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Abstract

Better control of highly pathogenic avian influenza (HPAI) outbreaks requires deeper under-
standing of within-flock virus transmission dynamics. For such fatal diseases, daily mortality
provides a proxy for disease incidence. We used the daily mortality data collected during the
2015 H5N2 HPAI outbreak in Minnesota turkey flocks to estimate the within-flock transmis-
sion rate parameter (β). The number of birds in Susceptible, Exposed, Infectious and
Recovered compartments was inferred from the data and used in a generalised linear
mixed model (GLMM) to estimate the parameters. Novel here was the correction of these
data for normal mortality before use in the fitting process. We also used mortality threshold
to determine HPAI-like mortality to improve the accuracy of estimates from the back-calcu-
lation approach. The estimated β was 3.2 (95% confidence interval (CI) 2.3–4.3) per day with
a basic reproduction number of 12.8 (95% CI 9.2–17.2). Although flock-level estimates varied,
the overall estimate was comparable to those from other studies. Sensitivity analyses demon-
strated that the estimated β was highly sensitive to the bird-level latent period, emphasizing
the need for its precise estimation. In all, for fatal poultry diseases, the back-calculation
approach provides a computationally efficient means to obtain reasonable transmission
parameter estimates from mortality data.

Background

Highly pathogenic avian influenza (HPAI) virus epizootics often lead to enormous economic
losses and, for some of the virus strains with a zoonotic potential, the risk of infecting humans
is of an even greater concern. The US 2014–2015 HPAI outbreak started in December 2014
with detections of H5 viruses in captive wild birds and backyard flocks in the northwest,
and the first detection in a commercial flock was on 23 January in California [1].
Subsequently, the first HPAI H5N2 virus-infected commercial turkey farm in Minnesota
was detected in early March 2015 [1, 2]. A total of 160 commercial turkey operations (104
of which were in Minnesota) were affected, leading to the destruction of 7.4 million turkeys.
For the other affected poultry operation types, 43 million table-egg layers and pullets were
culled [1]. The impact on the US economy was estimated to be close to US$3.3 billion, of
which US$1.6 billion was in direct losses in euthanised animals and the rest was due to
restocking costs and lost future production among others [1, 3].

Improved knowledge about within-flock (a flock defined here as a group of birds housed
together in a barn) HPAI transmission dynamics would enhance HPAI disease management
strategies both before and during an outbreak. Within-flock models of HPAI spread have been
used to inform several risk management decisions such as the choice of active surveillance
protocol options for early detection (see, e.g. [4]). The implications of improved estimation
of parameters for such within-flock models are beneficial to the improved prevention of
between-flock transmission [5, 6].

Outbreak detection in an infected flock depends on both the virulence of the pathogen and
the rate of virus transmission through the flock [7]. Upon infection, disease dynamics are
characterised by, among others, pathogen- and species-specific transmission parameters,
which can influence the time to disease detection in the flock and the disease prevalence at
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that time. These include the transmission rate parameter or
adequate contact rate (β), defined as the number of new infections
caused by an infectious bird per unit time, and the basic repro-
duction number (R0), defined as the average number of secondary
infections caused by a typical infectious bird during its entire
infectious period in a naïve population [8]. Depending on the
available data, various methods to estimate these parameters
can be used.

The objective of this study was to estimate the within-flock β
and the corresponding R0 using daily mortality data obtained
from infected turkey flocks from the 2015 H5N2 HPAI virus out-
break in Minnesota, USA. We also assessed how β varies between
flocks and use the findings from this assessment to obtain the
best-fitting distribution for the β values to be used in, for example,
risk analyses. Transmission rate parameter estimates from this
study may be used in HPAI within-flock simulation models to
evaluate HPAI control strategies and other decisions related to
emergency response and preparedness planning.

