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statistical or fold-change-based cutoff, we developed, in 
the context of the Mapping the Human Toxome project, 
an enrichment paradigm called information-dependent 
enrichment analysis (IDEA) to guide identification of the 
transcription factor network. We used a test case of activa-
tion in MCF-7 cells by 17β estradiol (E2). Using this new 
approach, we established a time course for transcriptional 
and functional responses to E2. ERα and ERβ were asso-
ciated with short-term transcriptional changes in response 
to E2. Sustained exposure led to recruitment of additional 
transcription factors and alteration of cell cycle machin-
ery. TFAP2C and SOX2 were the transcription factors 
most highly correlated with dose. E2F7, E2F1, and Foxm1, 
which are involved in cell proliferation, were enriched only 
at 24  h. IDEA should be useful for identifying candidate 
pathways of toxicity. IDEA outperforms gene set enrich-
ment analysis (GSEA) and provides similar results to 
weighted gene correlation network analysis, a platform that 
helps to identify genes not annotated to pathways.

Keywords  Endocrine Disruption · Bioinformatics · Gene 
Expression · Enrichment Analysis · Pathways of Toxicity

Abstract  The twenty-first century vision for toxicology 
involves a transition away from high-dose animal stud-
ies to in  vitro and computational models (NRC in Toxic-
ity testing in the 21st century: a vision and a strategy, The 
National Academies Press, Washington, DC, 2007). This 
transition requires mapping pathways of toxicity by under-
standing how in vitro systems respond to chemical pertur-
bation. Uncovering transcription factors/signaling networks 
responsible for gene expression patterns is essential for 
defining pathways of toxicity, and ultimately, for determin-
ing the chemical modes of action through which a toxicant 
acts. Traditionally, transcription factor identification is 
achieved via chromatin immunoprecipitation studies and 
summarized by calculating which transcription factors are 
statistically associated with up- and downregulated genes. 
These lists are commonly determined via statistical or fold-
change cutoffs, a procedure that is sensitive to statistical 
power and may not be as useful for determining transcrip-
tion factor associations. To move away from an arbitrary 
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Introduction

Much of what we understand about the effects of toxic 
compounds on human health comes from decades of 
experiments with animals. This knowledge currently 
underwrites many of the safety regulations concerning 
exposures to hazardous compounds in commercial, indus-
trial, and environmental applications. The testing strate-
gies for these in-life animal tests are expensive, time con-
suming, and exorbitant in the use of animals (Cooper et al. 
2006; Hartung and Rovida 2009). Differences between 
human biology and laboratory animals confound assess-
ing human safety from exposure to a compound with ani-
mal studies (Hartung 2009). Additionally, extrapolating 
from high-dose conditions typically required for in  vivo 
animal testing to chronic exposures relevant to human 
safety is problematic because of nonlinear dose–response 
relationships at high treatment levels. Together, these 
facts argue for new approaches in toxicity testing based 
on human biology (NRC 2007; Andersen and Krewski 
2009, 2010).

The development of in vitro toxicity assays and compu-
tational models may be able to replace traditional in-life 
animal testing. High-throughput in vitro screening batter-
ies designed to assess mode of action and hazard are cur-
rently being used to prioritize compounds for conventional 
in-life testing (i.e., the EPA ToxCast and NIEHS Tox21 
programs). Integrating prior knowledge about biological 
pathways with data from screening programs yields mod-
els that are predictive of dose–response behaviors from 
in vivo testing results (Thomas et al. 2013a; Rotroff et al. 
2014). However, these approaches rely heavily on knowl-
edge of the underlying pathway of toxicity (PoT)—the 
mechanism by which exposure to a toxicant leads to an 
adverse biological outcome (Kleensang et  al. 2014; Har-
tung and McBride 2011). For many commercially impor-
tant chemicals, their PoTs are poorly understood. As we 
move forward with new in vitro technologies, it would be 
valuable to develop tools for deriving PoT de novo. With 
this goal, the Human Toxome project (Bouhifd et al. 2014) 
was started in an effort to employ—omics technologies to 
start a catalogue of PoTs.

In vivo, dose–response relationships of short-term 
full-genome gene expression experiments are consistent 
with those from phenotypic endpoints in 2-year bioas-
says (Thomas et al. 2013b). This observation indicates that 
microarray and other high-throughput experiments might 
also help define PoTs without having to rely on incomplete 
and possibly misleading literature on phenotypic response 
(Ioannidis 2005; Hartung 2013). To demonstrate the value 
of this strategy, we examined estrogen receptor signaling 
in the MCF-7 human breast cancer cell line as a model of 
estrogenic signaling.

Exposure to exogenous estrogens has been linked to 
deleterious reproductive and developmental effects and 
breast and uterine cancers. Estrogens act by binding to vari-
ous estrogen receptors, including ERβ, GPER, and vari-
ous ERα isoforms, i.e., ERα36 and ERα46 (Barkhem et al. 
1998; Flouriot et  al. 2000; Maggiolini et  al. 2004; Wang 
et al. 2006). Working in concert, these receptors orchestrate 
estrogen-dependent processes through regulation of tran-
scriptional programs in various tissues. However, compari-
son between gene expression datasets and high-throughput 
chromatin immunoprecipitation sequencing (ChIP) has 
revealed a relatively small overlap, suggesting that cis-acti-
vation through ERs is an inadequate description of the ER 
network. These findings indicate that there are additional 
aspects that need to be considered to connect the molecu-
lar initiating event (estrogen binding to its various recep-
tors) to an adverse cellular outcome (defined here as altered 
proliferation).

