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Abstract The crystal structures of synthetic hexagonal and
orthorhombic Fe-cordierite polymorphs with the space groups
P6/mcc and Cccm were refined from single-crystal X-ray
diffraction data to R1, hex=3.14 % and R1, ortho=4.48 %. The
substitution of the larger Fe2+ for Mg leads to multiple struc-
tural changes and an increase of the unit cell volumes, with a , c
(hex)=9.8801(16) Å, 9.2852(5) Å and a , b , c (ortho)=
17.2306(2) Å, 9.8239(1) Å, 9.2892(1) Å in the end-members.
Furthermore Fe incorporation results in an increase of the
volumes of the octahedra, although the diameters of the octa-
hedra in direction of the c-axis decrease in both polymorphs.
X-ray powder diffraction analysis indicates a high degree of Al/
Si ordering in the orthorhombic polymorph, the Miyashiro
distortion index is ~0.24. Estimations of site occupancies based
on the determined tetrahedral volumes result in the following
values for hexagonal Fe-cordierite: ~73 %Al for T1 and ~28 %
Al for T2. For the first time Raman spectroscopy was
performed on the hexagonal Fe-cordierite polymorph. In the
hexagonal Fe-cordierite polymorph most Raman peaks are
shifted towards lower wavenumbers when compared with the
Mg-end-member.

Introduction

Cordieritewith the simplified formula (Mg, Fe)2Al4Si5O18*n(H2O,
CO2) is a framework silicate whose structure consists of
corner-sharing T2 tetrahedra forming six-membered rings
which are crosslinked by additional T1 tetrahedra. Crystal
structure and Al/Si-ordering of Mg-Fe-cordierites were inves-
tigated by various authors (e.g., Gibbs 1966; Langer and
Schreyer 1969; Meagher and Gibbs 1977; Cohen et al.
1977; Hochella et al. 1979; Putnis 1980; Wallace and Wenk
1980; Armbruster and Bloss 1981; Putnis and Bish 1983;
Gunter et al. 1984; Mirwald and Kirchner 1984; Armbruster
1985a, b; Putnis et al. 1985; Putnis et al. 1987; Malcherek
et al. 2001; Bertoldi et al. 2004 and references therein;
Balassone et al. 2004; Miletich et al. 2010). The tetrahedral
positions are occupied by Si and Al. Cordierite occurs in two
polymorphs which are distinguished by the Al/Si ordering.
Most of the natural cordierites adopt the structure of the
orthorhombic low-temperature polymorph with space group
symmetry Cccm and a fully ordered Al/Si distribution where
Al occupies the T11 and T26 positions and Si occupies the
T16, T21 and T23 tetrahedral sites (e.g., Cohen et al. 1977;
Meagher and Gibbs 1977; Hochella et al. 1979). The hexag-
onal high-temperature polymorph indialite (Miyashiro 1957)
with space group symmetry P6/mcc shows a disordered Al/Si
distribution and is isostructural with beryl (e.g., Meagher and
Gibbs 1977 and references therein). The T1 tetrahedra are
preferentially occupied by Al and the T2 tetrahedra by Si
(e.g., Meagher and Gibbs 1977; Putnis et al. 1985; Putnis
and Angel 1985;Winkler et al. 1991). Selected bond distances
and angles of the Mg-cordierite polymorphs are given in
Table 1. The information provided for hexagonal Mg-
cordierite is based on crystallographic data of Winkler et al.
(1991). The octahedral M-sites are mainly occupied by Mg
and Fe2+ and Mg-Fe mixing in orthorhombic cordierite is
assumed to be ideal (e.g., Boberski and Schreyer 1990). 90
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to 99 % of the total Fe2+ occupies the octahedral site
(Khomenko et al. 2001). The amount of Fe3+ in natural cordi-
erites is insignificant (Geiger et al. 2000). The stacked tetrahe-
dral rings form channels parallel to the crystallographic c-axis
which can incorporate molecules such as CO2 and H2O, and
also large cations such as Na+ or K+. Two channel sites (Ch0,
Ch¼) can be distinguished in the structure, according to the
general formula: (M)2(T11)2(T26)2(T23)2(T21)2(T16)O18(Ch0,
Ch1/4). Most natural cordierites show XFe (Fe/Fe + Mg +
Mn) <0.9. Under certain experimental conditions it was possi-
ble to synthesize pure Fe-cordierites (e.g., Gunter et al. 1984;
Boberski and Schreyer 1990; Kaindl et al. 2011). The incorpo-
ration of Fe2+ into the octahedral positions of orthorhombic
cordierite then leads to multiple structural changes when com-
pared with Mg-cordierite. The average M-O distance increases
which leads to an elongation of the crystallographic a and b-
axis. The average T11-O distances decrease slightly resulting in
a contraction of the c -axis (e.g., Wallace and Wenk 1980;
Armbruster 1985b; Boberski and Schreyer 1990; Malcherek
et al. 2001; Geiger and Grams 2003). All polyhedra in both
cordierite polymorphs are distorted. The polyhedral distor-
tion can be quantified with the quadratic elongation λ and
the angle variance σ2 (Robinson et al. 1971) and these
parameters are also given in Table 1. Several authors investi-
gated cordierite with spectroscopic methods focussing on
topics like polymorphism and Al/Si ordering (Langer and