Materials and methods

Mortality data and model assumptions

Data used in this analysis consisted of date of HPAI detection
(hereafter referred to as ‘detection day’) and daily or weekly
recorded flock-level mortality from the day of stocking (i.e. place-
ment of birds in a barn) onwards collected from infected turkey
farms during epidemiological investigations. Since, in most
cases, daily mortality 7 or more days prior to the last recorded
day of mortality was indistinguishable from normal mortality,
we assumed that HPAI-induced mortality occurred within the
last 7 days of the recorded data, hereafter referred to as the ‘period
of interest’. For some producers, upon confirmation of flock
infection status, efforts shifted towards depopulation preparations
and further mortality data collection was not prioritised.
Consequently, for those flocks, there were fewer than the required
minimum of 3 consecutive days of HPAI-induced mortality and
were excluded from further analysis. Daily mortality data were
corrected for normal mortality (unrelated to HPAI) throughout
the period of interest. Specifically, the mean normal daily mortal-
ity was approximated as the average (rounded off to nearest inte-
ger) of daily mortality during the third-last week (i.e. week 3 from
the last day of recorded mortality) of the records. We chose to use
this period since daily mortality immediately after bird-stocking is
not a good representation of mortality under normal operating
conditions as mortality tends to be higher due to changes in
environment among other factors. In cases where the records
were insufficient to refer back 3 weeks (e.g. for a flock stocked
within the last 2 weeks), average daily mortality was estimated
as 0.1% of the total number of birds per day based on normal
mortality data from 142 clinically normal tom flocks provided
by industry veterinarians for an unrelated analysis [9]. This num-
ber was comparable to the 0.07% calculated in this study for
flocks where it was possible. The total daily mortality in the
period of interest was then adjusted by subtracting the estimated
normal mortality for the flock to approximate the HPAI disease
mortality.

Extraction of the desired HPAI-induced mortality chain

Daily mortality in an infected flock may include birds that died
due to HPAI disease and those that died due to other causes

unrelated to HPAI. Including mortality data from days where
most of the mortality is due to normal causes (not disease
induced) might reduce the accuracy of the estimated parameters.
We defined criteria for selecting flocks and contiguous days with
abnormal high mortality during the period of interest so as to
minimise the chances of incorrectly fitting transmission para-
meters to non-disease-induced mortality.

We utilised the concept of a mortality trigger where an abnor-
mal and unexplained increase in daily mortality to levels that
exceed predetermined thresholds is used to signal flock infection
with HPAI [9–12]. A mortality threshold of 2.5 dead birds per
1000 birds estimated by [9] from predictions of normal mortality
among meat turkey tom houses from industry data as one that
would result in a low rate of false triggers (<4%) was used. For
a flock to be considered for further analysis, its observed mortality
had to exceed this threshold at least once during the period
of interest.

For the flocks that met these initial criteria, we then extracted
the desired mortality chain from the daily mortality data in the
period of interest for the back-calculation procedure. For each
flock, the Start and End days of the desired HPAI mortality
chain were determined as follows. Let the first day on which mor-
tality reaches or exceeds the 0.25% threshold be the Reference Day
of the chain. Then, the Start Day of the desired mortality chain
was set to be 2 or less days prior to the Reference Day, provided
that the daily mortality from the Start Day onwards was above the
mean normal mortality (0.1%). In scenarios where the mortality
on the days prior to the Reference Day was below 0.1%, the
Start Day was taken to be the Reference Day whose mortality is,
by definition, ⩾0.25%. These selection criteria were intended to
reduce the impact of variations in normal mortality on the esti-
mated β. Next, the End Day of the desired mortality we defined
to be the last day of recorded mortality of the flock being consid-
ered. The End Day was set as Day 0 and the preceding days up to
the Start Day were negatively numbered in reference to this Day 0.

Since typical HPAI-induced mortality for this virus strain in
turkeys was expected to increase day-by-day, we required that
daily mortality is maintained at ⩾0.25% per day on the consecu-
tive days between the Reference Day and the End Day of the mor-
tality chain. Finally, a flock was included in the final analysis only
if, upon consideration of these criteria, its extracted mortality
chain had 3 or more qualifying days and was confirmed as having
been infected during the outbreak. Table 1 presents an example
involving four flocks, demonstrating how these procedures were
applied to extract the desired mortality chain. In the selected
examples, Flock D was disqualified because its mortality went
below the threshold on one of the days after the Reference Day
(i.e. on Day −1), while Flock E was disqualified because its mor-
tality chain contained fewer than the minimum 3 days required.