In addition to estrogens acting directly through ERα and 
ERβ, there is increasing evidence for regulatory contribu-
tions from additional transcription factors (O’Lone et  al. 
2004). ERα interacts with a number of transcriptional mod-
ulators, including AP-1 (Zhao et  al. 2010), Sp1 (Schultz 
et al. 2003), SNCG (Jiang et al. 2003), and Sin3A (Ellison-
Zelski et  al. 2009). Non-genomic signaling, originating 
from estrogens binding to the G-protein-coupled recep-
tor GPER or from ERα isoforms anchored to the plasma 
membrane, initiates kinase cascades that drive transcription 
through mechanisms not associated with receptors binding 
to estrogen receptor response elements.

Predicting the transcription factors responsible for a cel-
lular response would significantly contribute to PoT iden-
tification (Essaghir et al. 2010; Shen et al. 2011; Maertens 
et al. 2015). However, traditional approaches for identify-
ing transcription factors from gene expression patterns use 
data from a small subset of the genome. Here, we devel-
oped a novel approach to investigate the transcription fac-
tor network responsible for estrogen-mediated transcrip-
tional changes that makes use of a higher proportion of 
the biological information than conventional methods. We 
first performed gene expression microarray experiments 
by exposing MCF-7 breast cancer cells to the native estro-
gen, 17β-estradiol (E2). By combining the observed gene 
expression changes with publically available ChIP data, we 
generated a putative gene-regulatory network.

Methods

Cell culture

MCF-7 cells were purchased from the American Type 
Culture Collection (ATCC, Manassas, VA, USA, No. 
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HTB-22, lot number 5938874). MCF-7 stock cells tested 
negative for 40 Mollicutes species mycoplasma con-
taminations with the GRCF’s mycoplasma test that uses 
a PCR based MycoDtect™ kit from Greiner Bio–One 
North America, Inc. (Monroe, NC) to PCR amplify the 
16S–23S intergenic spacer region with a highly conserved 
fluorescent primer pair. Cells were seeded at a density of 
300,000 cells/well in six-well plates and allowed to grow 
for 72 h in complete growth media composed of DMEM-
F12 (GIBCO, Life Technologies, Grand Island, NY, USA, 
No. 11309) supplemented with 10 % fetal bovine serum 
(Atlanta Biologicals, Norcross, GA, USA, No. S11150), 
non-essential amino acids (GIBCO, Life Technologies, 
No. 11140), 10  μg/mL bovine insulin (Akron Biotech, 
Boca Raton, FL, USA, No. AK8213), and gentamicin 
(Invitrogen, Life Technologies, No. 15710) in bisphenol-
A-free culture flasks. After 72  h, cells were rinsed with 
PBS and placed in treatment media composed of DMEM/
F12 supplemented with 5  % dextran charcoal-stripped 
fetal bovine serum (DCC, Gemini Bio-products, Sac-
ramento, CA, US, No. 100-119), non-essential amino 
acids, 6  ng/mL bovine insulin, and gentamicin (Invitro-
gen 15710064 as per protocol) for 48 h. Cells were then 
exposed to 17β estradiol (E2, Sigma-Aldrich, St. Louis, 
MO, USA, No. E8875) or vehicle control dimethylsulfox-
ide (DMSO, Sigma Aldrich, No. D8418) in fresh treat-
ment media for 2, 4, 8, and 24 h. Samples were scraped 
into TRI Reagent (Sigma-Aldrich, No. T9424) and stored 
at −80 °C until RNA isolation and q-PCR analysis.

Gene expression microarray experiments

Total RNA from MCF-7 cells was extracted using TRIzol 
Reagent (Thermofisher No. 10296028) according to manu-
facturer’s instruction, and purified using RNeasy Mini Kit 
(Qiagen). Purified RNA was quantified by using NanoDrop 
ND-1000 spectrophotometer and the quality of RNA was 
analyzed by using Agilent Bioanalyzer (Agilent). In total, 
100  ng of total RNA from treated and control cells was 
converted into cDNA and then into labeled cRNA using 
Agilent Low Input Quick Amp Labeling Kit (Agilent). The 
resulting cRNA was labeled with Cy3. Labeled cRNAs 
were then purified, and RNA concentration and dye incor-
poration were measured using NanoDrop ND-100 (Thermo 
Scientific ND-2000) spectrophotometer. Hybridization 
to Agilent SurePrint G3 human whole-genome 8 ×  60  K 
microarray (Agilent) was conducted following the manu-
facturer’s protocol. Microarrays were scanned with an Agi-
lent DNA microarray scanner. Feature Extraction (11.5.1.1 
version, Agilent) was used to filter, normalize, and calculate 
the signal intensity and ratios. Processed data were sub-
jected to GeneSpring (Agilent) analysis. In order to ensure 
sufficient statistical power, microarray experiments were 

performed in triplicate. Gene expression data are available 
via the NCBI Gene Expression Omnibus (GSE84981).

Gene expression analysis

Data from microarray experiments were analyzed using 
GeneSpring (Agilent) software. Raw data were imported 
and quantile-normalized. Fold-change expressions for the 
probes were calculated by calculating the ratio of change 
from probes in time-matched controls. Significance for 
the change was computed using a t test and corrected for 
multiple tests using FDR correction. Genes were then 
assigned to their respective probes using the annotation 
files created by Agilent for the microarray plates used. 
No fold-change cutoff was applied to gene expression 
results.

