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Abstract
Background: The liver plays a major role in metabolism and performs a number of vital functions in the body. 
Therefore, the determination of hepatic metabolite dynamics and the analysis of the control of the respective 
biochemical pathways are of great pharmacological and medical importance. Extra- and intracellular time-series data 
from stimulus-response experiments are gaining in importance in the identification of in vivo metabolite dynamics, 
while dynamic network models are excellent tools for analyzing complex metabolic control patterns. This is the first 
study that has been undertaken on the data-driven identification of a dynamic liver central carbon metabolism model 
and its application in the analysis of the distribution of metabolic control in hepatoma cells.

Results: Dynamic metabolite data were collected from HepG2 cells after they had been deprived of extracellular 
glucose. The concentration of 25 extra- and intracellular intermediates was quantified using HPLC, LC-MS-MS, and GC-
MS. The in silico metabolite dynamics were in accordance with the experimental data. The central carbon metabolism 
of hepatomas was further analyzed with a particular focus on the control of metabolite concentrations and metabolic 
fluxes. It was observed that the enzyme glucose-6-phosphate dehydrogenase exerted substantial negative control 
over the glycolytic flux, whereas oxidative phosphorylation had a significant positive control. The control over the rate 
of NADPH consumption was found to be shared between the NADPH-demand itself (0.65) and the NADPH supply 
(0.38).

Conclusions: Based on time-series data, a dynamic central carbon metabolism model was developed for the 
investigation of new and complex metabolic control patterns in hepatoma cells. The control patterns found support 
the hypotheses that the glucose-6-phosphate dehydrogenase and the Warburg effect are promising targets for tumor 
treatment. The systems-oriented identification of metabolite dynamics is a first step towards the genome-based 
assessment of potential risks posed by nutrients and drugs.

Background
Dynamic network models of the hepatic metabolism
enable quantitative systems-level analyses of (i) detailed
metabolic control patterns, (ii) metabolic implications in
liver cancer, and (iii) metabolic processes such as detoxi-
fication. Moreover, systems-oriented analyses of the
dynamics and control of the central carbon metabolism
in the liver are an important step on the avenue towards
the personalized prognosis of drug actions and/or long-
term effects. This will eventually lead to a reduction in
potential side effects and healthcare costs as well as
enabling quick, rational decisions to be made in the
course of expensive drug discovery processes. However,

due to the limitations of wet and dry lab procedures [1,2],
model-based analyses of the liver metabolism have so far
mainly focused on the identification of metabolic fluxes
[3-7] and the coarse-grained quantification of the control
of metabolic sub-networks [8-11]. It is worth noting that
the analysis of metabolic control patterns using dynamic
network models enables a more detailed interpretation of
the hepatic control distribution than could be achieved
with top-down approaches. In the context of oxidative
phosphorylation and the dynamic interplay of catabolism
and anabolism, the cofactors NAD(H), NADP(H), ATP/
ADP/AMP need to be taken into account by mass bal-
ances when analyzing the systems-level effect of the
energy metabolism. However, for identifying network
models time-series of cofactor concentrations have until
now mainly been used in external approximation func-
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tions [12-14] rather than for predicting the effect of
cofactor concentrations on metabolic fluxes and interme-
diate concentrations.

Several metabolic functions and processes are con-
stantly and concurrently maintained in the liver, which is
a complex organ performing a plethora of vital functions
[15]. These functions include the biosynthesis of choles-
terol and bile acids, the bilirubin-, porphyrin-, and carbo-
hydrate metabolisms as well as the detoxification of
xenobiotics. The detoxification metabolism, i.e. the phase
I and phase II degradation of exo- and endogenous sub-
stances, is directly linked with the central carbon metab-
olism, as it relies on the adequate supply of precursors
such as NADPH and UDP-glucuronide. Moreover, glu-
cose homeostasis is another liver-specific task of major
pharmaceutical and medical importance, and should not
be analyzed without taking into account the central car-
bon metabolism [16]. Liver cells have an important role
in the metabolism of lipids. In the fed state, fatty acids are
actively synthesized, esterified, and secreted into the
bloodstream along with very-low-density lipoproteins
(VLDL). During starvation fatty acids are degraded and
ketone bodies are released [16]. The human hepatoma-
derived cell line HepG2 has retained several characteris-
tic liver-specific metabolic functions, and is therefore
regarded as an excellent means for examining the liver
metabolism [17-19]. Furthermore, HepG2 cells were
derived from a hepatoblastoma carcinoma, and therefore
facilitate the investigation of the effects of tumors on the
hepatic metabolism.

When building a dynamic model, the enzyme kinetics
can either be deduced from non-physiological in vitro
measurements or from intracellular metabolite time-
series data. Teusink et al. reconstructed a dynamic model
of yeast glycolysis based on in vitro kinetics; the authors
observed substantial differences between model-pre-
dicted and experimentally determined in vivo metabolite
levels [20]. Therefore, Chassagnole et al. and Nikerel et al.
advocate the use of in vivo metabolite time-series data for
the identification of intracellular enzyme kinetics [21,22].
This creates the need for sophisticated procedures for (i)
the quenching of the metabolism, (ii) the extraction of
intracellular metabolites, and (iii) the absolute quantifica-
tion of intermediate concentrations [23]. Hofmann et al.
succeeded in providing such procedures for quantifying
central carbon metabolites in HepG2 cells [6]. Luo et al.
used liquid-chromatography mass spectrometry to quan-
tify the intracellular metabolites in glycolysis, the pen-
tose-phosphate pathway, and the tricarboxylic cycle in
Escherichia coli [24]. Schaub and Reuss investigated the
in vivo dynamics of glycolytic intermediates in Escheri-
chia coli and showed the importance of growth rate-
dependent metabolome analysis [25]. So far, transient
metabolite data have mainly been used for deducing the

kinetic parameters in dynamic models of metabolic path-
ways in prokaryotes and yeast. Rizzi et al. reconstructed a
dynamic model of glycolysis and the tricarboxylic acid
cycle in Saccharomyces cerevisiae [12]. Enzyme kinetics
were modeled with mechanistic rate equations and the
kinetic parameters were identified in stimulus response
experiments [26]. Chassagnole et al. used mechanistic
rate equations and metabolite time-series data to build a
dynamic model of the central carbon metabolism in
Escherichia coli [21]. Kresnowati et al. exemplified the
parameterization of a dynamic model based on linlog
kinetics from artificial metabolite time-series data [27].
Magnus et al. applied linlog kinetics and intracellular
intermediate measurements to model metabolite dynam-
ics in the valine/leucine synthesis pathway in Corynebac-
terium glutamicum [13].

The analysis of metabolic control provides a mathemat-
ical framework for quantifying the responses of fluxes
and intermediate concentrations to changes in internal
and external parameters such as nutrient and drug con-
centrations at the systems level [28-31]. Control coeffi-
cients determine the amount of control exerted on a flux
or concentration at any step in a particular pathway. The
control of the central carbon metabolism in the liver has
been studied in cells isolated from fed rats using top-
down methods [8]. The reactions of the cell were grouped
into nine blocks that were linked to each other by five
intermediates. The control pattern observed quantified
how the sub-systems interacted with one another. Elastic-
ities were determined experimentally using the multiple
modulation approach. Subsequently, Ainscow and Brand
used the elasticities and control coefficients to evaluate
the mutual importance of internal regulatory pathways
[32]. In order to quantify the effect of a distinct block on
the steady state flux through another block, the flux con-
trol coefficients were divided into partial flux control
coefficients. Internal response coefficients were deter-
mined in order to assess the blocks that are most impor-
tant in counteracting an increase in intermediate. The
authors also investigated the effects of hormonal stimuli
on rat hepatocytes by comparing the fractional changes
in the fluxes and intermediate levels using the previously
determined kinetics [33]. Soboll et al. applied top-down
methods to analyze the control distribution in oxidative
phosphorylation, gluconeogenesis, ureagenesis, and ATP
turnover in isolated perfused rat liver [34]. The authors
observed different control patterns for the active and
inactive states. By titration with a specific phosphorylase
inhibitor (CP-91149), Aiston et al. found that the phos-
phorylase enzyme had substantial control over glycogen
synthesis in rat hepatocytes [35]. The authors concluded
that the phosphorylase enzyme is a promising target for
controlling hyperglycaemia in type-2 diabetes, both in
the absorptive and post-absorptive states. Groen et al.
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applied the double modulation method to determine the
elasticities and flux control coefficients of the enzymes
involved in the gluconeogenetic pathway in rat hepato-
cytes [36]. The largest flux control coefficient was found
for pyruvate carboxylase, regardless of whether glucagon
was administered or not. In order to determine flux con-
trol coefficients as a function of the extracellular glucose
level in rat hepatocytes, Meléndez-Hevia et al. set up a
model that comprised the first three glycolytic enzymes
[10]. At physiological glucose concentrations, glucoki-
nase exerted the greatest control over the glycolytic flux.
These results were similar to experimental observations
performed with rat liver homogenates. Sabate et al.
reconstructed from literature data a dynamic model of
the pentose-phosphate pathway in fasted rat hepatocytes
[37]. A sensitivity analysis revealed that the metabolic
fluxes were mainly regulated by the glucose-6-phosphate
dehydrogenase and transketolase enzymes.

The objective of this study is to provide systems-level
analyses of the dynamics and control of the central car-
bon metabolism in hepatoma cells. Transient extra- and
intracellular intermediate concentrations were experi-
mentally observed in HepG2 cells in a stimulus response
experiment. The experimental data were then used to
parameterize a dynamic network model of the hepatic
central carbon metabolism. The reaction kinetics were
approximated using canonical linlog kinetics. This
approach yields a good approximation quality while only
requiring the determination of comparatively few param-
eters [22,38,39]. Systems-level effects were deduced from
the analysis of metabolic control. In contrast to previous
analyses, the control patterns quantified the mutual influ-
ences of individual enzymes rather than describing how
the sub-systems interacted with each other. In other
words, using a dynamic network model allows for a more
detailed investigation of the underlying control princi-
ples. Internal regulatory pathways were further quanti-
fied by breaking up flux control coefficients into partial
flux control coefficients. Internal response coefficients
were investigated to assess system responses to changes
in intermediates.

Results and Discussion
In the present study, a stimulus response experiment was
performed with HepG2 cells. After growing HepG2 cells
on a glucose-containing medium, they were incubated
with fresh medium for two hours and then exposed to a
medium lacking glucose. Metabolite time-series data
were determined and used to parameterize a dynamic
network model of the central carbon metabolism. The
model takes into account 49 reactions (including 5 trans-
portation steps) that convert 45 balanced compounds (40
intracellular and 5 extracellular metabolites). The meta-
bolic network is depicted in figure 1 and the reaction sto-

ichiometry is listed in Table 1 (see also the model
reconstruction in a subsection of the Methods section).