Schreyer 1969; McMillan et al. 1984; Güttler et al. 1989;
Poon et al. 1990), volatile content (Armbruster and Bloss
1982; Vry et al. 1990; Kalt 2000; Kolesov and Geiger 2000;
Yakubovich et al. 2004; Bul’bak and Shvedenkov 2005;
Khomenko and Langer 2005; Kaindl et al. 2006; Kolesov
2006; Nasdala et al. 2006; Rigby et al. 2008; Weikusat et al.
2010), structural heterogeneity as well as energetic and struc-
tural changes under high pressure (Geiger and Grams 2003;
Likhacheva et al. 2011). Group theoretic analysis yields 36
Raman active vibrations for hexagonal Mg-cordierite and 87
for the orthorhombic end-member (e.g. McMillan et al. 1984;
Poon et al. 1990; Kaindl et al. 2011). Local structural hetero-
geneities and thermodynamic mixing properties in natural Fe-
Mg-cordierites have also been studied with IR spectroscopy
(Geiger and Grams 2003). The synthetic Fe-end-member has
been investigated with X-ray powder diffraction and IR spec-
troscopic methods (Gunter et al. 1984; Boberski and Schreyer
1990) but not using Raman spectroscopy so far. Quantum-
mechanical calculations of Raman spectra of ordered Mg- and
Fe-cordierites yielded a detailed peak assignment and a theo-
retical description of the effects of theMg-Fe exchange andAl/
Si ordering (Kaindl et al. 2011). The effect of Fe incorporation
on six selected Raman bands of synthetic hydrous orthorhom-
bic cordierite has been investigated by Haefeker et al. (2012).
The aim of this work is to provide detailed structural data for
both polymorphs of synthetic Fe-cordierite and for the first

Table 1 Structural data of both
polymorphs of Mg- and
Fe-cordierite

Data based on *Winkler et al.
(Winkler et al. 1991) and
**Haefeker et al. (2012)

Cordierite Mg-hexagonal* Mg-orthorhombic** Fe-hexagonal Fe-orthorhombic

Unit Cell (Å) a=9.7683

c=9.3408

a=17.0552(1)

b=9.7240(1)

c=9.3480(1)

a=9.8801(6)

c=9.2852(5)

a=17.2306(2)

b=9.8239(1)

c=9.2892(1)

Cell Volume (Å3) 772 1550.323(7) 784.95(8) 1572.40(3)

<M-O>(Å) 2.102 2.123 2.153(2) 2.157(6)

Octahedral Vol. (Å3) 11.739 12.011 12.400 12.411

λ, σ2 octahedra 1.037, 115.87 1.041, 129.66 1.048, 147.42 1.051, 155.41

<T1-O>, <T11-O>(Å) 1.721 1.754(2) 1.715(2) 1.746(7)

<T16-O>(Å) 1.624(2) 1.632(6)

<T2-O>, <T21-O>(Å) 1.648 1.609(3) 1.652(2) 1.601(8)

<T23-O>(Å) 1.603(3) 1.634(9)

<T26-O>(Å) 1.739(3) 1.736(8)

Vol. T1, Vol. T11 (Å3) 2.460 2.594 2.481 2.590

Vol. T16 (Å3) 2.122 2.179

Vol. T2, Vol. T21 (Å3) 2.293 2.132 2.308 2.100

Vol. T23 (Å3) 2.110 2.234

Vol. T26 (Å3) 2.688 2.671

λ, σ2: T1, T11 1.042, 156.55 1.045, 165.20 1.028, 109.40 1.036, 137.14

λ, σ2: T16 1.023, 90.35 1.016, 64.81

λ, σ2: T2, T21 1.001, 3.85 1.002, 7.92 1.001, 4.84 1.001, 5.95

λ, σ2: T23 1.001, 6.030 1.002, 6.52

λ, σ2: T26 1.002, 10.75 1.003, 14.16

470 U. Haefeker et al.



time Raman spectroscopic data for the hexagonal polymorph.
A thorough literature search showed that appropriate crystal-
lographic data of both polymorphs and Raman spectra of
synthetic hexagonal Fe-cordierite are not available in the liter-
ature yet. The investigations described in this contribution
include comprehensive structural refinements based on X-ray
single-crystal and powder diffraction, as well as descriptions of
single bands and peaks of hexagonal cordierite Raman spectra.
Amethod based on the comparison of tetrahedral volumes was
applied to obtain information about the Al/Si ordering in
hexagonal Fe-cordierite.

Experimental methods

Synthesis of Fe-cordierite

Disordered hexagonal and ordered orthorhombic Fe-
cordierites were synthesized from stoichiometric glass using
annealing and hydrothermal techniques. The detailed descrip-
tion can be found in Kaindl et al. (2011).