Transcription factor database curation

Several compendia exist of transcription factor–target inter-
action that we can use to uncover the regulatory network 
through which estrogen acts. For this study, we used ChIP-
X enrichment analysis (ChEA) database (Kou et al. 2013) 
and the Encode database (Bernstein et al. 2012). The data-
bases were combined to increase coverage of either one 
of them. This combined database was used to calculate 
enrichment using IDEA and gene set enrichment analysis 
(GSEA).

Information‑dependent enrichment analysis (IDEA)

Our approach calculates over-representation across multi-
ple sets of upregulated or downregulated genes in search of 
the group of genes that yields the most significant enrich-
ment. The workflow for calculating enrichment using 
microarray data and transcription factor database with 
IDEA is represented in Fig. 1. Consider the set of N genes 
identified as upregulated. Let δi describe the relationship 
between a transcription factor and gene i, where 0 ≤ i ≤ N 
and δi = 1 if the transcription factor regulates gene i. From 
the set of all upregulated genes, a set {En} of the n most 
highly upregulated genes can be defined. This sample of 
n genes contains ∑{i<n}δi genes regulated by the transcrip-
tion factor. The enrichment probability fn of the association 
between a transcription factor and the set of genes is cal-
culated directly using a Fisher’s exact test. Specifically, fn 
reflects the probability that a gene selected from {En} and 
a gene selected from the genome at large have equivalent 
likelihood of being regulated by the transcription factor. 
fn can be calculated for all values of n and test statistic t 
defined as the minn fn.

To determine whether the transcription factor is asso-
ciated with the set of N genes, we used Monte Carlo 
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hypothesis testing. A distribution {t0} of null-model test 
statistics was established by permuting the N genes and 
calculating f 0n  for each permutation (Supplemental Fig. 
S1). The best estimate of the probability e that t is con-
sistent with the null model is determined by quantile func-
tion of {t0} (Supplemental Fig. S2). These results were 
obtained using a distribution of 1000 null-model test 
statistics.

This procedure was repeated for all transcription factors 
in the database and for both up- and downregulated gene 
sets. The Benjamini–Hochberg multiple test correction was 
applied to the e values. The same procedure was repeated 
with KEGG and Reactome ontologies to establish effects 
of estrogen exposure on biological processes. For a practi-
cal example of IDEA calculations using a prototype data 
set, see Supplementary Methods.

Weighted gene correlation network analysis (WGCNA)

A signed weighted gene correlation network analysis 
(WGCNA) network (Langfelder and Horvath 2008) was 
generated on the 7000 most highly expressed genes at 8 h 
as determined by rank means expression. The network was 
derived based on a signed Spearman correlation using a β 
of 8, and clustered into modules using dynamic tree cut 
with a height of 0.25 and a deep split level of 3, and a reas-
sign threshold of 2. The eigenmodules—essentially the first 
principal component of the modules—were then correlated 
with dose. Each module that had a statistically significant 
correlation with dose was analyzed for transcription factors 
using the ChEA 2015 dataset accessed via EnrichR (Kou 
et al. 2013) restricted to MCF-7 cells.

Results and discussion

Response of MCF‑7 cells to estrogen

The gene expression response of MCF-7 breast carcinoma 
cell line to 17β-estradiol (E2) has been extensively docu-
mented (O’Lone et  al. 2004). However, the studies in the 
MCF-7 experimental system (Rae et al. 2005; Carroll et al. 
2006; Chang et al. 2006; Creighton et al. 2006; Fan et al. 
2006; Frasor et al. 2006; Gaube et al. 2007; Kininis et al. 
2007; Lin et  al. 2007a, b; Bourdeau et  al. 2008; Chang 
et al. 2008) are inconsistent when analyzed at the gene level 
(Ochsner et  al. 2009; Jagannathan and Robinson-Rechavi 
2011) due to subtle differences in cell culture and treatment 
conditions. Because none of the extant studies includes a 
comprehensive concentration and time response, and to 
ensure we could evaluate effects of dose and time without 
combining disparate studies, we performed a comprehen-
sive dose and time response transcriptomic study perform-
ing gene expression microarray analysis on MCF-7 cells 
treated with 0.01, 0.1, and 1 nM E2 for 2, 4, 8, and 24 h.

The number of genes identified as differentially 
expressed using traditional statistical analysis (FDR-
corrected p values <0.05) in cells treated with 1  nM E2 
varied substantially with time and concentration; from 
zero genes after 2-h exposure to 4113 genes after 24  h 
(Fig. 2; Table 1). This increase in number of differentially 

Fig. 1   Flowchart for computing enrichment using the IDEA algo-
rithm. Genes are split into up and downregulated sets and each set is 
ordered based on absolute fold-change of expression. An increasingly 
larger set of genes is selected for calculating enrichment of ontol-
ogy categories using Fisher’s exact test. The most significant p value 
achieved through this process is compared against p values obtained 
for randomized sets of genes to calculate the final e value. The flow-
chart represents the process that is repeated for calculating enrich-
ment for each category from the database
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expressed genes is not monotonic, with 547 genes identi-
fied at 4 h and only four genes identified at 8 h post-treat-
ment. Because the identification of differentially expressed 
genes depends on experimental factors that drive statistical 
power, it is unclear whether this decrease in differentially 
expressed genes with time is biologically meaningful. This 
observation is common to functional genomics experiments 

that test thousands of hypotheses in parallel. In our case, as 
we try to reconstruct the transcription factor network, the 
inability to determine whether these results are biological 
or an analytical artifact of statistical methods poses a chal-
lenge for correctly interpreting data.