The following paragraphs will focus on the concor-
dance of the model simulations with the experimental
data and on the application of the model for quantifying
and interpreting the distribution of metabolic control.

In Vivo and In Silico Metabolite Dynamics
A total of 25 metabolite time courses were experimentally
determined, of which 5 corresponded to extracellular
metabolites and 20 to intracellular metabolites. The
experimental data and the corresponding model simula-
tions are summarized in Figure 2. In vivo and in silico data
were normalized with respect to the estimated reference
values. It is worth noting that the perturbation triggered
significant changes in the metabolite levels, and these
changes provided important information about the
underlying network dynamics.

After exchanging the glucose-containing culture
medium with the glucose-free medium, the extracellular
glucose level dropped drastically. The remaining extracel-
lular glucose was consumed by the cells within a period of
120 min. The extracellular pyruvate and lactate levels also
dropped considerably because of the medium exchange,
but started to accumulate again. At the end of the experi-
ment, i.e. after 180 min, the pyruvate values were even
slightly higher than the estimated reference level. Lactate
did not reach 50% of its reference value, which was the
result of a decreasing lactate secretion rate. The initial
efflux rate was twenty times higher for lactate than for
pyruvate. This means that, in absolute terms, still more
lactate than pyruvate was produced during the experi-
ment. Extracellular alanine was consumed throughout
the experiment, while extracellular serine accumulated. It
is worth noting that besides the lack of glucose, the sys-
tem was also perturbed as a result of the changes occur-
ring in the extracellular pyruvate, lactate, alanine, and
serine levels.

In accordance with the extracellular glucose levels, the
intracellular glucose pool also decreased steeply. HepG2
cells have high GLUT2 transporter activities [40]. The
GLUT2 transporter, which has a large Km value, facilitates
the diffusion of glucose into or out of the cells [41]. It can
therefore be assumed that the steep decrease in the intra-
cellular glucose pool was the result of the diffusion of
intracellular glucose into the extracellular space. Consis-
tently, the model simulations showed that the flux of glu-
cose uptake was inversed immediately after the stimulus
occurred. The intracellular glucose concentration further
decreased and eventually converged to zero. All other
glycolytic metabolite levels except for phosphoenolpyru-
vate and pyruvate decreased sharply immediately after
the stimulus and continued to gradually decrease thereaf-
ter.
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In the first 10 min of the experiment, the model simula-
tions showed decreasing ribose-5-phosphate and ribu-
lose-5-phosphate levels, followed by an increase, and
then another decrease. Some discrepancy between the
initial experimental data points and the simulations was
observed for both metabolites, which could be an indica-
tion of a damped oscillation with rather high amplitude.

The first TCA cycle intermediate pools, i.e. citrate, cis-
aconitate, and isocitrate, exhibited oscillatory dynamics.
This was also found in the model simulations. It is inter-
esting to note that three pairs of conjugate-complex
eigenvalues were observed for the Jacobian matrix, which
suggests that the system is capable of damped oscilla-
tions. The model simulations showed a non-oscillating
decrease of fumarate and malate. There was some dis-

crepancy between the simulated time courses for fumar-
ate and malate and the experimentally observed
concentrations after 30 min. However, the corresponding
standard deviations were large.

The time courses of the experimentally determined
cofactors NAD, ATP, and NADP only deviated slightly
from their initial values. This means that despite the sub-
stantial changes in the metabolite levels in the central
carbon metabolism, the homeostatic regulatory machin-
ery of the hepatoma cells only allowed for small changes
among the highly linked cofactors: ATP decreased
slightly but remained at above 80% of its reference con-
centration, the NAD level increased only marginally,
NADP increased a little more, reaching 143% of its initial
value. In contrast to these observations, distinct cofactor

Figure 1 Metabolic network model. Extra- and intracellular metabolites: blue ellipses. Enzymatic reactions and transportation steps: red circles. Non-
balanced compounds: within gray, round-edged rectangles. Directions of arrows reflect the direction of the steady state fluxes. System boundary: 
dashed line. Extra- and intracellular space: white and gray. Some links were omitted for reasons of clarity (cf. Table 1 for the complete reaction stoichi-
ometry)
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Table 1: Reaction stoichiometry of the dynamic network model.

Sto

Reaction number Reaction name Substrates

r1 glucokinase GLCin + ATPin

r2 glucose-6-phosphate isomerase G6Pin

r3 phosphofructokinase F6Pin + ATPin

r4 fructose-bisphosphate aldolase F16Pin

r5 triose-phosphate isomerase DHAPin

r6 glyceraldehyde-3-phosphate dehydrogenase GAPin + Pnb + NADin

r7 phosphoglycerate kinase 13PGin + ADPin + Hnb

r8 phosphoglycerate mutase G3Pin

r9 pyruvate kinase PEPin + ADPin + Hnb

r10 glucose-6-phosphate dehydrogenase G6Pin + NADPin

r11 6-phosphogluconolactonase GL6Pin + H2Onb

r12 phosphogluconate dehydrogenase 6GPin + NADPin

r13 ribose-5-phosphate isomerase RIBU5Pin

r14 ribulose-phosphate 3-epimerase RIBU5Pin

r15 transketolase RIBO5Pin + XYL5Pin

r16 transketolase XYL5Pin + E4Pin

r17 phosphopyruvate hydratase G2Pin

r18 lactate dehydrogenase PYRin + NADHin + Hnb

r19 adenosinetriphosphatase ATPin + H2Onb

r20 alanine transaminase ALAin + AKGin

r21 phosphoglucomutase G6Pin

r22 nadph consumption NADPHin + Anb

r23 glycogen synthesis UTPnb + G1Pin

r24 transaldolase S7Pin + GAPin

r25 adenylate kinase ATPin + AMPin

r26 glycerol synthesis DHAPin

r27 nucleotide synthesis RIBO5Pin + ATPin

r28 serine synthesis G3Pin + NADin + GLUin + H2Onb
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r29 citrate synthase OACin + ACCOAin + H2Onb

r30 aconitate hydratase CITin

r31 aconitate hydratase CISACin + H2Onb

r32 isocitrate dehydrogenase ISOCITin + NADin

r33 succinate-CoA ligase SUCCOAin + Pnb + ADPin

r34 fumarate hydratase FUMin + H2Onb

r35 malate dehydrogenase MALin + NADin

r36 pyruvate dehydrogenase complex PYRin + NADin + COAnb

r37 alpha-ketoglutarate dehydrogenase complex AKGin + NADin + COAnb

r38 pyruvate synthesis PYRnb

r39 valine leucine isoleucine metabolism ISOVALMETnb

r40 succinate dehydrogenase SUCin + 0.6·NADin +0.2·O2nb

r41 oxidative phosphorylation NADHin + 0.5·O2nb + 3.5·Hnb + 2.5·ADPin + 2.5·Pn

r42 alpha-ketoglutarate synthesis AKGnb

r43 malic enzyme MALin + NADPin

r44 glutamate dehydrogenase GLUin + H2Onb + NADin

r45 lactate transport LACin

r46 pyruvate transport PYRin

r47 glucose transport GLCin

r48 alanine transport ALAex

r49 serine transport SERin

The subscripts 'ex', 'in', and 'nb' denote extracellular, intracellular, and non-balanced metabolites, respectively.
The Phosphoenolpyruvate carboxykinase enzyme was found to be inactive in the reference state [7], and, thus, it was not included in 

Table 1: Reaction stoichiometry of the dynamic network model. (Continued)
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dynamics have been observed in similar stimulus
response experiments in prokaryotes and yeast
[13,21,26].

The experimentally determined reference intermediate
levels are provided as supplementary data (cf. Additional
file 1).

Glycolysis Control
Metabolic control patterns are only valid for the physio-
logical condition and cell type used in a particular experi-
ment. For example, Soboll et al. reported significant
differences in the control patterns between metabolically

inactive and active states in isolated perfused rat liver
[34]. In the present study, the reference state of the
HepG2 cells was characterized by a sufficient supply of
substrates, including glucose [6,7]. Therefore, the hepa-
toma cells underwent glycolysis rather than gluconeogen-
esis.

The matrix of flux control coefficients is shown in Fig-
ure 3 and is also included in the supplementary data sec-
tion (cf. Additional file 2). The glucose-6-phosphate
dehydrogenase enzyme (r10) exerted a substantial nega-
tive control over the glycolytic enzymes (r1-r9, r17). The
ribose-5-phosphate isomerase (r13) and one transketo-

Figure 2 Extracellular and intracellular metabolite dynamics. The subscripts 'in' and 'ex' denote intracellular and extracellular metabolites, respec-
tively. The concentration values were normalized with respect to their reference values, i.e. the concentrations directly before the stimulus. The error 
bars indicate standard deviations of the experimental data. To perturb the central metabolism, the glucose-containing culture medium was ex-
changed with glucose-free medium. By consequence, the extracellular glucose level dropped, and this stimulated significant intracellular metabolite 
dynamics.
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lase (r15: ribose 5-phosphate + xylulose 5-phosphate =
glyceraldehyde 3-phosphate + sedoheptulose 7-phos-
phate) reaction also had a negative control over the glyco-
lytic flux. In contrast, the phosphogluconate
dehydrogenase (r12), the ribulose-phosphate 3-epim-
erase (r14), and the second transketolase reaction (r16:
xylulose 5-phosphate + erythrose 4-phosphate = glyceral-
dehyde 3-phosphate + fructose-6-phosphate) had a posi-
tive control over glycolysis. In each case, the effect on the
glucose-6-phosphate isomerase (r2) was far greater than
on any other glycolytic enzyme. The flux through this
enzyme depends on the concentration of substrate (glu-

cose-6-phosphate), product (fructose-6-phosphate), and
inhibitor (6-phosphogluconate). In other words, in order
to increase the flux through this enzyme, a perturbation
must either lead to an increase in the substrate concen-
tration, or to a decrease in its product and/or inhibitor
levels. The corresponding concentration control coeffi-
cients were determined in order to find out the effect that
was the most significant (cf. Figure 4; cf. Additional file
3). It is interesting to note that the glucose-6-phosphate
dehydrogenase (r10) exerted positive and negative con-
trol over the glucose-6-phosphate and fructose-6-phos-
phate levels. However, the enzyme also had positive

Figure 3 Flux control coefficients. The colors in row i and column j indicate the control that enzyme j exerts over the steady flux i. Warm and cold 
colors denote positive and negative control, respectively. The indices i and j correspond to the reaction numbers shown in Table 1 and Figure 1. The 
glucose-6-phosphate dehydrogenase (r10) was found to have significant negative control over all glycolytic fluxes, whereas oxidative phosphoryla-
tion (r41) exerted positive control (Warburg effect). Furthermore, it is interesting to note that only a few fluxes were found to be significantly stimulated 
by an increase in the corresponding enzyme level.
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Figure 4 Concentration control coefficients for glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), and 6-phosphogluconate (6PG). 
The reaction indices correspond to the reaction numbers shown in Table 1 and Figure 1.
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control over 6-phosphogluconate. Concentration control
coefficients provide a quantitative measure of the effects
glucose-6-phosphate dehydrogenase had on the relevant
substrate, product, and inhibitor levels. Partial flux con-
trol coefficients combine this information with the corre-
sponding elasticity value to quantify the fractions to
which individual changes in the concentrations of inter-
mediates contribute to the total flux control coefficient.