Within-flock dynamics and data analysis

Back-calculation procedure
In this procedure, we followed the classical SEIR compartmental
transmission modelling approaches where, for a given flock on
a given day t, S(t) is the number of susceptible birds, E(t) is the
number of latently infected birds, I(t) is the number of infectious
birds and R(t) is the number of dead birds. Let N(t) be the total
number of birds in the flock and C(t) be the number of newly
infected birds. For the qualifying flocks, their extracted daily mor-
tality data were used to infer the number of birds in the SEIRC
compartments on each day during the within-flock epidemic.
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The approach was similar to the method previously described by
Bos et al. [13].

Upon exposure to infectious material, a bird was assumed to
immediately become latently infected for 1 day and subsequently
become infectious for 4 days, after which it died. For example,
the recorded mortality for Day 0 is for birds that became latently
infected at Day −5 and became infectious at Day −4, etc. These
bird-level latent and infectious period durations were based on
an experimental study in turkeys using the 2015 Minnesota
Eurasian/American HPAI H5N2 turkey outbreak field isolate
[14] as reported in Cardona et al. [15]. Probability distributions
were fitted to the experimental data and the best-fitting mean latent
and infectious periods were estimated as 1.4 (95% CI 0.9–2.6) and
4.2 (95% CI 3.3–5.5) days, respectively [15]. These were rounded
off to 1 and 4 days, respectively, for our analysis since the back-
calculation procedure requires whole numbers. These estimates
are also supported by the literature review of Spickler et al. [7].

All infected birds were assumed to succumb to infection based
on the findings of an inoculation experiment using the 2015
Minnesota Eurasian/American HPAI H5N2 turkey outbreak
field isolate [14, 15]. This level of fatality has been previously
mentioned by Mutinelli et al. [16] and De Benedictis et al. [17]
for field outbreaks. Experimentally, Alexander et al. [18] also
reported that 100% morbidity and mortality was observed
among in-contact turkeys in an experiment using the A/
chicken/Pennsylvania/1370/83(H5N2) strain and similar mortal-
ity levels were reported for A/turkey/Ontario/7732/66 H5 HPAI
virus [19].

Table 2 presents an example of back-calculated data for a sam-
ple flock. In the procedure, the selected daily HPAI-induced mor-
tality records (Dead) are cumulated to obtain the number of
HPAI-dead birds (total-Dead) since the Start Day. Based on the
set infectious period (4 days), the number of newly infectious
birds (I_new-die) on a given day is estimated from ‘Dead’ 4
days later. Cumulating this number for up to 4 days (i.e. the dur-
ation of the infectious period) gives the number ‘I_total-4-die’,
which is the total number of infectious birds (I) on a given day
because it was assumed that all infectious birds died.

Consequently, the number of newly infected birds (C) on a
given day (t) is obtained from ‘I_new-die’ a day later. The total

number of birds (N) on day (t) was obtained from the number
of birds stocked at the start adjusted for the birds that died.
Subtracting the number infected (I) from this total gives the num-
ber of birds at risk of infection (S) on a given day. Mathematica
10.3 (Wolfram Research, Inc., Oxfordshire, United Kingdom)
was used to perform the back-calculation procedure on the data.

Parameter estimation procedure

Within-flock disease dynamics were assumed to follow an ‘SEIR’
epidemic model formulation, with a bird as a unit of interest and
a frequency-dependent transmission term β SI/N since the flocks
were of relatively large size. The birds in the study flocks were
housed in groups in a floor system, hence a homogeneous mixing
assumption was made. In this model, as explained in [20–22], the
number of newly infected birds C(t, Δt) in a time interval Δt = 1
day is approximately binomially distributed with a probability,
pinf(t, Δt) = 1− exp(− β I(t)/N(t) Δt) and binomial total S(t):
C (t,Dt) � Bin (S(t), pinf (t,Dt)). Based on this, the maximum-
likelihood value for the transmission rate parameter β can be
obtained by fitting a GLMM with a complementary log–log link
function and log (I (t) / N (t)) as an offset variable (e.g. [23]).