An oxide mixture with the stoichiometry Fe2.3Al4Si5O18

was molten in reducing atmosphere and then quenched in
distilled water. Apart from elementary iron, which could be
found as sparsely scattered small spheres, the glass was ho-
mogenous and showed the composition Fe2Al4Si5O18.
Tempering the glass at 900 °C for 21 h together with
graphite-powder in a sealed gold capsule lead to the crystalli-
zation of disordered hexagonal cordierite. A higher degree of
Si-Al-ordering in the orthorhombic end-product was achieved
by additional hydrothermal treatment for 2 weeks at 700 °C
and 2 kbar.

Raman spectroscopy

Raman spectroscopic investigations were performed using a
Labram HR-800 confocal Raman-spectrometer by HORIBA
under ambient conditions and in a LinkamTHMS 600 cooling
stage at −190 °C. A 100x objective with a numerical aperture
of 0.9 was used for the measurements under ambient condi-
tions and a 50x objective with a numerical aperture of 0.5 was
used in combination with the cooling stage. Unpolarized
spectra of randomly oriented hexagonal Fe-cordierite crystal
aggregates were recorded using the 532 nm excitation wave-
length of a 30mWNd-YAG laser as well as the 633 nm line of
a 17 mW He-Ne-laser. Small crystal sizes and/or twinning
hampered single-crystal measurements. The spectra were
recorded in the range of 100–1,250 cm−1. During all measure-
ments the confocal pinhole aperture was 1,000 μm and the
width of the entrance slit was 100 μm. A grating with 1,800
lines/mm was used to disperse the scattered Raman light and
an open-electrode charge-coupled device with 1,024×256
pixels, each with a size of 43 μm, was used for detection.

The spectral resolution of 1.4 cm−1 (green) and 0.9 cm−1 (red)
was determined by measuring the Rayleigh line. To obtain
high accuracy, the system was calibrated with emission lines
of a Ne spectral calibration lamp and the resulting deviation
was ±0.24 cm−1. The spectral software suite LabSPEC 5
(Horiba 2005) was used to fit the Raman spectra and the
line-segments baseline correction and convoluted Gauss-
Lorentz functions were used for peak fitting.

X-ray powder diffraction

A Bruker D8 Discover system with a Bragg-Brentano-
geometry was used for powder X-ray investigations of the
orthorhombic Fe-cordierite. The system was equipped with a
silicon-strip-detector and a primary beamQz(101)-monochro-
mator. The sample was scanned over a 2Θ range from 5° to
80.25° in steps of 0.009°. The Mg-cordierite sample was
investigated with a Stoe STADI-MP diffractometer system
in bisecting transmission geometry. The system was equipped
with a “Mythen” 1 k detector and an asymmetric primary
beam Ge(111)-monochromator. Data were collected in a 2Θ
range from 2 to 129.8° in steps of 0.009°. For LeBail fits and
Rietveld calculations the program FullProf.2 k (Rodriguez-
Carvajal 2011) was used.

Vestiges of hexagonal intermediates in the powder sample
significantly complicated Rietveld refinements of orthorhombic
Fe-cordierite data. LeBail fits (with Rp=1.94 %, Rwp=2.69 %,
χ2=3.24) yielded the lattice parameters given in Table 1 and
the distortion index (Miyashiro 1957) of Δ≈0.24. Rietveld
refinements of the orthorhombic Mg-cordierite data (with Rb

=3.47 %, R f=2.79 %, Rp=4.65 %, Rwp=6.10 %, χ 2=2.58)
yielded the structural information given in Table 1 with a
distortion index Δ≈0.24. The background was determined by
linear interpolation between a set of breakpoints with refineable
heights. Intensities within 10-times the full-width at half-
maximum of a peak were considered to contribute to the central
reflection. Thompson–Cox–Hastings pseudo-Voigt functions
were chosen for the simulation of the peak shape, including
an asymmetry correction following Finger et al. (1994).

Single-crystal X-ray diffraction

The disordered hexagonal and the ordered orthorhombic Fe-
cordierite samples were measured at ambient conditions with a
Stoe IPDS II single-crystal diffractometer using graphite
monochromatized Mo-Kα radiation. After integration, data
reduction included Lorentz and polarization corrections.
Furthermore, an analytical absorption correction based on a
description of the morphology by accurately indexed and mea-
sured external faces was applied. The structures were solved
using the program Superflip (Palatinus and Chapuis 2007) and
subsequently refined using Jana 2006 (Petricek et al. 2006).
Neutral atom scattering coefficients and anomalous dispersion
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corrections were taken from the International Tables for
Crystallography, Volume C (Wilson 1995). The parameters
for X-ray data collection and structure refinement are given in
Table 2. Orthorhombic Fe-cordierite shows pseudo-hexagonal
micro-scale twinning and twinnig in synthetic orthorhombic
Mg-cordierite has been described in literature (e.g., Putnis
1980; Armbruster 1985a; Blackburn and Salje 1999). The
refinement of the orthorhombic Fe-cordierite was performed
assuming three twin-domains, related to each other by a 60°
rotation around c . One of the three twin individuals dominates
the diffraction pattern with a volume fraction of 47 %. As a
result, the symmetry of the diffraction pattern is clearly reduced
to orthorhombic and up to the largest diffracting angle of 29.3°