Table 2 shows the partial flux control coefficients over
the glucose-6-phosphate isomerase (r2). The partial flux
control coefficients confirmed that 6-phosphogluconate
was the key mediator of the negative control exerted by
glucose-6-phosphate dehydrogenase. Strong inhibitory
effects of 6-phosphogluconate on the glucose-6-phos-
phate isomerase rate have been reported for various tis-
sues and organisms [42-44]. The phosphogluconate
dehydrogenase (r12) and the ribulose-phosphate 3-epim-
erase (r14) enzymes exerted a negative control over glu-
cose-6-phosphate and 6-phosphogluconate as well as a
positive control over fructose-6-phosphate (cf. Figure 4).
For both enzymes, the partial flux control coefficients
over the flux through the glucose-6-phosphate isomerase
(r2), corresponding to the inhibitory 6-phosphoglucon-
ate, were found to outweigh the substrate and product
effects. In contrast, the second transketolase reaction
(r16: xylulose 5-phosphate + erythrose 4-phosphate =
glyceraldehyde 3-phosphate + fructose-6-phosphate),
which also had positive control over the glucose-6-phos-
phate isomerase flux, exerted a negative control over all
relevant intermediate levels (cf. Figure 4). In this case,
though, the impact of 6-phosphogluconate on the flux
control was found to play only a minor role. Previous top-
down approaches used to quantify the distribution of
metabolic control in hepatocytes did not take into
account the influences of the pentose-phosphate pathway
on the glycolytic flux [8,32,34,45]. Boren et al. recognized
the glucose-6-phosphate dehydrogenase (r10) as an inter-
esting target in tumor therapy [46]. They found a flux
control coefficient of 0.41 on tumor growth for the glu-
cose-6-phosphate dehydrogenase in mice bearing Ehrlich
ascites tumor cells. In addition, cancer cells have a large
number of mitochondrial DNA mutations, which possi-
bly results in a dysfunction of the mitochondrial respira-
tory chain [47]. Carew et al. found a correlation between
mitochondrial mutations and an increased generation of
reactive oxygen species (ROS) in human leukemia cells
[48]. These findings suggest that tumor cells have an ele-
vated demand for reduced NADPH due to the increased
scavenging of ROS via glutathione [16]. From the results
of the present study, it can further be concluded that the
negative control coefficients of glucose-6-phosphate
dehydrogenase over the glycolytic fluxes indicate that
hepatoma growth is more limited by NADPH than by
ATP supply. Moreover, the steady state split ratio

between glycolysis and the pentose-phosphate pathway
of 57% to 43% [7] provides further evidence for the cells'
requirements for reduction equivalents.

In accordance with the negative control over the glyco-
lytic fluxes, glucose-6-phosphate dehydrogenase (r10)
was found to have substantial negative control over the
formation of glycerol (r26).

Lactate dehydrogenase (r18) had a substantial positive
control over the glycolytic fluxes. Ainscow and Brand
reported positive control of lactate production on glycol-
ysis in primary hepatocytes isolated from fed rats [8]. The
control coefficient (0.12) was smaller than the values of
the individual glycolysis enzymes determined in this
study (0.43 - 0.8). However, hepatoma cells, like most
tumor cells, produce large amounts of lactate under aero-
bic conditions. Consequently, the lactate dehydrogenase
enzyme is likely to be closer to saturation in tumor cells
than in primary cells. An enzyme with a low elasticity
coefficient, i.e. an enzyme operating close to saturation,
hardly responds to changes in the levels of its substrate
and/or product molecules. Therefore, saturated enzymes
exhibit a larger flux control compared to unsaturated
enzymes [49].

The pyruvate dehydrogenase complex (r36) and the
pyruvate secretion step (r38) had a negative control over
the glycolytic flux. For pyruvate oxidation, Ainscow and
Brand also observed a negative control over glycolysis in
rat hepatocytes [8]. Increasing the flux through the pyru-
vate dehydrogenase complex led to an increased flux
through the TCA cycle, which, in turn, increased the
intracellular NADH/NAD ratio. Besides, the pyruvate
dehydrogenase complex exerted negative control over the
lactate dehydrogenase enzyme (-0.35), which leads to an
even higher NADH/NAD ratio. Pyruvate secretion had
negative control over both the lactate dehydrogenase (-
0.29) and the pyruvate dehydrogenase complex (-0.03).
Consequently, the negative control over glycolysis
exerted by the pyruvate dehydrogenase complex was
found to be more substantial than the negative control of
the pyruvate transportation step.

Ainscow and Brand observed a negative control for oxi-
dative phosphorylation over the glycolytic flux in primary
rat hepatocytes (flux control coefficient of -0.26) [8]. This
was attributed to the Pasteur effect, where the increased
activity of oxidative phosphorylation slows down glycoly-
sis. In an analysis of the partial flux control coefficients of
the glycolysis block, Ainscow and Brand found for iso-
lated rat hepatocytes that the Pasteur effect was mostly
due to an increase in ATP, which was opposed by a
decreasing NADH/NAD ratio [32]. However, in the case
of HepG2 cells, oxidative phosphorylation (r41) had a
substantial positive control of glycolysis, with control
coefficients ranging from 0.82 to 1.48. This suggests that
the respiration rate has a limiting effect on the growth of
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Table 2: Partial flux control coefficients for glucose-6-phosphate isomerase (r2)

Partial flux control coefficient through

Enzyme G6Pin F6Pin 6PGin Flux control coefficient

r1 5.64 -2.31 -3.18 0.15

r2 -0.61 -0.52 0.24 0.11

r3 -0.34 0.33 0.14 0.13

r4 -0.44 0.42 0.18 0.16

r5 -0.06 0.06 0.02 0.02

r6 -1.11 0.74 0.76 0.38

r7 -0.02 0.01 0.01 0.01

r8 -0.06 0.03 0.04 0.02

r9 0.00 0.00 0.00 0.00

r10 6.68 4.09 -12.40 -1.63

r11 0.30 0.19 -0.56 -0.07

r12 -3.12 -2.86 6.49 0.50

r13 0.19 -0.21 -0.05 -0.07

r14 -5.06 -2.90 8.98 1.02

r15 1.16 -1.20 -0.40 -0.44

r16 -1.91 1.62 0.97 0.69

r17 0.00 0.00 0.00 0.00

r18 -2.24 1.85 1.20 0.81

r19 -1.42 -0.03 1.12 -0.33

r20 0.02 -0.01 -0.02 -0.01

r21 0.00 0.00 0.00 0.00

r22 0.78 1.37 -2.69 -0.54

r23 -0.02 0.01 0.01 0.00

r24 0.10 -0.10 -0.03 -0.04

r25 -0.04 -0.01 0.06 0.01

r26 -0.01 0.00 0.00 0.00

r27 -0.05 0.00 0.06 0.01

r28 0.04 -0.02 -0.03 -0.01

r29 0.62 -0.39 -0.42 -0.20

r30 -0.08 0.09 0.02 0.03

r31 -0.14 0.17 0.03 0.06

r32 -0.08 0.10 0.02 0.04

r33 -0.02 0.06 -0.02 0.02

r34 -0.02 0.05 -0.02 0.02

r35 0.18 -0.11 -0.12 -0.06

r36 2.15 -1.36 -1.46 -0.67

r37 -0.01 0.01 0.00 0.00

r38 -0.10 0.05 0.08 0.03

r39 0.17 -0.32 0.05 -0.09
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hepatomas. This has also been proposed for prokaryotic
systems [50,51]. Furthermore, Lo et al. reported only low
respiration for rapidly growing, poorly differentiated
hepatic tumors, an effect which was ascribed to the loss
of mitochondria during dedifferentiation [52]. The afore-
mentioned increased mitochondrial DNA mutation rate
can also lead to a dysfunction of the mitochondrial respi-
ratory chain [47]. Warburg was the first to describe what
is today known as the Warburg effect or aerobic glycoly-
sis: In contrast to normal liver tissue, liver cancer cells
have an increased glycolytic flux in the presence of oxy-
gen [53]. The Warburg effect is often observed in tumor
tissue. In fact, the elevated glycolytic flux of malignant
cells is increasingly recognized as a promising target for
the treatment of cancer [54,55].

Control of the Pentose Phosphate Pathway
The control of the pentose-phosphate pathway (r10-r16,
r24) depends to a great extent on the demand for reduc-
tion equivalents (r22) and the glucose-6-phosphate dehy-
drogenase enzyme (r10). This means that flux control
coefficients of 0.63 and 0.41 of the individual fluxes in the
pentose-phosphate shunt were observed for NADPH
consumption (r22) and the glucose-6-phosphate dehy-
drogenase enzyme (r10), respectively. Kather et al. also
reported that the glucose-6-phosphate dehydrogenase
and the NADPH/NADP ratio control the pentose-phos-
phate pathway of isolated fat-cells [56]. Sabate et al.
described a kinetic pentose-phosphate pathway model
for fasted rat livers [37], which, however, does not take
into consideration NADPH consumption. The authors
concluded that the pentose-phosphate pathway fluxes
were mainly regulated by the glucose-6-phosphate dehy-
drogenase and transketolase reactions.

The predominant control of the pentose-phosphate
pathway by the glucose-6-phosphate dehydrogenase (r10)

and the demand for reduction equivalents (r22) is also
interesting with respect to the discussion of modular
structures in metabolic networks. Using dynamic model-
ing and experimental observations of in vivo metabolite
dynamics, Vaseghi et al. concluded that in Saccharomyces
cerevisiae the pentose-phosphate pathway acts as a func-
tional unit that is controlled by the demand for biosyn-
thesis and is modulated by the energy state of the cell
[57]. In accordance with the yeast enzyme, the flux
through the human glucose-6-phosphate dehydrogenase
is also modulated by the cellular ATP level [58]. In this
work, the elasticity value of the glucose-6-phosphate
dehydrogenase with respect to ATP was determined to -
0.7. Together with the observed control principles, this
suggests a similar dynamic regulation scheme in hepa-
toma cells.