Daily records for which the number of infectious birds I > 0
were compiled into a dataset. The procedure GLIMMIX in SAS
9.4 program (SAS Institute Inc., 2002) (which yielded the same
results as the procedure GLMER in statistical software R [24,
25]) was used to carry out the GLMM fitting to estimate β and
its 95% CI. In the model, the variable ‘flock’ was entered as a ran-
dom effect. Individual-flock transmission rate parameters were
estimated to gain insight into the variation of the predicted par-
ameter, and the within-flock R0, which was calculated as the prod-
uct of the estimated transmission rate parameter and the set mean
bird-infectious period.

Finally, based on the estimates from the default scenario, we
suggest a candidate distribution for β to be used in predictive
within-flock transmission models and give its 90% prediction
interval. The distribution for predicted ln(β) was derived by sum-
ming two independent normal distributions representing the
uncertainty in the model intercept and the random effect for
flock (with mean = 0). The distribution for β is then obtained

Table 1. Example demonstrating the application of the flock selection criteria and extraction of mortality chains for back-calculation during the period of interest in
four, 10 000 bird flocks with an average normal daily mortality of 0.1% with an HPAI mortality threshold of 0.25%

Day No.a

Flock A mortality Flock B mortality Flock C mortality
Flock Db mortality Flock Eb mortality

Recorded Extracted Recorded Extracted Recorded Extracted Recorded Recorded

−6 5 4 2 10 3

−5 3 2 1 9 11

−4 12c 2 9 8 13c 2

−3 17 7 13c 3 7 29d 8

−2 44d 34 35d 25 31c,d 21 32 4

−1 101 91 121 111 39 29 23 33c,d

0 292 282 403 393 65 55 45 34

aDay 0 refers to the End Day which is also the last recorded data point in the mortality data. The preceding days were negatively numbered in reference to Day 0.
bThese flocks do not qualify for back-calculation because they violate the inclusion criteria (see text). Mortality in Flock D drops below the mortality threshold on Day −1. For Flock E, there
were only 2 days of mortality data above the mortality threshold of 0.25%.
cStart Day of the mortality chain. It should be 2 or less days prior to the Reference Day and mortality on the Start Day and on the days after must all be greater or equal to the average normal
daily mortality 0.1% (10 dead birds per day in this example).
dReference Day is the first day on which mortality equals or exceeds the set threshold of 0.25% (i.e. 25 dead birds in this example).
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by exponentiation and the suggested distribution for β is therefore
a log-normal distribution.

Sensitivity analysis and model validation

Sensitivity analysis
Four sensitivity analysis scenarios were performed to evaluate
alternate model assumptions and the possible impact of outliers.
The impact of the assumption that all infected birds succumb to
infection was assessed through a scenario in which 43% (as used
in Bos et al. [13]) of the infected birds survived infection. For
assessing the effect of the set latent period, a scenario with a
2-day latent period was compared with the default scenario. A
scenario in which daily records with absolute Pearson residuals
>10 were omitted from the default scenario dataset was also
assessed. Finally, instead of relying on mortality threshold to
include flocks in the analysis, we considered a scenario in
which the Start Day was 2 days or less prior to the HPAI detection
day reported in the original data and only requires that mortality
was maintained above average normal daily mortality thereafter.

Model validation
For the purposes of validation, the methods used in this study
were applied to synthetic datasets generated by simulating both
daily normal and HPAI-induced mortality data for 1000 simu-
lated flocks. First, daily normal mortality was modelled using a
deterministic normal mortality rate of 0.001 per bird per day
over a period of 85 days, which is the average number of mortality
records per flock for the flocks included in the final analysis.
Then, a 7-day long (i.e. 7 days to represent the period of interest
in this study) stochastic ‘SEIR’ within-flock epidemic was separ-
ately simulated using an individual-based discrete stochastic
simulation algorithm [20, 21] with 0.01-day time steps. In this
model, the probability that a susceptible bird becomes latently
infected in the next time step was pinf(t, Δt) = 1− exp(− β I(t)/
N(t) Δt) [22]. In the epidemic model simulation, transmission
rate parameters β = 2.0, 3.0 and 4.0 per day were explored (a set
based on this study’s outcomes), and the mean latent and infec-
tious periods of 1 and 4 days were maintained. The latent and
infectious periods were modelled as being Gamma distributed

with shape parameters 1.773 and 7.762 and scale parameters
0.564 and 0.515, respectively [15].