Because the lists of differentially expressed genes 
derived from microarray experiments are determined by 

Fig. 2   Genomic response of 
E2-treated MCF-7 cells. a 
Matrix of expression changes 
for all differentially expressed 
genes in response to E2 treat-
ment. Each row indicates a 
gene; each column indicates 
a treatment condition increas-
ing in dose (0.01, 0.1, and 
1 nM) from left to right. Genes 
were categorized as being 
regulated by ERα and/or ERβ 
if transcription factor binding 
was documented for respec-
tive transcription factors in the 
combined ChEA and encode 
database. A small fraction of the 
differentially expressed genes 
have been shown to bind ERα 
and/or ERβ in previous studies. 
b Transcription factor regulation 
matrix. Each row is a gene and 
each column is a transcription 
factor. Black dots indicate that 
gene is shown to have the cor-
responding transcription factor 
binding

A B

Table 1   Number of genes 
differentially expressed 
following E2 treatment in 
MCF-7 cells (FDR p value 
≤0.05)

2 h 4 h 8 h 24 h

Up Down Up Down Up Down Up Down

0.01 nM 3 9 48 39 14 14 0 0

0.1 nM 205 120 670 312 229 180 1350 954

1.0 nM 0 0 375 172 3 1 2101 2012
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statistical power (e.g., number of replicates, RNA isola-
tion protocol, and microarray platform) as well as biol-
ogy, using standard over-representation analysis to assign 
functional ontology descriptions to sets of genes is likely 
be misleading. Classical overrepresentation analysis suffers 
from a number of shortcomings. Gene expression changes 
are aggregated into lists of up- and downregulated genes 
based on statistical significance, magnitude of change, or 
some combination of these and other factors. These choices 
result in a list of genes with the most extreme response. 
However, it is rare that a gene encodes a protein that is 
solely responsible for the cellular response to stimuli. 
In most cases, multiple genes are transcribed to varying 
degrees to bring about a cellular change. Using an arbitrary 
analytical threshold cutoff (i.e., p value or fold change) 
does not take into account the diverse nature of gene tran-
scription in relation to PoTs. This traditional approach is 
unlikely to capture subtle effects at low doses or early time 
points where very few genes are identified as significantly 
differentially expressed. Indeed, this approach often results 
in no categories enriched at low exposures and many 
non-informative categories enriched at high exposures. 

Additionally, because statistical cutoffs are not biologically 
motivated and the number of statistically significant genes 
may be different for each experimental condition, it is dif-
ficult to compare relative enrichments for categories across 
experimental conditions.

To address this problem, we developed an alternative 
approach for assessing enrichment from high-throughput 
data. Our approach has the advantage of being relatively 
insensitive to variability in statistical power in assignment 
of differential expression and makes use of a greater por-
tion of the gene expression data to determine enrichment 
for transcription factor binding or functional ontology.

The information‑dependent enrichment analysis 
(IDEA) algorithm for calculating enrichment

IDEA bypasses the limitations of existing methods by 
avoiding differentially expressed gene lists and instead uses 
the entire set of microarray data to create a gene list ordered 
by expression values. This approach avoids attempts to bal-
ance the sensitivity and specificity with statistical cutoffs 
and concerns about bias in the background.

A B

DC

Fig. 3   Enrichment of ERα binding for genes up- and downregulated 
by E2 in MCF7 cells. The enrichment (i.e., Fisher’s exact probability, 
blue traces) varies considerably depending on the number of genes 
used for the calculation for a genes upregulated 24 h post-treatment, 
b downregulated 24  h post-treatment, c upregulated 2  h post-treat-
ment and d downregulated 2 h post-treatment. Enrichment for genes 
ordered by decreasing fold-change (blue) and shuffled sets of back-
ground genes (green) are shown. Dashed lines indicate lowest enrich-

ment p value achieved by a subset of the gene list sorted by decreas-
ing absolute fold change (red) or randomly shuffled (black). Once the 
gene lists are sorted by fold change the lowest enrichment p value 
changes by 9 orders of magnitude (a–c). For genes downregulated at 
24 h, d sorting the list by fold change does not improve the p value of 
enrichment. This indicates an inherent lack of information about ERα 
enrichment in the gene expression pattern in genes downregulated at 
24 h (color figure online)
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The IDEA algorithm calculates over-representation 
across multiple sets of upregulated or downregulated genes 
in search of the group of genes that yields the most sig-
nificant enrichment (see “Methods” section, Fig.  1, Sup-
plementary Methods for a rigorous description of the 
algorithm). The statistical power of over-representation 
calculations varies considerably depending on the number 
of genes used for the calculation (Fig.  3). A static set of 
genes—such as that produced by traditional gene expres-
sion analysis—may not yield optimal enrichment. Alterna-
tively, considering gene sets of different sizes allows one 
to identify the genes that provide the maximum informa-
tion about enrichment. Effectively, this allows identifica-
tion of enrichment patterns from relatively weak transcrip-
tional changes, such as those produced by exposures to low 
chemical concentrations for short durations.

IDEA identifies enrichment patterns in expression sig-
natures by sorting genes based on their response to experi-
mental perturbation. This sorting uses the magnitude of 
expression change and does not depend on arbitrary pre-
defined thresholds (statistical or otherwise) of change. If 
there is a coherent enrichment signature driving expression 
changes, one expects it to be identifiable from the most 
highly up- or downregulated genes (Fig.  3). The combi-
nation of fold-change-based sorting and enrichment using 
incrementally larger list of genes enables IDEA identify 
enrichment patterns that might have been missed using tra-
ditional approaches.