Control of the Tricarboxylic Acid Cycle
Ainscow and Brand applied top-down methods to eluci-
date metabolic control patterns in isolated rat hepato-
cytes. They included only one common reaction block for
pyruvate transport, TCA cycle, and five-sixths of the
respiratory chain [8,32]. Thus, the approach used in the
present study allows a more detailed investigation of the
control patterns of the TCA cycle. The glucose-6-phos-
phate dehydrogenase (r10) exerted little positive and sub-
stantial negative control over the first (r29-r32) and last
(r33, r34, r40, r43) fluxes in the TCA cycle, respectively.
Partial flux control coefficients were calculated in order
to find out where these different effects stem from. The
results are listed in Table 3. As can be seen, the negative
control over the malic enzyme (r43) was due to an
increased NADPH level (-1.13) and a decreased NADP (-
0.63) level. These effects were partially compensated by
lower intracellular pyruvate (0.32) and increased malate
(0.45) levels. The increase in the malate concentration, in

r40 -0.03 0.09 -0.03 0.03

r41 -4.38 2.55 3.32 1.48

r42 0.37 -0.42 -0.10 -0.15

r43 -0.45 0.57 0.09 0.21

r44 0.09 -0.13 0.00 -0.04

r45 -0.05 0.04 0.03 0.02

r46 1.82 -0.94 -1.40 -0.53

r47 1.24 -0.51 -0.70 0.03

r48 0.12 -0.05 -0.11 -0.03

r49 0.18 -0.10 -0.14 -0.06

Partial flux control coefficients are only shown for metabolites that have an effect on the glucose-6-phosphate isomerase (r2), i.e. that have 
non-zero elasticities. The sum of the partial flux control coefficients over all intermediates equals the flux control coefficient. With regard to 
the control of an enzyme over its own flux, the flux control coefficient equals the sum of the partial flux control coefficients plus one.

Table 2: Partial flux control coefficients for glucose-6-phosphate isomerase (r2) (Continued)
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turn, was the key mediator of the negative control of the
glucose-6-phosphate dehydrogenase (r10) over the flux
through the fumarate hydratase (r34). A decreased flux
through this enzyme was accompanied by elevated
fumarate levels, which resulted in a substantial negative
flux control coefficient for the succinate dehydrogenase
(r40). Likewise, the flux through the succinate-CoA ligase
enzyme (r33) was negatively controlled by its product
succinate. To summarize, the positive and negative con-
trol over the NADPH and NADP levels of the glucose-6-
phosphate dehydrogenase (r10) enzyme led to a negative
control of the flux through the malic enzyme (r43). The
negative control of the adjacent TCA cycle fluxes was
mediated by elevated product levels. Consequently, the
consumption of reduction equivalents (r22) was expected
to lead to a complementary control pattern, and this was
indeed the case. Similarly, the lactate dehydrogenase
enzyme (r18) exerted a positive control over the final
fluxes of the TCA cycle. In contrast to the glucose-6-
phosphate dehydrogenase (r10) and the consumption of
reduction equivalents (r22), the lactate dehydrogenase
enzyme had a minor effect on the cellular NADPH/
NADP ratio. However, as expected, lactate dehydroge-
nase exerted a substantial negative control over the intra-
cellular pyruvate concentration. Figure 5 depicts the
concentration control coefficients for intracellular pyru-
vate. The negative control of lactate dehydrogenase (r22)
over the intracellular pyruvate level results in a strong
positive control over the malic enzyme flux (1.17; cf.
Table 3). The positive control was mediated through the
downstream reactions in the TCA cycle by decreasing the
product levels. The ATP-consuming reaction (r19) had a
positive control over the first fluxes in the TCA cycle (cit-
rate synthase, r29; aconitate hydratase, r30, r31; isocitrate
dehydrogenase, r32) as well as over the flux through the
pyruvate dehydrogenase (r36). The flux control coeffi-
cient for the pyruvate dehydrogenase flux of 0.29 (cf.
Additional file 2) was mainly due to increased NAD (0.2)
and pyruvate (0.14) levels and, to a lesser extent, a lower
NADH level (0.08). These effects were opposed by an
increased acetyl-CoA level (-0.13). The elevated intracel-
lular pyruvate level mediated a negative control over the
malic enzyme (-1.1). As for the pyruvate dehydrogenase
enzyme, the negative control of the malic enzyme was
accompanied by an increased malate level, which led to a
negative control of the flux through the fumarate
hydratase enzyme. A substantial positive control of the
complete TCA cycle was observed for the pyruvate dehy-
drogenase complex (r36). Using a top-down approach,
Ainscow and Brand observed in rat hepatocytes that the
pyruvate oxidation block had a positive control over itself
[8]. The oxidative phosphorylation reaction (r41) had the
highest positive control over the intracellular steady state
pyruvate level (cf. Figure 5).

Reaction r42 describes the exchange of alpha-ketoglu-
tarate with the biomass. In the dynamic network model,
the rate of r42 depends only on the level of its product
alpha-ketoglutarate. The corresponding elasticity coeffi-
cient was determined to -0.5. This means that changes in
the level of alpha-ketoglutarate are directly mirrored in
changes in the flux through the r42 reaction, and, thus,
r42 was found to be strongly influenced by several
enzymes.

Control of Lactate Dehydrogenase, NADPH Consumption, 
and Oxidative Phosphorylation
Figure 6 depicts the flux control coefficients for lactate
dehydrogenase (r18), NADPH consumption (r22), and
oxidative phosphorylation (r41). The glycolytic enzymes
had positive control over lactate production. However,
the effect was less significant compared to primary hepa-
tocytes that were isolated from fed rats [8]. The pentose-
phosphate pathway exerted a significant control over the
glycolytic flux and thus had substantial control over the
flux through the lactate dehydrogenase enzyme (r18).
The corresponding partial flux control coefficients are
listed in Table 4. Most of the control of the pentose phos-
phate pathway was mediated by its influence on the
NADH level. Changes in NAD and pyruvate concentra-
tions also contributed to the total flux control coefficient,
albeit to a lesser extent. Similarly to the control pattern
observed in rat hepatocytes [8], the pyruvate dehydroge-
nase complex (r36) exerted a negative control over the
lactate dehydrogenase flux. The same authors also
emphasized the importance of the pyruvate level with
regard to the lactate production rate [32]. Ainscow and
Brand found that lactate dehydrogenase (r18) had little
control over its own flux, as increased activity was
strongly counteracted by low pyruvate levels. The effect
exerted by decreasing pyruvate levels could also be
observed in hepatoma cells, but was less pronounced.
Therefore, the lactate dehydrogenase had more control
over its own flux. Furthermore, in contrast to the situa-
tion observed in primary hepatocytes, the oxidative
phosphorylation (r41) in hepatoma cells had substantial
positive control over the lactate production rate. This was
mainly due to its increasing effect on the pyruvate level
(0.95).

NADPH consumption (r22) was mainly controlled by
itself (0.65). However, it is important to note that it is not
only the demand of NADPH alone that affects the
NADPH consumption flux, but also the supply of
NADPH (0.38). This means that an increase in NADPH
production yields an increase in NADPH consumption,
i.e. a stimulation of biosynthetic reactions. Put differently,
the dependence of NADPH demand on NADPH supply
provides further evidence for the hypothesis that tumor
growth is limited by NADPH production.
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Numerous papers have dealt with the control of oxida-
tive phosphorylation in isolated rat liver cells [8,34,59].
The results found for hepatoma cells agree with those
previously found: Inhibition of oxygen consumption
resulting from an increased flux through glycolysis
(Crabtree effect) was low [8], the consumption of ATP
(r19) and the pyruvate dehydrogenase complex (r36) pos-
itively controlled oxidative phosphorylation [8,59] and
oxidative phosphorylation had a strong control over its
own flux [8,34].

Concentration Control over NADPH, NADH, ATP, and NAD
The steady state NADPH level was found to be very sen-
sitive to two reactions - the glucose-6-phosphate dehy-
drogenase (r10) and the consumption of reduction
equivalents (r22) (concentration control coefficients for
NADPH, NADH, ATP, and NAD are shown in Figure 7).
In both cases, the absolute values were above 1, i.e. 1.58
for r10 and -1.45 for r22. This means that the NADPH
level was equally controlled by supply and demand. In
addition, NADPH responded moderately to changes in
the glucokinase (r1; 0.32) and oxidative phosphorylation
(r41; -0.33) reactions. Apart from these, NADPH did not
react significantly to changes in the levels of other
enzymes.

With respect to glycolysis and the pentose-phosphate
pathway, the control distribution for ATP and NADH lev-
els were similar. However, the values were proportionally
lower for ATP, which was due to the stoichiometry, i.e. a
P/O ratio of 2.5 was assumed for NADH (cf. sub-section
model reconstruction). In both cases, the glycolytic
enzymes (r1-r9, r17) had a positive, albeit low, control
over the cofactors. As expected, the glucose-6-phosphate
dehydrogenase enzyme (r10) had a negative control over
both intermediates, i.e. control coefficients of -0.06 for
ATP and -0.27 for NADH, respectively. In contrast, the

r12 (phosphogluconate dehydrogenase), r14 (ribulose-
phosphate 3-epimerase), and r16 (transketolase: xylulose
5-phosphate + erythrose 4-phosphate = glyceraldehyde
3-phosphate + fructose-6-phosphate) enzymes in the
pentose-phosphate pathway had a positive control over
the NADH and ATP levels. A major characteristic of can-
cer cells, including the hepatoma cells analyzed in this
study, is the secretion of lactate under aerobic conditions
[53]. The aerobic production of lactate leads to an
increase in the amount of ATP produced per time unit at
the expense of a poorer yield coefficient. It was therefore
assumed, and confirmed, that the lactate dehydrogenase
enzyme had a positive control over the ATP level. The sit-
uation was different for NADH. On the one hand,
increasing the flux through the lactate dehydrogenase
enzyme decreases the NADH level by reducing pyruvate
to lactate. On the other hand, it allows for an increased
glycolytic flux, which leads to an increased level of
NADH. Under the physiological conditions investigated
in the present study, the latter effect was found to out-
weigh the former, which is the reason why a positive con-
trol coefficient was observed. ATP and NADH responded
substantially and negatively to changes in the ATP-con-
suming reaction (r19; ATP: -0.1 and NADH: -0.31). It is
not surprising that the control coefficients for the NAD
level were complementary to those for NADH. However,
the values were two orders of magnitude lower for NAD.
The lower values for NAD compared to NADH are due to
the normalization to the reference concentrations, which
are lower for NADH.