In parameterizing the models, the total number of birds in the
simulated flocks was set to 11 805 based on the mean number of
birds stocked in the qualifying flocks. All available birds (except
one that was assumed infectious) in the flock were assumed to
be susceptible at the start of the simulated period.

The predicted daily normal and the predicted HPAI-induced
mortality were combined into one simulated dataset by adding
the normal and HPAI-induced mortality on the corresponding
days. In the validation default approach, which mimics the
approach used for outbreak data, the mean normal mortality
was subtracted from the overall mortality in synthetic datasets
during the period of interest. However, for input β = 3.0 per
day, we evaluated an alternate scenario in which the synthetic
mortality was all assumed to be due to HPAI disease. This alter-
nate assumption was explored to assess the impact of not adjust-
ing for normal mortality. Transmission rate parameters were then
estimated by applying the back-calculation and GLMM proce-
dures and compared with the input β = 3.0 per day for validation.

Results

From the available outbreak data, of the 51 HPAI-confirmed tur-
key flocks with mortality on the last day of the data higher than
the mean normal mortality, 29 flocks (i.e. 57%) met the criteria
for inclusion in the main analysis (default scenario). The average
number of birds stocked in these flocks at the start of the produc-
tion was 11 547. For each of the scenarios analysed, the following
outcomes are reported: the point estimate, its 95% CI and the 5th
and 95th percentiles for the predicted individual-flock estimate
for β, R0 and its 95% CI, and the standard error and standard
deviation estimates for the point estimate of β and its variation
between flocks.

Table 3 presents the estimated parameters for the different
scenarios. In the default scenario, β was estimated to be 3.2
with a 95% CI of 2.3–4.3 per day, and a corresponding R0 of
12.8 (95% CI 9.2–17.2). The 5th and 95th percentiles of the pre-
dicted individual flock estimates were, respectively, 1.3 and 10.3
per day. In the sensitivity analyses, increasing the latent period
from 1 to 2 days significantly increased β to 12.4 (95% CI 6.9–

Table 2. An example of back-calculated data based on HPAI-induced mortality data for a selected flock

Daya Dead total-Dead I_new-die I_total-4-die Ib Cb Sb Nb

−9 0 11 2466

−8 11 11 11 12 2455 2466

−7 12 23 23 13 2443 2466

−6 13 36 36 22 2430 2466

−5 22 58 58 142 2408 2466

−4 11 11 142 189 189 2266 2455

−3 12 23 2443

−2 13 36 2430

−1 22 58 2408

0 142 200 2266

The shaded rows represent the back-calculated estimates of disease states that were used in the analysis.
aIn this example, the Start and End days are day −4 and 0, respectively.
bVariables used in the estimation procedure.

4 A. Ssematimba et al.



22.3) per day. Assuming that 43% (instead of 0% in the default
scenario) of the infected birds survived the infection as well as
omitting outliers in the default scenario did not have a significant
effect on the estimated parameters. However, omitting outliers
improved the model fit as would be expected. Finally, dropping
the requirement to exceed the set mortality threshold and only
relying on the reported HPAI detection day in the original data
yielded a lower but not (statistically) significantly different
β = 2.1 (95% CI 1.5–2.8) per day and the qualifying number of
flocks was similar.

From Table 4, we present results of model validation using
simulated data. In this case, percentiles were preferred since
standard errors are more influenced by sample size. We observed
that applying the study methods to simulated data with an input β
of 3.0 per day and adjusting for normal daily mortality during the
period of interest yielded a mean estimate of β = 2.9 with its 5th
and 95th percentiles as 1.6 and 6.1 per day, respectively, which
is consistent with the input β. Similarly, for β = 2.0 and 4.0 per
day, the estimated values were in close agreement with their cor-
responding inputs. However, in the scenario without adjustment
for normal mortality, an input of 3.0 per day resulted in a
much lower β of 1.6 per day and the input β was well outside
the estimated 5th and 95th percentiles.