IDEA provides a natural basis for determining statisti-
cal significance for enrichment calculations. For each sta-
tistical test, a battery of background sets is prepared from 
the ensemble of all genes up- or downregulated in response 
to treatment. For each background set in this battery, the 
maximal enrichment is calculated, yielding a null-model 
test statistic. This collection of null-model test statistics 
collectively provides a null model for determining enrich-
ment significance in the test data (see “Methods” section). 
Along with the actual p value of enrichment, the number 
of genes required to achieve that value provides an addi-
tional metric for comprehending cellular response. A cat-
egory that requires a larger proportion of background genes 
to achieve peak enrichment is driven by a larger cohort of 
weakly responding genes, whereas if peak enrichment is 
achieved using a smaller number of genes, the category is 
being driven by a small highly responsive set.

Taking into account all the information provided by 
the algorithm, we can predict how the cell responds to 
stimuli in a time- and dose-dependent manner. We cal-
culated enrichment for all transcription factors from our 
knowledgebase using IDEA. To better understand the 
changes in enrichment across multiple transcription fac-
tors, we created an online interactive visualization tool for 

exploration of our results (http://www.scitovation.com/
MCF7_IDEA_Applet).

Estrogen receptors drive the short‑term transcriptional 
response to E2

We surveyed existing ChIP datasets to evaluate the fac-
tors driving estrogen-mediated transcriptional changes. 
Interestingly, ERα and ERβ—two primary estrogen tran-
scription factors—bind only about 11  % of the differen-
tially expressed genes. This low degree of overlap between 
receptor binding and gene expression regulation is in sharp 
contrast to other nuclear receptors that have been shown 
to account for approximately half of the affected genes’ 
expression (van der Meer et  al. 2010; McMullen et  al. 
2014).

At 2 h, of the upregulated genes, 28 % are required to 
reach peak ERα and ERβ enrichment. At 24  h, this ratio 
shifts to only 1.7 % for ERα and 7.8 % for ERβ. In other 
words, the ERα and ERβ signal increases over time—at 2 h 
it is barely above background level, while at 24 h the signal 
is more distinct.

We investigated the large variation in number of genes 
needed for peak enrichment to determine whether this fac-
tor contained information about the biology of the system. 
Similar sets of ERα and ERβ genes are upregulated at 2 and 
24 h (Fig. 4). Also, the highest responding genes at 24 h are 
also upregulated at 2  h. Hence, the time course of estro-
gen receptor enrichment shows a shift from a large suite of 
ER genes expressed at low level to a small set of highly 
expressed ER genes.

Fig. 4   Upregulated ERα- and ERβ-associated genes are consistent 
over time. Overlap of genes upregulated in response to 2 and 24  h 
exposures of 1 nM E2 in MCF7 cells. Almost all genes contributing 
to enrichment of ERα and ERβ at 24 h also contributed to the enrich-
ment at 2  h, indicating the consistency of estrogen response. While 
the number of ERα- and ERβ-associated genes decreases between 2 
and 24 h, these genes remain highly upregulated (Fig. 2, Supplemen-
tary Fig. S3)

http://www.scitovation.com/MCF7_IDEA_Applet
http://www.scitovation.com/MCF7_IDEA_Applet
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Plotting the distribution of expression for all ERα- and 
ERβ-regulated genes provides further evidence to the 
switch in pattern of regulation (Fig. 5). At 24 h, there is a 
larger set of highly upregulated genes (greater than fourfold 
change) than in background. Alternatively, at 2  h, all the 
ERα- and ERβ-regulated genes track background levels of 
gene expression more closely. All these observations taken 
together indicate that at ERα and ERβ are strong drivers of 
the underlying expression pattern at 24 h, but their signal is 
mediated by only a limited subset of the full group of dif-
ferentially expressed genes.

With respect to defining a signature of toxicity, this 
approach allows quantifying the strength of the signal at 
different time points. Standard overrepresentation analyses 
are unable to capture the gradual increase in strength of the 
signal. This results in misleading observations regarding 
the threshold like behavior of transcriptional factor sign-
aling cascades. Using IDEA allows us to establish that a 
large subset of weakly upregulated or downregulated genes 
can indeed drive the signaling networks.

A very different pattern of enrichment is observed in the 
case of downregulated genes. Looking at gene expression 
at 2 h, there was no enrichment in ERα and ERβ profiles 
detected. We observed enrichment for a few other tran-
scription factors, including ZNF217, indicating that the 
absence of enrichment is due to lack of ER signaling in 
these genes rather than a lack of gene expression. At later 
times, estrogen receptors are highly enriched by downregu-
lated genes. However, the fact that their peak enrichment 
never requires <37 % of all downregulated genes indicates 
that ERα and ERβ are not key mediators of downregulated 
gene response.