Partial Internal Response Coefficients
Partial internal response coefficients quantify system
responses to changes in the concentration of intermedi-
ates [32,60,61]. An asymptotically stable metabolic net-
work operating at steady state will counteract an increase
in one of its metabolites by either increasing the con-
sumption of that metabolite, decreasing the production
or by some combination thereof. In this context, partial
internal response coefficients allow for the assessment of
the relevance of individual reactions in counteracting a
perturbation in order to restore the steady state. The
internal response coefficients for the system under dis-
cussion are listed in Additional file 4. The cellular
responses to elevated pyruvate level were in line with pre-
vious findings in rat hepatocytes, i.e. elevated pyruvate
levels were mainly counteracted by an increased flux
through the lactate dehydrogenase enzyme (r18) [32].
However, the value of the coefficient was lower in hepa-
toma cells, i.e. -0.63 compared to -0.84 as determined for
rat hepatocytes. In HepG2 cells, a fraction of the addi-
tional pyruvate was secreted into the extracellular space
(-0.23), another fraction was consumed by the pyruvate
dehydrogenase complex (-0.1). In isolated rat hepato-

Figure 5 Concentration control coefficients for intracellular pyru-
vate. The reaction indices correspond to the reaction numbers shown 
in Table 1 and Figure 1.
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genase (r40), and the malic enzyme (r43)

r43

Flux 
control 
efficient

Partial flux control coefficient through Flux 
control 

coefficient

PYRin NADPin MALin NADPHin

-0.185 -0.060 -0.127 0.085 -0.227 -0.328

-0.002 -0.025 0.017 -0.013 0.030 0.009

-0.014 -0.032 0.011 -0.009 0.019 -0.010

-0.018 -0.040 0.014 -0.011 0.024 -0.013

-0.002 -0.005 0.002 -0.002 0.003 -0.002

-0.042 -0.093 0.031 -0.025 0.056 -0.032

-0.001 -0.001 0.000 0.000 0.001 0.000

-0.006 -0.021 0.002 0.004 0.003 -0.013

0.000 0.000 0.000 0.000 0.000 0.000

-0.425 0.315 -0.631 0.449 -1.131 -0.998

-0.019 0.014 -0.029 0.020 -0.051 -0.045

-0.065 -0.125 0.033 -0.028 0.060 -0.060

0.009 0.019 -0.006 0.005 -0.011 0.006

-0.127 -0.253 0.073 -0.060 0.131 -0.108

0.048 0.109 -0.037 0.030 -0.066 0.035

-0.075 -0.170 0.057 -0.046 0.102 -0.056

0.000 -0.001 0.000 0.000 0.000 0.000

0.446 1.168 0.052 -0.310 0.093 1.003

-0.182 -1.099 0.004 0.360 0.007 -0.729

-0.001 -0.002 0.000 -0.001 -0.001 -0.004

0.000 0.000 0.000 0.000 0.000 0.000

0.680 0.069 0.579 -0.398 1.037 1.287

0.000 -0.001 0.000 0.000 0.001 0.000

0.004 0.009 -0.003 0.003 -0.006 0.003

-0.002 -0.007 0.001 0.002 0.001 -0.004

0.000 -0.001 0.000 0.000 0.000 0.000

0.000 -0.002 0.001 -0.001 0.002 0.000

0.005 0.018 -0.001 -0.003 -0.002 0.011

0.144 0.230 -0.018 -0.083 -0.032 0.098

0.008 0.009 0.003 -0.011 0.005 0.005

0.014 0.016 0.005 -0.020 0.009 0.009
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Table 3: Partial flux control coefficients for succinate-CoA ligase (r33), fumarate hydratase (r34), succinate dehydro

r33 r34 r40

Partial flux control coefficient through Flux 
control 

coefficient

Partial flux control 
coefficient through

Flux 
control 

coefficient

Partial flux control coefficient through

co

Enzyme ATPin SUCin SUCCOAin ADPin MALin FUMin NADin SUCin FUMin NADHin

r1 -0.005 -0.196 0.018 -0.002 -0.185 -0.598 0.414 -0.185 0.000 0.126 -0.247 -0.063

r2 -0.003 0.003 -0.001 -0.001 -0.002 0.089 -0.091 -0.002 0.000 -0.002 0.055 -0.055

r3 -0.003 -0.009 0.000 -0.002 -0.014 0.061 -0.075 -0.014 0.000 0.006 0.045 -0.064

r4 -0.004 -0.012 0.000 -0.002 -0.018 0.077 -0.094 -0.018 0.000 0.008 0.056 -0.081

r5 -0.001 -0.002 0.000 0.000 -0.002 0.011 -0.013 -0.002 0.000 0.001 0.008 -0.011

r6 -0.009 -0.028 0.000 -0.005 -0.042 0.178 -0.220 -0.042 -0.001 0.018 0.132 -0.191

r7 0.000 0.000 0.000 0.000 -0.001 0.003 -0.003 -0.001 0.000 0.000 0.002 -0.003

r8 0.000 -0.006 0.001 0.000 -0.006 -0.026 0.020 -0.006 0.000 0.004 -0.012 0.002

r9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

r10 0.036 -0.544 0.064 0.019 -0.425 -3.145 2.720 -0.425 0.003 0.349 -1.624 0.847

r11 0.002 -0.025 0.003 0.001 -0.019 -0.143 0.123 -0.019 0.000 0.016 -0.074 0.038

r12 -0.012 -0.047 0.001 -0.006 -0.065 0.196 -0.261 -0.065 -0.001 0.030 0.156 -0.250

r13 0.002 0.006 0.000 0.001 0.009 -0.034 0.043 0.009 0.000 -0.004 -0.026 0.038

r14 -0.026 -0.090 0.002 -0.013 -0.127 0.422 -0.549 -0.127 -0.002 0.058 0.328 -0.510

r15 0.011 0.032 0.000 0.006 0.048 -0.209 0.257 0.048 0.001 -0.020 -0.153 0.221

r16 -0.017 -0.050 0.000 -0.009 -0.075 0.322 -0.398 -0.075 -0.001 0.032 0.238 -0.344

r17 0.000 0.000 0.000 0.000 0.000 -0.001 0.001 0.000 0.000 0.000 0.000 0.000

r18 -0.019 0.532 -0.058 -0.010 0.446 2.173 -1.728 0.446 -0.001 -0.342 1.031 -0.243

r19 0.061 -0.324 0.048 0.032 -0.182 -2.522 2.340 -0.182 0.004 0.208 -1.397 1.004

r20 0.000 0.000 -0.001 0.000 -0.001 0.004 -0.005 -0.001 0.000 0.000 0.003 -0.004

r21 0.000 0.000 0.000 0.000 0.000 -0.001 0.001 0.000 0.000 0.000 -0.001 0.001

r22 0.002 0.751 -0.074 0.001 0.680 2.787 -2.107 0.680 0.000 -0.482 1.258 -0.096

r23 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

r24 0.001 0.003 0.000 0.000 0.004 -0.018 0.022 0.004 0.000 -0.002 -0.013 0.019

r25 0.000 -0.002 0.000 0.000 -0.002 -0.012 0.010 -0.002 0.000 0.001 -0.006 0.003

r26 0.000 0.000 0.000 0.000 0.000 -0.002 0.002 0.000 0.000 0.000 -0.001 0.001

r27 0.000 0.000 0.000 0.000 0.000 0.007 -0.006 0.000 0.000 0.000 0.004 -0.003

r28 0.000 0.005 -0.001 0.000 0.005 0.023 -0.019 0.005 0.000 -0.003 0.011 -0.003

r29 0.004 0.146 -0.008 0.002 0.144 0.584 -0.440 0.144 0.000 -0.094 0.263 -0.024

r30 -0.001 0.010 -0.001 0.000 0.008 0.077 -0.069 0.008 0.000 -0.006 0.041 -0.027

r31 -0.002 0.018 -0.001 -0.001 0.014 0.141 -0.127 0.014 0.000 -0.011 0.076 -0.050



0.008 0.009 0.003 -0.012 0.005 0.005

0.068 0.014 0.000 0.108 -0.001 0.121

0.063 0.013 0.000 0.100 -0.001 0.112

0.041 0.066 -0.005 -0.024 -0.009 0.028

0.497 0.793 -0.061 -0.287 -0.109 0.337

0.002 0.001 0.000 0.000 0.000 0.002

-0.013 -0.049 0.003 0.010 0.005 -0.031

-0.027 -0.034 -0.007 0.051 -0.013 -0.003
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0.369 -0.030 0.006 -0.253 0.011 0.735
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-0.041 -0.013 -0.028 0.019 -0.050 -0.072

-0.005 -0.013 -0.003 -0.003 -0.005 -0.024

0.022 0.080 -0.005 -0.015 -0.010 0.050

lux control coefficient. For the control of an enzyme over its own flux, the flux 
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r32 -0.001 0.010 -0.001 -0.001 0.008 0.084 -0.075 0.008 0.000 -0.007 0.045 -0.030

r33 -0.001 -0.924 -0.007 0.000 0.068 -0.755 0.823 0.068 0.000 0.592 -0.492 -0.033

r34 -0.001 0.071 -0.007 0.000 0.063 -0.703 -0.234 0.063 0.000 -0.046 0.139 -0.030

r35 0.001 0.042 -0.002 0.001 0.041 0.168 -0.126 0.041 0.000 -0.027 0.075 -0.007

r36 0.013 0.503 -0.026 0.007 0.497 2.012 -1.515 0.497 0.000 -0.323 0.904 -0.084

r37 0.000 -0.013 0.015 0.000 0.002 -0.002 0.004 0.002 0.000 0.008 -0.002 -0.004

r38 -0.001 -0.014 0.002 0.000 -0.013 -0.070 0.057 -0.013 0.000 0.009 -0.034 0.012

r39 0.003 -0.061 0.030 0.002 -0.027 -0.360 0.334 -0.027 0.000 0.039 -0.199 0.133

r40 -0.001 0.119 -0.011 -0.001 0.106 -1.177 1.284 0.106 0.000 -0.076 -0.766 -0.051

r41 -0.040 -0.493 0.062 -0.021 -0.492 -2.273 1.782 -0.492 0.001 0.316 -1.064 0.255

r42 0.004 -0.032 0.022 0.002 -0.004 -0.235 0.231 -0.004 0.000 0.021 -0.138 0.112

r43 -0.006 0.421 -0.043 -0.003 0.369 1.774 -1.405 0.369 -0.001 -0.270 0.839 -0.199

r44 0.001 -0.051 0.011 0.001 -0.038 -0.239 0.201 -0.038 0.000 0.032 -0.120 0.049

r45 0.000 0.013 -0.001 0.000 0.011 0.053 -0.042 0.011 0.000 -0.008 0.025 -0.006

r46 0.009 0.260 -0.033 0.005 0.241 1.285 -1.044 0.241 -0.001 -0.167 0.623 -0.214

r47 -0.001 -0.043 0.004 -0.001 -0.041 -0.132 0.091 -0.041 0.000 0.028 -0.055 -0.014

r48 0.001 -0.002 -0.005 0.000 -0.005 0.022 -0.027 -0.005 0.000 0.001 0.016 -0.023

r49 0.001 0.022 -0.003 0.001 0.022 0.107 -0.086 0.022 0.000 -0.014 0.051 -0.015

Partial flux control coefficients are only shown for metabolites with non-zero elasticities. The sum of the partial flux control coefficients over all intermediates equals the f
control coefficient equals the sum of the partial flux control coefficients plus one.