Discussion

Quantifying the transmission characteristics of HPAI in poultry
flocks is important for the development of simulation models

used to evaluate active surveillance sampling and testing protocol
options and other outbreak control measures included in HPAI
emergency response plans. Experimental inoculation studies can
provide data regarding the timing of infection and/or the onset
and duration of shedding which are beneficial for estimating dis-
ease state durations (i.e. latent and infectious periods), disease
mortality rates, as well as transmission rate parameters (see, e.g.
[26]). However, extrapolating experimental transmission dynam-
ics to commercial poultry production flocks is not straightforward
due to, for example, environmental (i.e. controlled laboratory vs.
less or uncontrolled field environment) as well as animal handling
differences that may influence disease dynamics. Using mortality
data collected from flocks in the field during epidemics provides
an option to infer the possible timing of infection for individual
birds and estimate the rate of disease transmission for commercial
poultry production systems. The use of field data provides an
advantage in that it is more representative of actual commercial
poultry production management practices, although experimental
data are still used as a basis for estimating the length of latent and
infectious periods.

This study used daily mortality data obtained from infected
turkey farms during the 2015 HPAI H5N2 epizootic in
Minnesota, USA, to estimate the transmission rate parameter (β).

The mean transmission rate parameter estimated in this study,
assuming a latent period of 1 day, and an infectious period of 4
days, was 3.2 (95% CI 2.3–4.3) per day with an R0 of 12.8 (95%
CI 9.2–17.2). We note that dropping potential outliers from the
dataset improved the goodness of fit but did not significantly

Table 3. Estimated transmission rate parameters for the different scenarios: the default scenario assumes a latent period of 1 day, an infectious period of 4 days
and all infected birds succumb to the infection

Scenario
Transmission rate

parameter β (95% CI)
Basic reproduction
number R0 (95% CI)

Std. error
for β point
estimatea, b

Std. dev.
between
flocksa, b

5th and 95th
percentiles for

individual flock βb
Generalised

χ2/df

Default 3.2 (2.3–4.3) 12.8 (9.2–17.2) 0.142 0.756 1.3–10.3 156

43% surviving infection 3.2 (2.4–4.4) 12.8 (9.6–17.6) 0.143 0.766 1.3–10.5 294

2-day latent period 12.4 (6.9–22.3) 49.6 (27.6–89.2) 0.271 1.405 2.2–95.1 20

Dropping outliersc 3.1 (2.2–4.2) 12.4 (8.8–16.8) 0.149 0.790 1.1–10.3 9

Using reported
detection dayd

2.1 (1.5–2.8) 8.4 (6.0–11.2) 0.146 0.761 0.5–6.6 165

aPresented values are on a natural logarithm scale.
bPresented estimates are obtained using procedure GLMER in R.
cEstimated from a dataset that omitted daily records whose absolute Pearson residual was >10.
dSetting Start Day 2 or less days prior to reported detection day and mortality staying above normal daily mortality instead of relying on mortality threshold.

Table 4. Estimated parameters from synthetic data obtained from simulations using different values of β as inputs and taking mean latent and infectious periods of
1 and 4 days, respectively, while applying the flock selection criteria as used in the default scenario for the outbreak data

Input β
(per day)

Per cent
qualifying flocksa

Estimated transmission rate parameter β (5th
and 95th percentiles for individual flock β)b

Basic reproduction number R0 (5th and
95th percentiles for individual flock)