(Θ), no obvious splitting of the reflections could be observed.
Using averaged reflection positions of the three pseudo-
hexagonal twin domains for refinement of the lattice parame-
ters forces the resulting cell to be of almost perfect hexagonal
metric (a =17.1538(11) b =9.8689(6)): arctan(a /b )=60.09°.
The corresponding angle is 60.31° if the cell parameters deter-
mined from powder data are used. Unless the reflections of the
twin-related domains can be resolved, ‘single-crystal lattice
parameters’ will underestimate the orthorhombic distortion of
the unit cell. As a consequence, we decided to use ‘powder
lattice parameters’ (see section X-ray powder diffraction) for
final geometry calculations. Residual electron density deter-
mined by difference Fourier-maps is related to H2O/Na

+ con-
tents in the channels. The VESTA 3 software (Momma and
Izumi 2011) was used to visualize crystal structures and struc-
tural details as bond length, angles, polyhedral volumes and
distortion parameters.

Electron microprobe analysis

A JEOL JXA 8100 SUPERPROBE at the Institute of
Mineralogy and Petrography at the University of Innsbruck
was used for chemical analysis of the synthesis products. The
Fe-cordierite single-crystal used for structural investigations was
embedded randomly oriented in an epoxy mount, ground and
finally polished using a 1 μm diamond suspension. Analytical
conditions for the wavelength dispersive measurements were
15 kV acceleration voltage, a beam current of 10 nA, and
counting times of 20 s for the peak and 10 s for the background.
Calibration was done using the following microprobe standards
(standardized element in parenthesis): jadeite (Na), corundum
(Al), almandine (Fe) and orthoclase (Si). The analysis yielded
the following composition (wt.-%, the numbers in parentheses
are 2σ standard deviations): FeO=21.12(30), SiO2=44.72(32),
Al2O3=31.06(26), Na2O=0.16(4), ∑ 97.06. The average min-
eral formula was then calculated on the anhydrous basis of 18
oxygens, to be Fe1.96Al4.064Si4.963O18, Na0.035. An exact quan-
tification of the channel-H2O is missing and the estimated
amount is 1.5–2wt.-%.

Results

Crystal structure and Raman spectra of Fe2+-cordierites

The atomic coordinates and equiv. displacement parameters of
hexagonal Fe-cordierite are presented in Table 3. Anisotropic
displacement parameters can be found in the attached cif-files
that have been deposited as Supplementary material.
Information about the unit cell (lattice parameters, volume)
and single polyhedra (average distances, volumes, distortion
parameters) is given in Table 1. Selected distances and angles

Table 2 Parameters from single-crystal X-ray data collection and struc-
ture refinement of Fe-cordierite

Crystal data for Hexagonal
Fe-cordierite

Orthorhombic
Fe-cordierite

Cell dimensions (Å) a =9.8801(6) a =17.2306(2)

b =9.8239(1)

c =9.2852(5) c=9.2892(1)

Cell volume (Å3) 784.95(8) 1572.40(3)

Space group P 6/mcc Cccm

Z 2 4

Chemical formula Fe2Al4Si5O18 Fe2Al4Si5O18

Diffractometer type STOE IPDS II STOE IPDS II

X-ray radiation Mo-K α (0.71073) Mo-K α (0.71073)

X-ray power (kV, mA) 50, 40 50, 40

Temperature (K) 298 298

Crystal size (mm) 0.2×0.12×0.06 0.18×0.12×0.08

Absorption correction
Integration

STOE X-RED32 1.31 STOE X-RED32 1.31

Transmission factorsT
min/T max

0.658/0.853 0.767/0.850

Time per frame (s) 60 60

Number of frames 180 360

Reflections collected 6698 7043

Max. θ (°) 29.07 29.31

Index range −12≤h ≤13 −23≤h ≤23
−12≤k ≤11 −13≤k ≤13
−12≤l ≤12 −12≤l ≤12

Unique reflections 384 1123

Reflections >3σ(I) 370 1052

Number of parameters 27 79

R int 0.035 0.057

GooF (S) 3.66 2.89

Weighting scheme w=1/σ2(F)+(0.01F)2 w=1/σ2(F)+(0.01F)2

R1 [F2>2σ(F2)] 0.0314 0.0448

wR(F2) 0.0457 0.0478

Δρmin (eÅ-3) −0.63 −0.8
Δρmax (eÅ−3) 0.77 1.67
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(T-O, M-O, O-O) are presented in Table 4. The crystal struc-
ture is shown in Fig. 1.