Table 3: Partial flux control coefficients for succinate-CoA ligase (r33), fumarate hydratase (r34), succinate dehydro
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Figure 6 Flux control coefficients for lactate dehydrogenase (r18), NADPH consumption (r22), and oxidative phosphorylation (r41). The re-
action indices correspond to the reaction numbers shown in Table 1 and Figure 1.
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Table 4: Partial flux control coefficients for lactate dehydrogenase (r18) and oxidative phosphorylation (r41)

r18

Partial flux control coefficient through Partial flux contr

Enzyme NADin PYRin LACin NADHin
Flux control 
coefficient

ATPin NADin

r1 0.011 0.032 -0.002 0.043 0.084 -0.012 0.001

r2 0.009 0.014 -0.001 0.038 0.059 -0.007 0.001

r3 0.011 0.017 -0.002 0.044 0.071 -0.008 0.002

r4 0.014 0.022 -0.002 0.056 0.089 -0.011 0.002

r5 0.002 0.003 0.000 0.008 0.012 -0.001 0.000

r6 0.032 0.050 -0.005 0.132 0.209 -0.025 0.005

r7 0.000 0.001 0.000 0.002 0.003 0.000 0.000

r8 0.000 0.012 0.000 -0.002 0.009 -0.001 0.000

r9 0.000 0.000 0.000 0.000 0.000 0.000 0.000

r10 -0.142 -0.170 0.021 -0.584 -0.875 0.096 -0.020

r11 -0.006 -0.008 0.001 -0.027 -0.040 0.004 -0.001

r12 0.042 0.067 -0.007 0.173 0.275 -0.033 0.006

r13 -0.006 -0.010 0.001 -0.026 -0.041 0.005 -0.001

r14 0.086 0.137 -0.014 0.352 0.561 -0.068 0.012

r15 -0.037 -0.059 0.006 -0.152 -0.242 0.029 -0.005

r16 0.058 0.092 -0.009 0.237 0.377 -0.045 0.008

r17 0.000 0.000 0.000 0.000 0.000 0.000 0.000

r18 0.041 -0.632 -0.014 0.168 0.564 -0.050 0.006

r19 -0.168 0.594 0.006 -0.693 -0.261 0.162 -0.024

r20 0.001 0.001 0.000 0.003 0.005 0.000 0.000

r21 0.000 0.000 0.000 -0.001 -0.001 0.000 0.000

r22 0.016 -0.037 -0.001 0.066 0.044 0.005 0.002

r23 0.000 0.001 0.000 0.000 0.001 0.000 0.000

r24 -0.003 -0.005 0.000 -0.013 -0.020 0.002 0.000

r25 0.000 0.004 0.000 -0.002 0.002 0.000 0.000
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r26 0.000 0.000 0.000 -0.001 -0.001 0.000 0.000

r27 0.001 0.001 0.000 0.002 0.004 0.000 0.000

r28 0.001 -0.009 0.000 0.002 -0.006 0.001 0.000

r29 0.004 -0.125 0.002 0.017 -0.101 0.010 0.001

r30 0.005 -0.005 0.000 0.019 0.018 -0.002 0.001

r31 0.008 -0.008 -0.001 0.035 0.034 -0.004 0.001

r32 0.005 -0.005 0.000 0.021 0.020 -0.003 0.001

r33 0.005 -0.008 0.000 0.022 0.020 -0.002 0.001

r34 0.005 -0.007 0.000 0.021 0.018 -0.002 0.001

r35 0.001 -0.036 0.001 0.005 -0.029 0.003 0.000

r36 0.014 -0.429 0.008 0.058 -0.348 0.035 0.002

r37 0.001 -0.001 0.000 0.003 0.003 0.000 0.000

r38 -0.002 0.026 0.000 -0.008 0.016 -0.001 0.000

r39 -0.022 0.018 0.002 -0.092 -0.094 0.008 -0.003

r40 0.009 -0.012 -0.001 0.035 0.031 -0.003 0.001

r41 -0.043 0.954 -0.017 -0.176 0.718 -0.105 -0.006

r42 -0.019 -0.028 0.003 -0.078 -0.122 0.011 -0.003

r43 0.033 0.016 -0.004 0.137 0.183 -0.016 0.005

r44 -0.008 0.054 0.000 -0.034 0.012 0.003 -0.001

r45 0.001 -0.015 0.024 0.004 0.014 -0.001 0.000

r46 0.036 -0.480 0.007 0.148 -0.289 0.025 0.005

r47 0.002 0.007 0.000 0.010 0.019 -0.003 0.000

r48 0.004 0.007 -0.001 0.016 0.026 0.002 0.001

r49 0.003 -0.043 0.001 0.010 -0.030 0.003 0.000

Partial flux control coefficients are only shown for metabolites having non-zero elasticities. The sum of the partial flux control coefficien
With regard to the control of an enzyme over its own flux, the flux control coefficient equals the sum of the partial flux control coeffici

Table 4: Partial flux control coefficients for lactate dehydrogenase (r18) and oxidative phosphorylation (r41) (Cont
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cytes, an increase in glucose-6-phosphate was counter-
acted by an increased release of glucose (-0.81) and by
less glycogen being broken down (-0.17). The coefficient
resulting from glycolytic degradation was negligible [32].
In hepatoma cells, the control pattern was fundamentally
different: An increase in glycogen synthesis played only a
negligible role in counteracting elevated glucose-6-phos-
phate levels. The elevated glucose-6-phosphate levels
were mainly counteracted by a reduced synthesis rate (r1,
glucokinase; -0.75) and an increased flux through glu-
cose-6-phosphate isomerase (-0.61). Furthermore, the
internal response coefficient for the flux of glucose-6-
phosphate through glucose-6-phosphate dehydrogenase
was positive (0.36). It is interesting to note that in the
cases of 1,3-bisphospho-glycerate, glycerate-3-phosphate,
glycerate-2-phosphate, and phosphoenolpyruvate, an
increase in intermediate was counteracted almost entirely
by increased consumption. Ainscow and Brand attributed
the high internal response coefficients for the flux of
pyruvate through lactate dehydrogenase in rat hepato-
cytes to the fact that lactate dehydrogenase was working
close to equilibrium [32]. Similarly, in hepatoma cells the
reactions in the lower part of glycolysis are possibly also
close to equilibrium. Holzhütter et al. reported near equi-
librium operation for the lower part of glycolysis in
human erythrocytes [60].

Conclusions
This study dealt with the quantitative assessment of the
dynamics and control of the central carbon metabolism
in hepatoma cells. Metabolite time-series data analyzed
in a stimulus response experiment revealed substantial
changes in the concentrations of intermediates, and were
used for identifying network dynamics. Control analysis
was applied in order to break down the internal control
structure of the central carbon metabolism in hepatoma
cells. In comparison to previous top-down approaches,
this study enabled the more detailed analysis of the
underlying control patterns. Rather than describing how
sub-systems interact with each other, the control distri-
bution approach used quantifies the influences the indi-
vidual enzymes have on each other. It was possible to
unravel many different interactions: Glucose-6-phos-
phate dehydrogenase had a substantial negative control
over the glycolytic flux. Partial flux control coefficients
were determined in order to assess the importance of the
individual interactions in mediating changes in the flux
through the glucose-6-phosphate isomerase enzyme
[32,60,61]. It was shown that the negative control of the
glucose-6-phosphate dehydrogenase on the steady state
flux through the glucose-6-phosphate isomerase was
mediated by an elevated level of its inhibitor 6-phosphog-
luconate, which was partly compensated by increased
substrate and decreased product levels. Another finding

was that in HepG2 cells, oxidative phosphorylation had a
significant positive control over the metabolic fluxes in
glycolysis. This means that in contrast to primary rat
hepatocytes [8], hepatoma cells are not affected by the
Pasteur effect. This finding is in line with previous studies
that found an increased glycolytic activity in the presence
of adequate oxygen levels in liver cancer cells (Warburg
effect) [53,54]. The positive control can possibly be
ascribed to fewer mitochondria in hepatoma cells [52] or
to mitochondrial dysfunction due to mitochondrial DNA
mutations [47]. This finding supports approaches that
aim at exploiting the Warburg effect for the treatment of
tumors [54,55]. It is important to note that the NADPH-
demand does not have exclusive control over the rate of
NADPH consumption (0.65). Instead, the control is
shared with the NADPH supply (0.38). In accordance
with previous studies dealing with the control of the con-
sumption of the cofactor ATP in isolated rat hepatocytes
[8], it is increasingly becoming clear that also with regard
to NADPH the production and the consumption share
the control of the NADPH-consuming reactions. The
pyruvate dehydrogenase complex was found to have a
substantial positive control over the complete TCA cycle.
In addition, different control patterns were observed for
the first and the last reactions in the TCA cycle. The met-
abolic influx into the TCA cycle could be enhanced by
increasing the cellular NAD and pyruvate levels. How-
ever, an increase in pyruvate led to a decreased flux
through the reaction mediated by the malic enzyme. This
is the reason why ATP consumption has both a positive
and negative control over the first and last TCA cycle
reactions.

Similarly, glucose-6-phosphate dehydrogenase nega-
tively controls the end of the TCA cycle. The negative
control is mainly mediated by an increased NADPH/
NADP ratio. The subsequent reaction steps in the TCA
cycle are negatively controlled by elevated product levels.
The concept of partial flux control proved to be essential
for unraveling these control structures. It should be noted
that the detailed control structures unraveled in this work
had been mainly compared with hepatic control princi-
ples obtained from applying top-down approaches in rat
hepatocytes [8,32]. To further compare our results with a
healthy reference state, it would be interesting to see
whether these previously reported control distributions
based on finite perturbations can be reproduced using
dynamic modeling and in vivo metabolite time-series
measurements from primary human cells. Moreover,
compartmentalization was not accounted for in the
dynamic network model. Thus, control principles
affected by compartmentalization might differ to some
extent from the results obtained in this work, e.g. cytoso-
lic intermediates may have less effects on mitochondrial
enzymes and vice versa.