Std. dev.
between flocksc

3.0 47.2 2.9 (1.6–6.1) 11.6 (6.4–24.4) 0.457

3.0d 76.1 1.6 (1.1–2.3) 6.4 (4.4–9.2) 0.228

2.0 1.5 2.2 (1.0–4.8) 8.8 (4.0–19.2) 0.529

4.0 32.8 3.6 (1.8–8.3) 14.4 (7.2–33.2) 0.506

aPercentage of the 1000 synthetic flocks that met the inclusion criteria that is based on HPAI-related mortality in a flock.
bEstimates are obtained using GLMER procedure in R and percentiles are preferred since standard error is more influenced by sample size.
cPresented values are on a natural logarithm scale obtained in R and standard deviation is preferred since standard error is more influenced by sample size.
dEstimated from synthetic data without adjusting for normal mortality during the period of interest.
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affect β. Most importantly, the diagnostic plots of residuals vs. fit-
ted value did not show any non-linear patterns, which indicates
the link function used is suitable. However, there may be some
overdispersion when using our field data, which is not unexpected
given the approximations for some of the relevant variables
(i.e. number of birds in various disease states) used in the
outbreak data-based approaches.

There is a large between-flock variation in the parameter esti-
mates as evidenced in the magnitude of the random effect. We
thus recommend that, to improve robustness, distributions that
cover the predicted range should be used in risk assessment and
surveillance models. Based on the current results (Table 3), and
considering the impact of both the uncertainty (measurement
error) and between-flock variability, we recommend the use of a
log-normal distribution with a mean of 4.36 (i.e. derived from a
normal distribution with mean, μ = 1.18 and standard deviation,
σ = 0.756) in simulation modelling studies. The estimated 90%
prediction interval of β based on this distribution is 0.9–11.5
per day.

When simulated datasets were used for validation, transmission
rate parameter estimates were all reproduced within close range of
their corresponding input β. Slight deviations were likely due to
inherent characteristics of the approach, such as the deterministic
assumptions made about the length of the latent and infectious
periods. Nonetheless, close agreement indicates that the study
approach provides a reasonable approximation. This, and the
fact that mortality data can be obtained relatively easily, provides
support for the use of this approach in the analysis of epizootics
associated with similar patterns of rapidly increasing mortality.

Given the impact of HPAI strain characteristics [7] and flock
management practices on disease dynamics, this study’s outcomes
may not necessarily be in agreement with the related studies.
However, the estimates from this study are within the range of
findings from experimental and field studies involving HPAI in
turkeys, especially β. For example, in an analysis from an experi-
mental study involving HPAI H7N1 in turkeys that excluded the
latent period, Saenz et al. [27] estimated a best-fitting β of 2.04
(95% CI 1.5–2.7) per day with a mean infectious period of 1.47
(95% CI 1.3–1.7) days, giving an R0 equal to 3.01 (95% CI 2.2–
4.0). Another experimental-based study involving HPAI H7N7
virus in 12-week-old turkeys yielded a mean infectious period
of 6.2 days and an estimated β of 1.26 (95% CI 0.99–1.59) per
day [28]. For field-based studies, using data obtained from the
1999–2000 HPAI H7N1 turkey epidemic in Italy, Bos et al. [29]
assumed a bird-infectious period of 2 days and estimated a β of
1.43 (95% CI 1.17–1.74) per day. In a study based on epidemic
data for 2003 HPAI H7N7 outbreak in the Netherlands using a
4-day infectious period, the overall β for turkeys was estimated
as 3.37 (95% CI 0.97–11.74) per day [13]. There are some import-
ant sources of variability that could explain the range of estimates
between studies, such as differences in experimental design, the
difference in HPAI virus strain characteristics (i.e. the duration
of the latent and infectious periods) and regional differences in
flock management practices.

We have some methodological improvements relative to the
previous studies [13, 29, 30]. For example, in this study, we
adjusted for non-HPAI-related mortality during the period of
interest. Although, we cannot precisely determine the fraction
of observed mortality that is due to HPAI disease, analysis on syn-
thetic data indicates that adjusting for normal mortality based
on mean values yields more accurate parameter estimates.
Additionally, in order to ensure that the back-calculation step is

only applied to mortality that is mainly due to HPAI disease,
we applied the absolute mortality threshold criteria. These criteria
were aimed at minimizing the impact of variability in normal
mortality on the estimated transmission rate parameter and,
most importantly, excluding days whose recorded daily mortality
is likely to have occurred independent of HPAI disease.