Growth factors drive the long term transcriptional 
response

Persistent exposure of MCF-7 cells to E2 induces cell pro-
liferation (Soto and Sonnenschein 1985). We believe the 

A

B

C

Fig. 5   ERα- and ERβ-regulated genes are highly upregulated in 
response to E2 treatment. Cumulative distributions of expression 
changes in all upregulated genes and those that are regulated by ERα 
and ERβ at a 2 h and b 24 h. At 2 h, the cumulative distribution of 
both ERα and ERβ upregulated genes follows the background distri-
bution closely. However, at 24 h, the distribution of genes regulated 
by the transcription factors deviates from substantially from back-
ground. c The fraction of genes in each of these treatment groups that 
is more than fourfold upregulated confirms that estrogen receptor-
mediated genes are highly upregulated by E2 treatment. After 2 h of 
treatment, <0.5  % of all upregulated genes are more than fourfold 
upregulated. In contrast, 1.5 % of ERα-regulated and 2 % of ERβ reg-
ulated genes are changed fourfold. At 24 h, this ratio increases to 1 % 
when all upregulated genes are considered. However, at 24  h, sub-
stantially more ERα and ERβ regulated genes (4.2 and 6.7 %, respec-
tively) are upregulated at least fourfold

▸
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shift from low-level expression of large numbers of ER-
mediated genes to high-level expression of fewer ER-medi-
ated genes results from a shift from estrogen-specific sign-
aling to more generic cell cycle signaling. At 24-h E2F7, 
E2F1 and Foxm1 are enriched in addition to the ERs. Both 
Foxm1 and E2F1 are transcriptional activators involved in 
cell proliferation (Stender et  al. 2007; Real et  al. 2011). 
E2F7 represses the activity of E2F1 by binding to E2F1-
responsive genes (De Bruin et  al. 2003; Liu et  al. 2013). 
However, at 24 h, E2F7 is only enriched in the set of upreg-
ulated genes. Since it is not enriched in downregulated 
genes, E2F7 enrichment is not inhibiting the generic cell 
cycle signature promoted by E2F1.

ZNF217, a transcription factor that has been implicated 
in cell division and differentiation in many cancers (Zhu 
et al. 2005; Littlepage et al. 2012; Rahman et al. 2012), is 
enriched by downregulated genes at all time points. High 
levels of ZNF217 mRNA are a marker of poor prognosis 
in breast cancer (Littlepage et al. 2012). ZNF217 primarily 
acts by repressing genes that halt cell cycle, thereby pro-
moting cell growth and differentiation (Thollet et al. 2010). 
This loss of gene expression is consistent with the role of 
ZNF217 as a repressor that is essential to proliferation in 
breast cancer cells (Thollet et al. 2010).

Relationship to gene set enrichment analysis (GSEA)

GSEA (Subramanian et  al. 2005) attempts to use a priori 
gene set information to calculate enrichment of gene lists. 
We applied the GSEA algorithm to our combined transcrip-
tion factor database to better understand the relationship 
between IDEA and existing methods (Subramanian et  al. 
2005). The results agree closely with those obtained by us. 
At 2 h, only ERα, ERβ, and NOTCH1 are enriched in cells 
treated with 1 nM E2 using recommended parameters at a 
FDR of <25  %, the value used by the creators of GSEA 
as a valid cutoff for establishing enrichment (Subramanian 
et  al. 2005). At 24  h, 69 transcription factors are identi-
fied as enriched in treated cells. Additionally, at 2 h, ERα 
and ERβ are highly enriched for treated cells, whereas at 
24 h the E2F family of proteins is highly enriched for the 
treated cells. This result aligns with our hypothesis that a 
proximate ER network feeds into the generic cell cycle pro-
cesses to effect proliferation and other phenotypic altera-
tions associated with E2 treatment.

GSEA discerns differences in enrichment between two 
experimental conditions (often a treatment and a control) 
by attributing enrichment of each gene set to one of the 
two conditions. When using GSEA to compare enrich-
ment between estrogen-treated and untreated cells, tran-
scription factors associated with downregulated genes and 
those that have no effect are both identified as enriched 
in untreated cells. As shown above, ERα and ERβ are 

associated with large sets of both upregulated and down-
regulated genes. The similarities and differences in the 
composition of these gene sets and their expression pat-
terns are essential in uncovering the underlying transcrip-
tion factor network. At longer exposures, GSEA identifies 
enrichment in ERα and ERβ in untreated cells but ignores 
the small set of highly upregulated genes driven by these 
transcription factors. This rigidity inherent to the GSEA 
method hinders its utility in interpreting results, whereas 
the same transcription factors may be responsible for 
both activation and repression of genes through different 
pathways. Finally, the results of GSEA are dependent on 
the choice of weight function for calculating the enrich-
ment statistic, whereas IDEA relies on the statistics of the 
hypergeometric distribution to calculate enrichment and 
places no a priori conditions on the possible enrichment 
categories.

Evidence for cell cycle signaling from functional 
ontologies

Cell cycle is controlled by a large number of transcrip-
tion factors. Hence it was necessary to ensure that enrich-
ment in E2F family of proteins is indicative of global 
cell cycle signaling in the cell. Functional ontologies 
like Kyoto encyclopedia of genes and genomes (KEGG) 
and Reactome attempt to assign genes to functional cat-
egories based on information curated from experimental 
results. These databases are better at identifying processes 
(i.e., cell cycle, metabolism, etc.) that depend on a rela-
tively large section of the genome to be expressed. As such 
they complement transcription factor databases that cap-
ture processes regulated by a small subset of genes in the 
genome.