Maier et al. BMC Systems Biology 2010, 4:54
http://www.biomedcentral.com/1752-0509/4/54

Page 21 of 28

Figure 7 Concentration control coefficients for NADPH, NADH, ATP, and NAD. The reaction indices correspond to the reaction numbers shown 
in Table 1 and Figure 1.
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Partial internal response coefficients were determined
in order to investigate the reaction steps that are most rel-
evant in counteracting an increase in intermediates in
order to return to the steady state [32,62].  Interestingly,
in the case of the metabolites in the downstream part of
the glycolysis (1,3-bisphospho-glycerate, glycerate-3-
phosphate, glycerate-2-phosphate, and phosphoe-
nolpyruvate), an increase in the concentration was almost
exclusively counteracted by additional consumption. This
possibly suggests that the corresponding enzymes were
close to equilibrium [32].

It is envisaged that in the near future, it will be possible
to predict the effects of nutrients in the liver at the inter-
individual level by coupling metabolic network models to
gene regulation and by integrating individual transcrip-
tome and proteome data. Moreover, systems-oriented
analyses of hepatic responses to xenobiotics might enable
the personalized prognosis of drug actions and/or their
persistency.

Methods
Experimental Setup and Chemical Analytics
HepG2 cells (ATCC® Number HB-8065™) were incubated
at 37°C in 6-well-plates in 5% CO2 atmosphere. The cells
were cultured in alanyl-glutamine-free William's medium
E (PAN Biotech GmbH, Aidenbach, Germany) that was
supplemented with penicillin (100 U/mL), streptomycin
(100 mg/mL), and Gibco™ Insulin-Transferrin-Selenium
(100X) supplement (Invitrogen, Karlsruhe, Germany). No
fetal calf serum was added to the medium. The 6-well
plates were shaken at 20 rpm throughout the experiment
(Shaker DRS-12, ELMI, Riga, Latvia). The number of cells
was determined with a Neubauer counting chamber. The
intracellular flux map corresponding to this experimental
setup was determined previously [6,7]. The main flux was
found to be the conversion of glucose to lactate. Thus, for
designing an efficient stimulus response experiment, the
glucose flux was considered as the most promising candi-
date for perturbing the central metabolism of the hepa-
toma cells. However, the cells were grown in a batch
culture, and extracellular glucose was provided in excess.
Therefore, it was concluded that an extracellular glucose
pulse would not yield essential changes, whereas glucose
deprivation was expected to trigger a substantial meta-
bolic response. Before depriving the cells of extracellular
glucose, they were treated as previously described [6]:
The overnight medium was replaced with fresh culture
medium, which was then exchanged with glucose-free
medium after 2 h of equilibration. Extra- and intracellular
samples were collected in triplicate directly before and
after the stimulus, as well as 1, 2, 5, 10, 30, 60, 120, and
180 min after glucose deprivation. The sampling
approach and the processing of the samples were done as
previously described [6].

The concentrations of alanine, serine, glucose, lactate,
pyruvate, fumarate, malate, cis-aconitate, isocitrate, and
citrate were determined by GC-MS as described before
[6,63]. After glucose deprivation, the extracellular glucose
concentrations were determined in 10 μl of diluted (1:9 v/
v) medium samples, the intracellular glucose concentra-
tions before and after perturbation were determined in 5
and 50 μl of cell extract, respectively. Phosphoenolpyru-
vate, 3-phosphoglycerate, dihydroxyacetonphosphate,
fructose-1,6-bisphosphate, glucose-6-phosphate, 6-phos-
phogluconate, sedoheptulose-7-phosphate, ribose-5-
phosphate, and ribulose-5-phosphate were determined
by LC-MS-MS as described by Hofmann et al. [6] with
the following modifications: HPLC separation was per-
formed at 20°C on a Synergi Hydro-RP column (150 × 2
mm, 4 μm; Phenomenex, Aschaffenburg, Germany) at a
flow rate of 0.2 ml/min. The mobile phases consisted of
(A) water with 10 mM tributylamine and 15 mM acetic
acid, and (B) methanol. Gradient runs were programmed
as follows: 100% A from 0 to 10 min, increase to 20% B to
25 min, remaining at 20% B to 30 min, increase to 35% B
to 35 min, remaining at 35% B to 40 min, increase to 60%
B to 45 min, increase to 90% B to 48 min remaining at
90% B to 50 min, then equilibrating with 100% A for 13
min. Precursor and product ions used for the quantifica-
tion of glucose-6-phosphate, 6-phosphogluconate,
ribose-5-phosphate, ribulose-5-phosphate, fructose-1,6-
bisphosphate, and the internal standard mannitol-1-
phosphate were as previously described [6] and for phos-
phoenolpyruvate: m/z 167/97, 139; 3-phosphoglycerate:
m/z 185/97, 167; dihydroxyacetonphosphate: m/z 169/97
and sedoheptulose-7-phosphate: m/z 289/97, 199.

Nucleotide analysis was performed by reversed phase
ion pair high performance liquid chromatography. The
HPLC system (Agilent Technologies, Waldbronn, Ger-
many) consisted of an Agilent 1200 series autosampler, an
Agilent 1200 series Binary Pump SL, an Agilent 1200
series thermostatted column compartment, and an Agi-
lent 1200 series diode array detector set at 260 and 340
nm. The nucleotides were separated and quantified on an
RP-C-18 column that was combined with a guard column
(Supelcosil LC-18-T; 15 cm × 4.6 mm, 3 μm packing and
Supelguard LC-18-T replacement cartridges, 2 cm;
Supelco, Bellefonte, USA) at a flow rate of 1 ml/min. The
mobile phases were (i) buffer A (0.1 M KH2PO4/K2HPO4,
with 4 mM tetrabutylammonium sulfate and 0.5% metha-
nol, ph 6.0) and (ii) solvent B (70% buffer A and 30%
methanol, pH 7.2). The following gradient programs were
implemented: 100% buffer A from 0 min to 3.5 min,
increase to 100% B until 43.5 min, remaining at 100% B
until 51 min, decrease to 100% A until 56 min and
remaining at 100% A until 66 min.
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Model Reconstruction
A metabolic network model was reconstructed for the
identification of hepatic metabolite dynamics. The model
was based on a previously published isotopomer model
used for the estimation of intracellular fluxes from tran-
sient 13C-labeling data [7]. The model accounts for 45 bal-
anced compounds that are converted into each other by
49 reactions, including 5 transportation steps. The corre-
sponding metabolic scheme is shown in Figure 1 and the
complete reaction stoichiometry is listed in Table 1. The
metabolic pathways under consideration contain 3 con-
served moieties (cAMP+cADP+cATP = const; cNADP+cNADPH
= const; cNAD+cNADH = const). The model comprises glyc-
olysis (EMP), the pentose-phosphate pathway (PPP), and
the tricarboxylic acid (TCA) cycle. In the cataplerotic
section, the malic enzyme, which decarboxylates malate
to pyruvate, is taken into account. Reduced NADH is
regenerated in the lactate dehydrogenase and oxidative
phosphorylation reactions. P/O ratios of 2.5 and 1.5 were
assumed for NADH and succinate, respectively [64]. No
consumption of acetyl-CoA other than through conden-
sation with oxaloacetate by citrate synthase was included
[7]; i.e. lipid synthesis was neglected, and, thus, the flux of
acetyl-CoA into the tricarboxylic acid cycle may be
slightly overvalued in the network model [65]. Based on
experimental evidence [7], the metabolic state was
assumed to be that of fed hepatic cells. Accordingly, no
gluconeogenetic reactions were included. Exchange
fluxes with the system boundary took into account glu-
cose and alanine uptake, glycogen storage, the metabo-
lism of glutamate, valine, leucine, and methionine,
glycerol and nucleotide synthesis, as well as serine, lac-
tate, and pyruvate excretion. In addition, reactions that
represented ATP and NADPH consumption relating to
the basal metabolism were included. 31 regulatory effects
(21 inhibitions and 10 activations) were found in a litera-
ture search [66] and included (cf. Table 5). The network
model discriminated 5 extracellular (glucose, lactate, ser-
ine, pyruvate, alanine) and 40 intracellular metabolites.
The sampling and quenching routine used in this work
did not allow discriminating between compartmental
concentration differences and, thus, compartmentaliza-
tion was not accounted for in the dynamic network
model. However, it should be noted that the simulated
metabolite dynamics in the TCA cycle represent average
values integrating cytosolic and mitochondrial network
dynamics. The metabolic pathways neither contained
dead-end metabolites nor strictly detailed balanced sub-
networks [67]. Furthermore, all reactions were consistent
with respect to mass conservation and redox state. The
stability of the dynamic model was investigated by calcu-
lating the eigenvalues of its Jacobian matrix (cf. sub-sec-

tion Systems-level Analyses). All real parts of the
eigenvalues were found to be negative, which means that
the system was asymptotically stable. It was important to
demonstrate the asymptotic stability of the dynamic
model with regard to the envisaged control analysis
because in earlier studies it was seen that large-scale
dynamic network models tended to be prone to instabil-
ity [68].

Model Simulation and Parameterization
The following set of metabolite mass balances was set up
to describe the time-dependent behavior of the metabolic
system presented above:

N denotes the stoichiometric matrix and r the rate vec-

tor. (c0) is a square diagonal matrix with reference con-

centrations on its main diagonal;  denotes the

normalized metabolite concentration vector.
The ordinary differential equations (ODEs) were refor-

mulated as differential algebraic equations (DAEs) to
improve both the performance and stability of the
numerical integrations, i.e. the conservation relations
were solved algebraically. The DAE system was simulated
with the linearly implicit differential algebraic solver
LIMEX [69]. On average, one simulation run took 0.2 sec-
onds (Intel® Core2™ Quad CPU, 2.66 GHz, 4 GB RAM).

Canonical linear-logarithmic (linlog) kinetics were
applied for approximating the reaction rates in equation
(1) [70-72]. The linlog formalism has been used for mod-
eling in vivo kinetics and metabolic redesign [70]. Linlog
kinetics were shown to have a good approximation qual-
ity and to need only relatively few parameters to be iden-
tified [22,38,39]. In linlog kinetics, all rate equations share
a standardized mathematical format in which influences
of metabolite and effector levels on reaction rates are
taken into consideration by adding up logarithmic con-
centration terms. The standardized format is advanta-
geous if not all kinetic mechanisms are known in detail,
which is often the case even for well-studied pathways of
the central carbon metabolism [2,73]. The matrix nota-
tion of the linlog rate equation is given by [70]
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in which J0 ishe reference steady state flux distribution,

 is a diagonal matrix containing relative enzyme

levels, and i is a vector of ones.  is a matrix whose

entries are scaled elasticity coefficients ?ij that describe

the local effect of an infinitesimal change in concentra-

tion j on the rate of reaction i, i.e.