In our validation analysis using simulated data, not correcting
for daily normal mortality during the period of interest lowers the
predicted transmission rate parameter estimates, yielding a β of
1.6 per day from an input of 3.0 per day (Table 4). Therefore,
assuming that the mortality observed during the period of interest
is fully due to HPAI does not seem to be justified, and the ques-
tion of whether or not to adjust for normal daily mortality
deserves careful consideration in the future analyses where field
outbreak data are used to estimate the transmission rate param-
eter β. Finally, the alternative scenario of setting the Start Day
as 2 or less days prior to the reported day of detection yielded a
statistically insignificantly lower β. However, based on actual
field practices and on the outcomes of this validation step, we
recommend that surveillance protocols also consider the use of
mortality triggers as a supplementary detection mechanism to
initiate further diagnostic investigations for HPAI [9–12].

The overall raw mortality dataset included mortality data from
some barns on infected premises which did not demonstrate the
typical exponential rise in HPAI mortality above the normal mor-
tality threshold. We hypothesise that the absence of such a trend
in those flocks may have been due to early detection that occurred
because of active surveillance via testing dead birds. This active
surveillance was implemented for flocks in an HPAI control
area to promote early detection as well as to meet the require-
ments for continuity of business guidelines. Additionally, for
the final set of flocks included in the back-calculation procedure,
we verified that the barns were infected with HPAI H5N2 virus
(RRT-PCR test positive). The qualifying number of flocks being
relatively low was also, in part, a consequence of incomplete
data whereby some flocks lacked test results and/or the total num-
ber of birds stocked.

In the sensitivity analysis, the study outcomes were robust to
the assumption on the fraction surviving the infection, but were
sensitive to the set latent period. Also, changing the infectious
period to either 3 or 5 days did not significantly affect the esti-
mated β (results not shown). Insensitivity to the surviving fraction
may indicate that if only a fraction of infected birds die, correcting
for this affects both the infection pressure and the number of
newly infected birds in similar ways, thus having only a small
effect on the estimate. Sensitivity to the duration of the latent per-
iod was also found in other related studies (e.g. [13]). Note that
the duration of the latency period is both pathogen- and species-
specific. Therefore, it is important to use relevant estimates for the
HPAI strain and bird species.

Methodological limitations of this and other related studies
that use back-calculation with GLM-based estimation include
the assumption of deterministic latent and infectious periods,
and disregarding important sources of between-bird variability
(e.g. HPAI susceptibility and infectivity). Moreover, using whole
integers for these durations represents a discrete approximation
of a continuous process, where the exact timing of death is not
considered. Other than improving the resolution of the timing
of death by increasing the frequency of collecting mortality data
(which is impractical), the other limitations may require different
and possibly computationally intensive approaches. We also
assumed a frequency-dependent transmission model, implicitly
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equivalent to assuming that contact rates are limited by behav-
ioural or social factors and do not depend significantly on popu-
lation density. Besides, if the population size remains more or less
constant as an epidemic passes through, then density- and
frequency-dependent models are equivalent [22, 31–33].
Nonetheless, the study approaches performed reasonably well in
validation using synthetic data (Table 4). In other words, there
is enough evidence to support the conclusion that the methods
and assumptions upon which this study was based are reasonable
approximations. It is also important to note that among the
closely related studies, this validation step on simulated data is
unique to this study.

We conclude that back-calculation is a computationally effi-
cient method that uses accepted GLM-based procedures to pro-
duce reasonable estimates for the within-flock transmission rate
parameter β for HPAI in turkeys and possibly other livestock dis-
eases that are characterised by rapidly increasing mortality. The
within-flock estimates for the transmission rate parameter and
the basic reproduction number from this study can be used to
inform a number of analyses for decision support. Examples
include between-flock disease transmission models (e.g.
InterSpread Plus) used to evaluate the effectiveness of disease
control strategies on geographic spread, and within-flock simula-
tion models that are used to predict time to detection of HPAI
virus in infected turkey flocks to evaluate different surveillance
methods. In turn, outcomes from those studies can be used to
inform decisions on the selection of appropriate mitigation
measures, which could limit the geographical spread of the dis-
ease. Finally, there is a need for further research to gain more
insight into the factors underlying the observed wide variation
in the estimated transmission rate parameter among poultry
flocks.
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