To investigate the hypothesis of altered cell cycle signal 
appearing only after longer exposures, we calculated the 
enrichment of functional categories in both Reactome and 
KEGG using the IDEA algorithm. We observed a very clear 
temporal pattern of enrichment of cell cycle-related catego-
ries. At 2 and 4 h, none of the cell cycle-related categories 
were enriched. However, at 8  h, we observed enrichment 
of some cell cycle-related categories like DNA replication. 
Finally, at 24 h post-treatment, all mitotic cell cycle-related 
categories in both Reactome and KEGG were significantly 
enriched. Furthermore, the numbers of genes needed for 
peak enrichment at 24 h were less than those needed at 8 h, 
indicating stronger information content in the enrichment 
signal at 24  h. We also clustered the enrichment profiles 
obtained from KEGG ontology using a hierarchical cluster-
ing algorithm with Euclidian distance metric between deci-
mal logarithms of t values (Fig. 6). The clustering showed 
a similar response with signaling pathways being activated 
as early as 2 and 4 h. Cell cycle and DNA replication were 
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only enriched at 8 and 24 h. Figure 7 illustrates the general 
time dependence of key transitions in transcription factor 
and functional ontology enrichment patterns.

De novo network analysis of estrogen perturbation

To investigate the data from a methodology that is blind 
to a priori knowledge of transcription factor binding sites 
and is relatively insensitive to concerns about technical 
bias, we used weighted gene correlation network analysis 
(WGCNA) to build a de novo network from the data using 
the dose response curve at 8 h—notably a time point where 
only four genes were significantly expressed in response 
to E2. Correlation methods offer an additional alternative 
to using differentially expressed genes for downstream 
analysis, as they take advantage of a larger portion of the 
data and allow for the investigation of links between genes 
(Maertens et al. 2015). Moreover, WGCNA assigns genes 
to modules based on a graph theoretical algorithm and tests 
for significance between the modules and experimental fac-
tors (here, the dose–response curve). The added value for 
identifying PoT has been recognized earlier (Andersen 
et al. 2015; Rahnenfuhrer and Leist 2015).

Despite a relatively weak signal in terms of differen-
tially expressed genes at that the 8-h time point, the net-
work derived from the data contained five modules that 
were significantly correlated with E2 concentration. To 

Fig. 6   Clustering t values for enriched KEGG pathways. The map 
shows enrichment values for various KEGG pathways across E2 con-
centration and exposure time. Each row represents a KEGG category 
while each column represents a treatment condition increasing in 
dose (0.01, 0.1, 1 nM E2) from left to right. The enrichment values 
were clustered using a hierarchical clustering algorithm using Euclid-

ian distance between decimal logarithm of t values as a clustering 
metric. Cell cycle-related pathways cluster independent of all other 
pathways (green box). Cell cycle is strongly enriched only at 24  h 
post-treatments, while DNA replication is enriched at both 8 and 24 h 
post-treatment. This is consistent with changing transcription factor 
enrichment observed with IDEA (color figure online)

Fig. 7   Summarizing key events in estrogen signaling. Genes upregu-
lated by ERα and ERβ already show a strong expression pattern at 
2 h post-treatment. This pattern continues to get stronger with time. 
Generic proliferative transcription factors including E2F1 and E2F4 
are enriched at 8 h post-exposure but not at earlier times. Concord-
antly, genes involved in cell cycle and proliferation also show a 
strong upregulated pattern. Some ERα and ERβ genes are downregu-
lated in response to E2 treatment; their expression patterns, however, 
remain unchanged over time
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understand the relationship between the transcriptional 
factors coordinating the gene expression and the modules, 
each module was analyzed for transcription factors using 
the ChEA dataset but restricted to MCF-7 cells. In addition 
to ESR1 and ESR2, there were also well-known estrogen 
response pathway transcription factors such as GATA3 and 
cancer-related transcription factor HIF1. Moreover, both 
ZNF217 and TFAP2C were identified as a significant tran-
scription factor in each module correlated with dose and as 
expected several transcriptional modules coincident with 
the enriched transcription factors for upregulated genes 
identified with IDEA (Supplementary Table A, D).

While TFAP2C is neither annotated to estrogen-respon-
sive pathways in either the KEGG estrogen signaling path-
way (Kanehisa and Goto 2000) nor does have any GO 
annotations relating to estrogen, it is a key regulator of hor-
mone responsiveness at multiple levels. It acts both directly, 
by regulating ERα transcription, and indirectly, by recruit-
ing key estrogen pioneer transcription factors GATA3 and 
FOXA1, and also modulates several downstream signal-
ing pathways (Cyr et al. 2015). In vitro TFAP2C attenua-
tion leads to a lack of mitogenic response to estrogen and 
in  vivo decreased hormone-responsive tumor growth of 
breast cancer xenografts (Woodfield et al. 2007). Clinically, 
higher TFAP2C scores correlate with poorer survival for 
breast cancer patients (Perkins et al. 2015). Moreover, both 
TFAP2C and ZNF217 gene expression levels were corre-
lated with estrogen receptor status in breast cancer dataset 
from The Cancer Genome Atlas, indicating that the signifi-
cance of these genes for in vivo biology.

SOX2 was also identified in several of the modules. One 
key step in the regulation of breast tumor-initiating cells 
takes place when ERα downregulates miR-140 (Zhang 
et  al. 2012), leading to increased SOX2. SOX2 is consid-
ered a key regulator of stem-cell self-renewal and specifi-
cally in breast cancer tissue is thought to promote non-
genomic estrogen signaling while simultaneously acting 
to amplify estrogen’s signal by increasing the nuclear lev-
els of phospho-Ser118-ERα (Vazquez-Martin et al. 2013). 
Expression of SOX2 is increased in early stage breast 
tumors, over-expression of SOX2 increased mammosphere 
formation, and SOX2 knockdown prevented mammosphere 
formation in stem cells and tumor formation in a xenograft 
tumor initiation model (Leis et  al. 2012). Both TFAP2C 
and SOX2 were also enriched using the IDEA algorithm.