The Raman spectra of synthetic hexagonal Fe-cordierite at
ambient conditions and at −190 °C are shown in Figs. 2a-c
and the Raman band positions taken from Fig. 2a (532 nm) are
given in Table 5. The most intensive peak occurs at 568 cm−1.
Characteristic for the low-frequency region of the spectrum
are a low-intensity peak at 372 cm−1 and sharp low- to
medium-intensity peaks at 111 and 257 cm−1. The latter
overlaps with low-intensity peaks at 238, 272 and 297 cm−1.
A broad band system contains three low-intensity peaks at
437, 458 and 482 cm−1. The high-frequency region is
characterised by low-intensity peaks at 661 and 724 cm−1.
Two low-intensity band systems containing overlapping broad
peaks occur at 1) 908, 968, 1,019 and 1,051 cm−1 and 2) 1,
105, 1,139 and 1,177 cm−1. Variations of peak intensities in
Fig. 2a (532 nm) and Fig. 2b (633 nm) are the result of crystal
orientation.

The atomic coordinates and equivalent displacement pa-
rameters of orthorhombic Fe-cordierite are listed in Table 6.
Information about the unit cell (lattice parameters, volume) and
polyhedra (average distances, volumes, distortion parameters)

is given in Table 1. Selected distances and angles (T-O, M-O,
O-O) are summarized in Table 7. The crystal structure is shown
in Fig. 3.

Al, Si distribution

Calculations based on the comparison between the tetrahedral
volumes in ordered and disordered cordierites can be used to
estimate the Al/Si distribution in hexagonal cordierite. The
comparison of the five tetrahedral volumes of the fully-
ordered naturally occurring Mg-rich Whitewell-cordierite
(Cohen et al. 1977) and a highly ordered pure synthetic Mg-
cordierite (Kaindl et al. 2011; Haefeker et al. 2012) show only
small deviations of 0.8–2.2 %. Based upon site occupancies
and their position within the cordierite’s framework five indi-
vidual tetrahedral volumes in the ordered orthorhombic (T11,
T16, T21, T23, T26) and two in the disordered hexagonal
cordierites (T1,T2) can be distinguished. In orthorhombic Fe-
cordierite (Table 1), the volume of T16(Si) with 2.179 Å3

represents 0 % Al occupation and the volume of T11(Al) with
2.590 Å3 represents 100 % Al occupation, leading to the
following linear equation to estimate the Al/Si distribution in
the ‘mixed’ T1 tetrahedra:

Occ: −%Al ¼ 242:95 ⋅ VolT1 − 529:32:

In hexagonal Fe-cordierite the T1 volume of 2.481 Å3

(Table 1) is occupied by ~73 % Al. The equation for T2

Occ: −%Al ¼ 198:26 ⋅ VolT2 − 429:62

is based on the average orthorhombic T21(Si)/T23(Si) volume of
2.167 Å3 and the T26(Al) volume of 2.671 Å3. The T2-volume
of 2.308 Å3 in hexagonal Fe-cordierite (Table 1) corresponded
to an occupancy of ~28 % Al. Expressed in atoms per formula

Table 3 Fractional atomic coordinates and equivalent displacement pa-
rameters of hexagonal Fe-cordierite at RT

Atom x y z U(eq)

Fe 2/3 1/3 1/4 0.0164(3)

T1 1/2 1/2 1/4 0.0143(4)

T2 0.36842(12) 0.10347(11) 0 0.0155(4)

O1 0.4805(2) 0.1319(2) 0.14485(18) 0.0199(7)

O2 0.2277(4) −0.0782(3) 0 0.0295(12)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

Table 4 Selected bond-distances and angles of hexagonal Fe-cordierite

T, M-O distances (Å) O-O distances (Å) O-T-O angles (°)

T1-O1 1.714(2) [×4] O1-O1 2.819(3) [×2] 110.58(11)

O1-O1 2.581(3) [×2] 97.67(11)

O1-O1 2.985(3) [×2] 121.00(10)

Mean 2.795 109.75

T2-O1 1.674(2) [×2] O1-O2 2.704(3) [×2] 110.01(9)

T2-O2 1.631(2) [×1] O1-O2 2.678(3) [×2] 108.25(11)

T2-O2 1.627(4) [×1] O2-O2 2.720(5) [×1] 113.2(3)

O1-O1 2.690(3) [×1] 106.90(15)

Mean 1.652 Mean 2.696 109.44

Fe-O1 2.153(3) [×6] O1-O1 2.581(3) [×3] 73.66(9)

O1-O1 2.898(3) [×3] 84.58(8)

O1-O1 3.324(3) [×6] 101.05(9)

Mean 3.032 90.09

c

a

Fig. 1 The crystal structure of hexagonal Fe-cordierite at room temper-
ature shown along the b-axis. The Fe-bearing octahedra are shown in
dark blue, the Si/Al tetrahedra in chartreuse
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unit (a.p.f.u.) this amounts to 2.2 Al and 0.8 Si a.p.f.u. for T1

and 1.7 Al and 4.3 Si a.p.f.u. for T2 (∑ =3.9 Al and 5.1 Si).
For hexagonal Mg-cordierite (Table 1) the equations