Assuming constant enzyme levels, equation (2) can be
reduced to

Parameterizing the kinetic model requires the specifi-

cation of a reference steady state, i.e. J0 and c0, and the

corresponding kinetic parameters, i.e. . Therefore, a

two-step approach was applied. In a previous study, J0

was estimated from transient 13C-labeling data [6,7]. In

the present study, c0 and  are determined from sta-

tionary and non-stationary metabolite measurements.

Each rate equation was assumed to be dependent on its

substrate and product levels. In some instances additional

effectors were taken into account; for details see Table 5.

Altogether, 174 scaled elasticities had to be estimated.

The matrix of scaled elasticity values is listed in Addi-

tional file 5. Furthermore, 42 reference intermediate lev-

els had to be identified (42 balanced compounds + 3

conserved moieties). The corresponding experimental

data were available for 30 of these. This means that 216

unknown parameters had to be specified in order to run a

simulation.

At the outset of a simulation run, all intracellular

metabolite levels  were set to 1.0. The initial

values for the extracellular metabolites were determined

by
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Table 5: Activator and inhibitor influences

Reaction Identifier EC-Number Activators Inhibitors

Glucokinase 2.7.1.2 F6P [76]

Glucose-6-phosphate isomerase 5.3.1.9 6PG [44]

6-phosphofructokinase 2.7.1.11 AMP [16] CIT [77]

Fructose-bisphosphate aldolase 4.1.2.13 ADP, ATP, E4P, F6P, G1P, G6P, RIBO5P [78]

Triose-phosphate isomerase 5.3.1.1 ATP [79]

Glyceraldehyde-3-phosphate dehydrogenase 1.2.1.12 ADP, ATP [80]

Phosphoglycerate kinase 2.7.2.3 AMP [81]

Pyruvate kinase 2.7.1.40 G6P, F6P, G1P [82], F16P [83] ALA [84]

Glucose-6-phosphate dehydrogenase 1.1.1.49 ATP [58]

Phosphoglucomutase 5.4.2.2 f16p [85]

UTP-glucose-1-phosphate uridylyltransferase 2.7.7.9 AMP [16]

Alpha-ketoglutarate dehydrogenase 1.2.4.2 ADP [86] ATP [86]

Valine, isoleucine, methionine metabolism - NAD, AKG [87] GLU, NADH [87]

Isocitrate dehydrogenase 1.1.1.41 ADP [88]

Pyruvate dehydrogenase 1.2.4.1 AMP [89]

Regulatory influences and corresponding literature references. The modulator effects were included in the dynamic network model. In addition 
to these regulatory influences, the dynamic model did also account for substrate and product effects.
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where  denotes the extracellular metabolite levels

immediately after the perturbation. The unknown elastic-

ity coefficients and reference concentrations were identi-

fied by minimizing the differences between in silico

model simulations and in vivo measurement data: The

variance-weighted sum of squared residuals χ2 between

experimentally observed and simulated metabolite data,

cm and cs, was minimized according to

in which Σm is a diagonal matrix containing the mea-
surement variances. An evolution strategy was applied
for parameter fine-tuning that included a self adapting
mutation operator [74,75]. To enable a thorough explora-
tion of the search space, the optimization runs were
restarted after 100,000 evaluations of equation (6) using
the best parameters currently available as starting values
in the following iteration. Altogether, more than six mil-
lion simulation runs were performed.

No confidence limits were calculated for the estimated
parameters. For parameter estimation, however, a multi-
start optimization approach was taken and the distribu-
tion of control was consistently determined from the
parameters estimated and, thus, was considered to be
reliable. It is worth noting that in an exploratory study,
Nikerel et al. investigated the identification of kinetic
parameters in a dynamic model based on linlog kinetics,
and found that the underlying control structures were
inherently robust against non-identifiable elasticities [22].
Moreover, due to the substantial nonlinearities of the
dynamic network model, methods based on linearization,
like e.g. the inversion of the Fisher information matrix
(FIM), are inadequate, whereas Monte-Carlo-based
approaches would be most suitable to determine the con-
fidence ellipsoids. However, Monte-Carlo methods are
computationally too demanding for the outlined model
complexity.

Systems-Level Analyses
In this study, the local stability of the biochemical system
was investigated by analyzing the eigenvalues of its Jaco-
bian matrix J given by

where NR and L are the reduced stoichiometric matrix
and link matrix, respectively [30]. A steady state is
asymptotically stable if all real parts of the eigenvalues of
the Jacobian matrix J are negative.

A metabolic control analysis was carried out to assess

systemic steady state properties. In this context, the con-

centration control coefficient  determines the rela-

tive effect a changing enzyme level j has on steady state

concentration i, i.e.

Similarly, flux control coefficient  describes the rel-

ative effect changing enzyme level j has on steady state

flux i, i.e.

By applying the summation and connectivity theorems,
the concentration and flux control coefficients can be cal-
culated from the estimated elasticities and steady state
concentrations [30]

and

The control that one enzyme exerts over another is

mediated by changes in the levels of intermediates. Enzy-

matic reaction rates respond to changes in substrate,

product, and effector levels. The concept of a partial flux

control coefficient allows the quantification of the frac-

tions of the flux change in relation to changes occurring

in individual intermediates [32,60,61]. Partial flux control

coefficients can be obtained by partitioning flux control

coefficients. In accordance with equation (11), the flux

control coefficient , which quantifies the change in
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steady state flux i with respect to changes in enzyme j, is

given by

The individual summands  are termed partial

flux control coefficients. They partition the flux control

coefficient through the changes in each intermediate, i.e.

 quantifies what fraction of the change in the

flux through enzyme i can be attributed to the change in

metabolite x. Initially, partial flux control coefficients

were divided by the total flux control coefficient and

referred to as conditional elasticities [60] and partitioned

regulatory coefficients [61]. However, Ainscow and Brand

pointed out that the normalization precludes easy com-

parison between partitioned terms of different flux con-

trol coefficients [32]. Therefore, partial flux control

coefficients were not scaled in the present study.

A stable system that operates at steady state will coun-

teract changes in intermediate levels and eventually

return to its original steady state [32]. Elevated interme-

diate concentrations may be counteracted by a decrease

in production and/or elevated consumption of these

intermediates. By quantifying these effects, the partial

internal response coefficients  allow the assessment of

their importance in restoring the steady state [32,62], i.e.

According to the connectivity theorem the sum of the

partial internal response coefficients for each intermedi-

ate is -1. For a given enzyme j and metabolite i, the inter-

nal response coefficient  is identical to the partial flux

control coefficient of the enzyme over itself [32]. Graphi-

cally oriented network set-up, automated generation of

the DAE system, and the quantification of metabolic con-

trol were performed with the Insilico Discovery software

(Insilico Biotechnology AG, Stuttgart, Germany).

Additional material

Abbreviations
PPP: pentose-phosphate pathway; TCA: tricarboxylic acid; EMP: Embden-Mey-
erhof-Parnas; VLDL: very-low-density lipoproteins; HPLC: high performance liq-
uid chromatography; GC-MS: gas chromatography-mass spectrometry; LC-MS-
MS: liquid chromatography-mass spectrometry-mass spectrometry; ODE: ordi-
nary differential equation; DAE: differential algebraic equation; ROS: reactive
oxygen species; GLC: glucose; G6P: glucose-6-phosphate; G1P: glucose-1-
phosphate; F6P: fructose-6-phosphate; F16P: fructose-1,6-bisphosphate; DHAP:
dihydroxyacetone phosphate; GAP: glyceraldehyde 3-phosphate; 13PG: 1,3-
bisphospho-glycerate; G3P: 3-phosphoglycerate; G2P: 2-phosphoglycerate;
PEP: phosphoenolpyruvate; PYR: pyruvate; SER: serine; LAC: lactate; ALA: ala-
nine; GL6P: 6-phospho-glucono-1,5-lactone; 6PG: 6-phospho-gluconate;
RIBU5P: ribulose 5-phosphate; RIBO5P: ribose 5-phosphate; XYL5P: xylulose 5-
phosphate; S7P: sedoheptulose 7-phosphate; E4P: erythrose 4-phosphate;
ACCOA: acetyl-CoA; CIT: citrate; CISAC: cis-aconitate; ISOCIT: isocitrate; AKG:
alpha-ketoglutarate; SUCCOA: succinyl-CoA; SUC: succinate; FUM: fumarate;
MAL: malate; OAC: oxaloacetate; ATP: adenosintriphosphate; ADP: adenosin-
diphosphate; AMP: adenosinmonophosphate; NADP(H): nicotinamide adenine
dinucleotide phosphate; NAD(H): nicotinamide adenine dinucleotide; r1: glu-
cokinase; r2: glucose-6-phosphate isomerase; r3: phosphofructokinase; r4: fruc-
tose-bisphosphate aldolase; r5: triose-phosphate isomerase; r6:
glyceraldehyde-3-phosphate dehydrogenase; r7: phosphoglycerate kinase; r8:
phosphoglycerate mutase; r9: pyruvate kinase; r10: glucose-6-phosphate
dehydrogenase; r11: 6-phosphogluconolactonase; r12: phosphogluconate
dehydrogenase; r13: ribose-5-phosphate isomerase; r14: ribulose-phosphate 3-
epimerase; r15: transketolase; r16: transketolase; r17: phosphopyruvate
hydratase; r18: lactate dehydrogenase; r19: adenosinetriphosphatase; r20: ala-
nine transaminase; r21: phosphoglucomutase; r22: NADPH consumption; r23:
glycogen synthesis; r24: transaldolase; r25: adenylate kinase; r26: glycerol for-
mation; r27: nucleotide synthesis; r28: serine synthesis; r29: citrate synthase;
r30: aconitate hydratase; r31: aconitate hydratase; r32: isocitrate dehydroge-
nase; r33: succinate-CoA ligase; r34: fumarate hydratase; r35: malate dehydro-
genase; r36: pyruvate dehydrogenase complex; r37: alpha-ketoglutarate
dehydrogenase complex; r38: pyruvate synthesis; r39: valine leucine isoleucine
metabolism; r40: succinate dehydrogenase; r41: oxidative phosphorylation;
r42: alpha-ketoglutarate synthesis; r43: malic enzyme; r44: glutamate dehydro-
genase; r45: lactate transport; r46: pyruvate transport; r47: glucose transport
(GLUT2); r48: alanine transport; r49: serine transport;
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