The concordance between the IDEA algorithm (which 
also identified TFAP2C, ZNF217, and SOX2), and the 
transcription factors identified by WGCNA shows that 
the methods complement each other, and further investi-
gation of expression analysis using WGCNA might help 
identify estrogen-responsive genes not annotated to ER 
pathways. Using standard over-representation analyses for 
KEGG and GO databases would not have uncovered these 

additional regulatory elements on the ER pathway like 
TFAP2C. This further highlights the need for approach-
ing expression datasets with multiple integrative analytical 
approaches.

Conclusions

The technologies driving modern biology produce large 
amounts data, often spanning the breadth of the genome. 
However, methods for extracting biological insight from 
the results of these experiments have lagged behind. 
New computational tools and visualization strategies are 
required to fully realize the potential of systems biology for 
revolutionizing toxicity testing and mapping PoTs. High-
throughput tools often implicate large lists of genes for 
particular phenotypic responses. However, translating this 
information into biological knowledge remains a funda-
mental challenge. There also exists a persistent perception 
in modern biological research that more information auto-
matically leads to greater knowledge. However, the quan-
tity and complexity of high-throughput data is typically not 
directly translatable into advancing our understanding of 
biology.

Summarizing changes to transcriptional programs by 
associating them with existing literature and curated data-
bases is a key modality for summarizing and understand-
ing the results of high-throughput experiments. Here, we 
treated MCF-7 cells with E2 and calculated transcrip-
tion factors over-represented by expressed genes. We also 
inferred the functional characteristics of those gene expres-
sion changes. Because existing enrichment approaches 
were insufficient for interpreting these changes, we devel-
oped a new method that makes more comprehensive use of 
the biological data.

Fig. 8   Putative transcription factor network for estrogen signaling. 
ERα and ERβ bind directly to DNA via estrogen response elements 
(EREs). This initiates transcription of a set of estrogen-responsive 
genes. At longer exposures, these estrogen-responsive genes initiate 
the transcription of a larger set of secondary transcription factors. 
These transcription factors then promote proliferation and suppress 
apoptotic genes
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Our tool, IDEA, provides a framework for observing 
patterns with gene expression studies. Toxicants with sim-
ilar modes of action are expected to induce similar pat-
terns of transcriptional change. However, changes in indi-
vidual genes are typically not as robust as changes at the 
pathway level. Because IDEA summarizes gene expres-
sion changes into a small subset of transcription factors or 
ontology categories associated with the up- and/or down-
regulated genes, it has promise for identifying modes of 
action.

By considering the time course of genes regulated by 
various transcription factors, we found that response to 
estrogen involves two distinct steps (Fig.  8). During the 
first stage, at 2–4 h post-treatment, signaling is dominated 
by cis-regulation of ERα and ERβ. This primes the cells 
for growth. At longer exposures, only a subset of ERα- and 
ERβ-controlled genes is highly upregulated. Simultane-
ously, a large set of genes regulated by cell signaling tran-
scription factors, including E2F1, E2F4, E2F7, and Foxm1 
are upregulated. At longer exposures, cell cycle-related 
categories in KEGG (Kanehisa and Goto 2000) and Reac-
tome (Fabregat et  al. 2016) are enriched in upregulated 
genes, while apoptotic and anti-proliferative categories are 
enriched in downregulated genes.

We found sequential patterns of enrichment over 
increasing exposures by moving away from using tradi-
tional p value and fold-change cutoffs to define lists to 
be used for calculating enrichment. These cutoffs do not 
account for low-level, diffuse patterns of gene expres-
sion that can characterize early time points or low dose 
responses to exposure. Using the entire dataset rather than 
a limited set of highly expressed genes allowed us to inves-
tigate the cellular response at 2, 4 and 8 h post-treatment, 
where the number of differentially expressed genes did not 
yield any enrichment information regarding either tran-
scription factor binding or cellular processes. Addition-
ally, IDEA allowed us to obtain results under conditions 
where array normalization and experimental noise would 
have severely decreased the utility of traditional enrich-
ment methods. IDEA captures information contained in 
relative expression of genes with respect to each other as 
opposed to an external cutoff. This feature can be used to 
compare enrichment results across multiple experiments 
providing a way to study functional enrichment results 
across gene expression studies originating from different 
labs. Along with significantly enriched pathways and tran-
scription factors, IDEA also provides a gene list that opti-
mizes enrichment at a given experimental condition. This 
gave us better insight into the strength of the signal in the 
data as it unfolds over both time and dose; two character-
istics that can be useful for both experimental design with 
other bioinformatics approaches that require dimensional-
ity reduction.

The algorithm, IDEA provides a framework for observ-
ing patterns within gene expression studies and serves as 
a useful a tool to investigate modes of action for multi-
ple chemicals of the same class. It allows for calculation 
of enrichment at experimental conditions where very few 
genes are identified as being significantly expressed. The 
similarity of results between IDEA and WGCNA is reas-
suring, showing that these methods complement each other 
and, in combination, should provide a more nuanced char-
acterization of estrogen PoTs. IDEA lends itself to the ini-
tial identification of candidate PoT, a process that could 
be followed by more targeted experiments on the path to a 
Human Toxome (Bouhifd et al. 2014) and a systems toxi-
cology approach (Hartung 2013).
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