Occ: −%Al ¼ 215:8 ⋅ VolT1 − 463:85

and

Occ: −%Al ¼ 179:9 ⋅ VolT2 − 380:56

were developed similarly thus yielding ~67 % Al in T1

and ~32 % Al in T2 tetrahedra, this amounts to 2.0 Al and
1.0 Si a.p.f.u. for T1 and 1.9 Al and 4.1 Si a.p.f.u. for T2

(∑=3.9 Al and 5.1 Si). Tetrahedral volumes were calculated
based on the structural data of a synthetic orthorhombic Mg-
cordierite from Haefeker et al. (2012) and data for hexagonal
Mg-cordierite of Winkler et al. (1991).

Discussion

Determination of the octahedral diameter in Mg-Cordierite

The diameter of the octahedra in direction of the c -axis can be
used as useful indicator to explain structural changes in cor-
dierite and has to be determined differently for both poly-
morphs. The octahedra of the hexagonal Mg-cordierite show
two parallel faces perpendicular to the c -axis with a face-
center-face distance of 1.982 Å. In the orthorhombic poly-
morph these octahedra faces are tilted and the face-center-face
distances have to be averaged to obtain comparable data. Both
octahedral faces are defined by three oxygen atoms with
different fractional z coordinates. Constructing (001) planes

R
am

an
 In

te
ns

ity

100 200 300 400 500 600 700 800 900 1000 1100 1200

Wavenumber / cm-1

c: -190°C, 633 nm

a: RT, 532 nm

b: RT, 633 nm

Fig. 2 (a–c) Raman spectra of
two randomly oriented hexagonal
Fe-cordierites. Sample 1 was
recorded with 532 nm under
ambient conditions (a) and
sample 2 was recorded with
633 nm under ambient conditions
(b) and at −190 °C (c)

Table 5 Raman peak positions of hexagonal Fe-cordierite

Low-freq. region (cm−1) High-freq. region (cm−1)

111 m 568 h

203 l 661 l

238 l 724 l

257 m 773 l

272 l 908 l

297 l 968 l

328 l 1019 l

372 l 1051 l

437 l 1105 l

458 l 1139 l

482 l 1177 l

l low, m medium, h high (Raman intensity)

Table 6 Fractional atomic coordinates and equivalent displacement pa-
rameters of orthorhombic Fe-cordierite at RT

Atom x y z U(eq)

Fe 0.16316(11) 1/2 1/4 0.0135(4)

T11 ( Al) 3/4 3/4 0.2497(5) 0.0119(9)

T16 (Si) 0 1/2 1/4 0.0130(13)

T21 (Si) 0.69041(18) 0.5781(3) 1/2 0.0123(8)

T23 (Si) 0.63450(19) 0.7350(3) 0 0.0111(8)

T26 (Al) 0.0488(2) 0.6934(3) 0 0.0107(8)

O11 0.7443(3) 0.6050(6) 0.3597(6) 0.0149(15)

O16 0.0611(3) 0.5866(5) 0.1518(6) 0.0130(14)

O13 0.6734(3) 0.8056(6) 0.1434(7) 0.0180(18)

O26 0.5423(5) 0.7476(7) 0 0.0146(19)

O21 0.6221(5) 0.6865(9) 0 0.024(3)

O23 0.6621(4) 0.5739(9) 0 0.017(2)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

474 U. Haefeker et al.



perpendicular to the c -axis, each passing through one of the
related oxygens, yields the three different OPlane-center-OPlane

distances of namely 2.049 Å, 2.047 Å and 1.872 Å. Their
average leads to an octahedral diameter in direction of the c -
axis of 1.989 Å. The octahedral diameters of Fe-cordierite are
discussed below.

Hexagonal Fe-cordierite

Fe2+ incorporation into synthetic hexagonal cordierite leads to
an elongation of the unit cell in a -direction and to a contrac-
tion in c -direction. In the Fe end-member the unit cell dimen-
sions of a =9.8801(6) Å and c =9.2852(5) Å result in a unit

cell volume of 784.95(8) Å3, which is ~1.7 % larger than the
cell volume of synthetic Mg-cordierite. The larger Fe atom in
the octahedrally coordinated M-sites leads to an increase of
the M-O distances to 2.153(3), resulting in a ~5.5 % volume
increase of the octahedra to 12.4 Å3. The T1-O distances
decrease slightly to 1.714(2) Å and the average T2-O distance
increases to 1.644(2) Å. The volumes of the T1 tetrahedra
decrease to 2.481 Å3 and the volumes of the T2 tetrahedra
increase to 2.308 Å3. The distortion parameters are given in
Table 1. The O-Fe-O angles in the octahedra scatter exten-
sively with values of 73.66(9)°, 84.58(8)° and 101.05(9)°.
This leads to distinct variations in the O-O distances and thus
the lengths of the edges of the octahedron. As shown in Fig. 4,

