid
peroxidation.

[114]

Characiopsis
aquilonaris,

Chlorobotrys gloeothece
and Chlorobotrys

regularis

Dichloromethane:
methanol (1:1, v/v)
extraction/HPLC

chromatograms for
analysis

Extracts (mg/g DW)
contain respectively
chlorophyll a (18.4,

7.3, 17.5), carotenoids
(2.3, 1.2, 1.4) and

phenolic acid (6.2, 3.2,
5.7)

Normal human
dermal fibroblasts

Extracts from these
microalgae show

antioxidant activities.
[117]

Note: B. braunii, Botryococcusbraunii; C. crispus, Chondrus crispus; DW, dried weight; D. salina, Dunaliella salina;
HPLC, high-performance liquid chromatography; GC, gas chromatography; H. pluvialis; Haematococcuspluvialis;
P. lutheri, Pavlova lutheri; MS, mass spectrometry; S. platensis, Spirulina platensis; TAA, thioacetamide.

In the cell and animal studies, extracts from microalgae extended the lifespan of
drosophila via improvement of mitochondrial functions [3], protected the liver functions
in rats via the regulation of inflammation and redox status [27,109,110], increased the
antioxidative activities in rats [28,111,113,114] and in human dermal fibroblast cells [117],
and raised the β-carotene content in cow’s milk [115]. In addition, extracts also being shown
to inhibit the growth of pathogenic bacteria on tomato [118]. Some of the studies reported
the presence of specific isoforms of β-carotene [3,112], β-carotene [27,110,113,115,116,118],
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or total carotenoids with or without other components such as PUFA or phenolic acid [27,
28,110,111,114,117]. The microalgae sources that β-carotene, total carotenoids, and biomass
are derived from are D. salina [3,27,109–112,118]; S. platensis [27,28,113,115]; H. pluvialis [28];
B. braunii [28,114]; P. lutheri, P. palmata, P. dioica, and C. crispus [116]; and Characiopsis
aquilonaris, Chlorobotrys gloeothece, and Chlorobotrys regularis [117].

6. Conclusions and Future Perspectives

As carotenoids have a variety of biological activities, β-carotene is widely used as a
bioactive compound in the biomedical field. Currently, β-carotene products on the market
are mainly synthetic ones, whereas products extracted from the natural sources only occupy
a small fraction. Given the fact that the cis-β-carotene isoforms extracted from natural
sources are more potent than the synthetic all-trans-β-carotene, we can anticipate that
microalgae will be used to extract and purify the naturally derived cis-β-carotenes on a
large scale in the future. To improve the extraction methods, some new technologies such
as supercritical carbon dioxide extraction have been developed. The supercritical carbon
dioxide extraction method has been used widely to extract carotenoids and other bioactive
compounds. It is only a matter of time before more extracts derived from the supercritical
carbon dioxide extraction methods will be used in other biological studies using animals or
cells in the future. Each extraction method is unique and has a different extraction efficiency.
They all have pros and cons. More practical and more effective extraction methods are
anticipated in the future.

The extracts of different microalgae sources contain significant amounts of other
carotenoids in addition to β-carotene. A variety of methods are applied to show that the
extracts contain β-carotene and have positive impacts on animals and cells. These beneficial
effects include antioxidant, anti-inflammation, antibacterial, promoting milk production,
and increases in lifespan. However, there appears to be a lack of studies using purified
β-carotenes to test their bioactivities in cells and animal models. Therefore, whether these
positive effects are due to β-carotene or a mixture of bioactive compounds including
β-carotene remains to be revealed. In addition, whether β-carotene should be used alone or
in combination with other carotenoids to maximize its bioactivities is another open question
waiting for answers. Finally, more cellular, animals, and clinical studies are also expected
to advance our understanding of the underlying mechanisms by which β-carotene exerts
beneficials effects on human and animal health. All these deserve to be explored in the
future. Nevertheless, β-carotene derived from microalgae will play an important role in
the process.
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