Table 7 Selected bond-distances and angles of orthorhombic Fe-
cordierite

T, M-O distances (Å) O-O distances (Å) O-T-O angles (°)

T11-O13 1.736(7)[×2] O11-O13 3.068(9)[×2] 122.9(3)

T11-O11 1.756(7)[×2] O13-O13 2.857(8) 110.7(3)

O13-O11 2.611(9)[×2] 96.8(3)

O11-O11 2.856(9) 108.8(3)

Mean 1.746(7) Mean 2.845(9) 109.82

T16-O16 1.632(6)[×4] O16-O16 2.495(8)[×2] 99.7(2)

O16-O16 2.786(8)[×2] 117.2(2)

O16-O16 2.707(8)[×2] 112.0(2)

Mean 2.663(8) 109.63

T21-O11 1.622(6)[×2] O23-O11 2.606(10)[×2] 109.43(19)

T21-O21 1.587(10) O23-O21 2.649(13) 114.0(4)

T21-O23 1.571(10) O21-O11 2.603(10)[×2] 108.37(17)

O11-O11 2.607(8) 106.9(3)

Mean 1.601(8) Mean 2.612(10) 109.4

T23-O13 1.645(7)[×2] O23-O26 2.678(12) 111.2(3)

T23-O26 1.593(10) O23-O13 2.645(10)[×2] 106.7(3)

T23-O23 1.653(10) O26-O13 2.684(10)[×2] 111.94(18)

O13-O13 2.664(10) 108.2(3)

Mean 1.634(9) Mean 2.667(10) 109.45

T26-O16 1.770(6)[×2] O21-O16 2.839(10)[×2] 108.5(2)

T26-O21 1.728(10) O21-O26 2.896(13) 116.68(18)

T26-O26 1.673(10) O26-O16 2.796(9)[×2] 108.5(3)

O16-O16 2.820(8) 105.60(19)

Mean 1.736(8) Mean 2.831(10) 109.38

M-O11 2.155(6)[×2] O11-O16 3.360(8)[×2] O-M-O angles (°)

M-O13 2.158(7)[×2] O16-O16 2.495(8) 70.70(18)

M-O16 2.156(6)[×2] O11-O11 2.900(9) 74.51(16)

Mean 2.157(6) O13-O11 2.611(9)[×2] 84.56(19)

O13-O11 3.265(9)[×2] 84.93(16)

O13-O16 2.913(8)[×2] 98.40(17)

O13-O16 3.372(8)[×2] 102.39(15)

Mean 3.036(8) 102.81(17)

a

c

Fig. 3 The crystal structure of orthorhombic Fe-cordierite at room tem-
perature shown along the b-axis. The Fe-bearing octahedra are shown in
dark blue, the Si-tetrahedra are shown in yellow, the Al-tetrahedra in
green

101.05°

6.96°

1.953 Å

c

2.581 Å

2.898 Åa

a

c

101.05°

3.324 Å

3.324 Å

84.58°

Fig. 4 Selected angles and distances in the distorted octahedron of
hexagonal Fe-cordierite. Two octahedral faces perpendicular to the c-axis
are coloured in light grey. The three angles between the octahedral axes
underneath are equal due to the hexagonal symmetry
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the octahedron shows two faces perpendicular to the c -axis
and angles of 101.05(8)° between the three octahedron’s axes.
The octahedral diameter along c is 1.953 Å and thus 0.029 Å
smaller when compared to the Mg polymorph. This is as-
sumed as the main reason for the contraction of the c lattice
parameter. The adjacent T2 tetrahedra show slightly increased
(0.0034 Å) O-O distances of 2.690(3) Å parallel to c .

The Raman spectrum of the hexagonal Fe-cordierite at
ambient conditions (Fig. 2a, b) shows peak shifts towards
lower wavenumbers as a consequence of Fe incorporation
when compared to hexagonal Mg-cordierite. Selected peak
positions of hexagonal Mg-cordierite from McMillan et al.
(1984) are given in parentheses below. In the Fe end-member
the peaks at 111 cm−1 (120 cm−1) and 661 cm−1 (672 cm−1)
show the highest down-shifts of 9 cm−1 and 11 cm−1 whereas
the peak at 372 cm−1 (373 cm−1) shows only a small shift of
1 cm−1. The peaks at 257 cm−1 (256 cm−1) and 568 cm−1

(567 cm−1) show a slightly opposite shift direction of 1 cm−1.
Structural similarities between the hexagonal and the ortho-
rhombic cordierite allow peak assignments on the basis of the
quantum-mechanical calculations of Kaindl et al. (2011). The
peak at 111 cm−1 is mainly the result of bending motions of
the T1 tetrahedra and the octahedra. Peaks between 230 and
257 cm−1 are mainly related to bending of tetrahedra and
octahedra. The peak at 372 cm−1 is related to the bending
vibrations of the octahedra and T2 tetrahedra. The region 400–
500 cm−1 is dominated by bending vibrations of the tetrahe-
dra. The intensive peak at 568 cm−1 is related to complex
tetrahedral and octahedral stretching vibrations and the peak at
661 cm−1 is a result of the T1-bending vibrations. Bands in the
range 900–1,200 cm−1 are due to stretching vibrations of the
tetrahedra.

Figures 2b and c show the 100–1,250 cm−1 region of the
spectrum of hexagonal Fe-cordierite measured at ambient con-
ditions and at −190 °C with 633 nm laser excitation. Peak
intensity deviations from Fig. 2a are the result of crystal orien-
tation. The lower the temperature the slightly sharper the peaks
become when compared to the spectrum measured at ambient
conditions (Fig. 2b, c). The FWHMs of the peak at 257 cm−1

decrease from 17 to 13, at 370 cm−1 from 14 to 10 and at
567 cm−1 from 25 to 21. On the other hand the peak positions
do not change significantly (<0.5 cm−1), indicating only a low
thermal contribution (e.g. Hochella et al. 1979; Haussühl et al.
2011). In Hochella et al. (1979) the temperature-dependent
expansion of the axes of orthorhombic cordierite with XFe=
0.83 is givenwith 0.12–0.16%when heated from 24 to 375 °C.
The expansion of hexagonal Mg-bearing cordierite (indialite)
in a and b is reported with <0.1 % at 200 °C but c decreases
slightly. Poon et al. (1990) described the existence of a weak
mode on the high-energy side of the 566 cm−1 peak in the
spectrum of disordered Mg-cordierite at 253 °C. This peak
could not be confirmed for the Fe-end-member in the low-
temperature measurement.

Orthorhombic Fe2+-cordierite

Synthetic ordered Fe-cordierite has an orthorhombic unit cell
with a =17.2306(2), b =9.8239(1) and c =9.2892(1) Å and the
volume increases as a consequence of Fe incorporation by
1.5 % to 1572.40(3) Å3 when compared with the Mg-end-
member. The octahedral volume and distortion increase
(Table 1), the O-M-O angles scatter extensively (Fig. 5,
Table 7) with values of 70.70(18)°, 74.51(16)°, 84.56(19)°,
84.93(16)°, 98.40(17)°, 102.39(15)°, 102.81(17)°. The volume
increase is related to an expansion in the a-b-plane only. A
detailed representation of the octahedron is shown in Fig. 5.
The average octahedral diameter in direction of the c-axis,
which commensurates with the average distance of the shaded
octahedral faces, is reduced to 1.948 Å (1.981 Å, 2.038 Å,
1.824 Å) and the corresponding angles show values of
102.39(15)°, 102.81(17)° and 98.40(17)°, which increase by
1–1.5° when compared to the Mg-end-member. The reduced
octahedral diameter is the main reason for the decrease of the c
lattice parameter as a function of Fe incorporation. Tetrahedral
edges in direction of the c-axis show a higher O-O-distance
variation as a consequence of the more distorted and tilted
octahedra. In T23 and T26 this distance increases to 2.664(10)
Å and 2.820(8) Å, in T21 it decreases to 2.607(8) Å thus
yielding an average of 2.697(8) Å.

Conclusions

The octahedral expansion as a function of Fe incorporation
occurs in both synthetic hexagonal as well as orthorhombic
cordierite only in the a-b -plane. The tetrahedral and octahedral

102.39°

7.09°

1.948 Å

c

9.4°

2.495 Å

2.900 Å

84.56°

a

b

c

98.40°

102.39°

102.81°

74.51°

1

1

1

1
1

O 3

O 3

O 1

O 1
O 6

O 61

Fig. 5 Selected angles and distances in the distorted octahedron of the
orthorhombic Fe-cordierite. Two octahedral faces approximately perpen-
dicular to the c-axis are coloured in light grey
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interplay results in a notable reduction of the octahedral diam-
eters parallel to c , leading to complex changes of polyhedral
distortions. The presented site occupancy determinations based
on tetrahedral volumes indicate that the T1 tetrahedra in hex-
agonal Fe-cordierite are significantly enriched in Al and the T2

tetrahedra contain more Si. Since the O-O distances of the T2-
tetrahedra parallel to c do not change significantly in the
hexagonal and decrease only slightly in the orthorhombic
polymorph, the overall reduction of the c axis of cordierite as
a function of Fe incorporation is mainly due to changes within
the octahedral layer.

From group theoretical analysis 36 Raman active vibra-
tional modes are expected for hexagonal Fe-cordierite of
which 21 can be experimentally observed. Although the
quantum-mechanical calculations of Kaindl et al. (2011) were
done for the orthorhombic polymorph, structural similarities
allow the assignment of the observed Raman bands in the
spectrum of the hexagonal polymorph to specific vibrational
modes involving tetrahedral and octahedral sites. Similar cal-
culations for the hexagonal polymorph are hampered by the
Al/Si disorder.
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