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Human endogenous retroviruses (HERVs) comprise approximately 8% of the human

genome. Recent studies have considered HERVs as potential pathogenic factors. The

majority of HERV genes are mutated and not capable of encoding functional proteins;

regardless, some HERV genes, such as HERV-W envelope (env) glycoprotein, are known

to have intact open reading frames. The HERV-W element on 7q21.2, which encodes

a protein referred to as Syncytin-1, participates in human placental morphogenesis

and can activate a pro-inflammatory and autoimmune cascade. Neuropsychological

disorders are typically linked to inflammatory abnormalities. In this study, we review that

Syncytin-1 has been increasingly involved in the development of neuropsychological

disorders, such as schizophrenia and multiple sclerosis (MS). This study also presents

inflammation imbalances in schizophrenia and MS. More importantly, we discuss the

potential role and molecular mechanisms by which Syncytin-1 regulates inflammatory

abnormalities in neuropsychological diseases. In summary, Syncytin-1 activity may

represent a novel molecular pathogenic mechanism in neuropyschological diseases,

such as schizophrenia and MS.
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INTRODUCTION

Human endogenous retroviruses (HERVs), a class of retroelements, are regarded as remnants
of ancient exogenous retroviruses, which integrated into the genome by infecting germ line
cells millions of years ago (1). HERVs comprise approximately 8% of the human genome and
replicate, along with the human genome, following Mendel’s law (2–5). In addition, HERVs are
polynucleotide sequences with the complete structure of a retrovirus (6). Classical HERVs have
the general components of retroviruses, including the 5′LTR, GAG, POL (retroviral polymerase
gene), ENV (envelop), and 3′LTR (7, 8). By phylogenetic analyses of the pol and env genes,HERVs
have been identified at least 55 families/groups and categorized into three main classes: Class I
(HERV-W and HERV-H), Class II (HERV-K), and Class III (HERV-L; Figure 1). HERVDNA, once
classified as useless junkDNA, is essential to human embryonic development and is deeply involved
in human evolution.
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FIGURE 1 | Classifications of HERV: Class I (HERV-H, F, W, R, P, E, I, T,

ERV-FTD, and ERV-FRD), Class II (HERV-K, HML-1, 2, 3, 4, 5, 6, 7, 8, 9, 10),

and Class III (HERV-L).

HERVs include many families, and each has multiple copies.
HERV-W, an important member of the HERV family, was first
named as multiple sclerosis-associated retrovirus (MSRV). It was
isolated from the leptomeningeal choroid plexus, as well as from
the Epstein–Barr virus-immortalized B cells of patients with MS
(9–12). A complete full-length DNA copy of the HERV-W gene
is located at chromosome 7q21, which is defective and does
not produce a functional virus (13). Syncytin-1, also known as
ERVWE1 or HERV-W Env, is a functional envelope glycoprotein
encoded by a single HERV-W env locus that harbors a complete
open reading frame (14). Syncytin-1 comprises two functional
domains: the cell surface domain (SU) and the transmembrane
domain (TM; Figure 2). SU binds with the host cell receptors,
and TM promotes virus–cell or cell–cell fusion. Syncytin-
1 plays a critical role in placental trophoblastic formation
and is involved in the maternal immunosuppressive effect on
the fetus. In addition, Syncytin-1 is a highly membranous
fusogenic glycoprotein that can induce syncytium formation
in cell–cell fusion assay (15, 16). However, recent studies
show that Syncytin-1 expression is reproducibly associated
with numerous neurological diseases such as schizophrenia,
and an increasing number of studies have focused on
the potential inflammatory mechanism by which Syncytin-
1 mediates neuroimmune activation and oligodendrocyte
damage in these diseases. In this article, we mainly introduce
the role of Syncytin-1 in inflammatory abnormalities and
emphasize an inflammatory mechanism mediated by Syncytin-1
in neuropsychological diseases.

SYNCYTIN-1 AND NEUROLOGICAL
DISEASES

Except for the normal physiologic function of Syncytin-1 in the
development of placenta, the activity and expression of Syncytin-
1 increase in several diseases, such as neuropsychiatric disorders,
autoimmune diseases, and cancer (8). Considerably more studies

suggest that Syncytin-1 contributes to the development of
neuropsychological diseases, such as schizophrenia and MS (3,
17).

Syncytin-1 and Schizophrenia
Schizophrenia is a severe neuropsychiatric disorder characterized
by an abnormal social behavior and incapacity to distinguish
what is real (18). Findings indicate that a number of genes
is contributed to the development of schizophrenia, such as
the brain-derived neurotrophic factor (BDNF), neurotrophic
tyrosine kinase type 2 receptor (NTRK2), dopamine receptor D3
(DRD3), small conductance Ca2+-activated K+ channel protein
3 (SK3), and glycogen synthase kinase 3β (GSK3β) (18, 19).
Considerable attention has recently been directed toward the role
of Syncytin-1 in schizophrenia.

A growing volume of articles have reported the implications of
Syncytin-1 in schizophrenia. Syncytin-1 expression in the serum
sample of patients with schizophrenia was been described by
Perron et al. (20). In the study, positive Syncytin-1 expression
was detected in 23 of 49 subjects with schizophrenia but only
in 1 of 30 healthy controls. In another research, the transcripts
of Syncytin-1 in peripheral blood mononuclear cells (PBMCs)
were similarly elevated in patients with schizophrenia relative to
those in control subjects (21). In our previous study, we identified
the positive mRNA transcription of Syncytin-1 in the plasma
samples of 42 in 118 patients with recent-onset schizophrenia;
however, none from 106 controls was found (3). We also detected
increased protein level of Syncytin-1 in the sera of 99 patients
with schizophrenia relative to that of 83 normal individuals by
ELISA assay (22). These results, when combined, suggest that
Syncytin-1 is involved in the development of schizophrenia.

Several findings contradict the results described above. Frank
analyzed Syncytin-1 mRNA expression in the brain of seven
healthy individuals and seven individuals with schizophrenia,
no differences were found between the groups (23). Meanwhile,
similar levels of Syncytin-1 expression were observed in the
PBMCs of patients with schizophrenia and controls (24, 25).
The inconsistencies with previous findings may be attributable
to the following: First, variation in sample size might have
influenced the statistical conclusion. Second, the Syncytin-1
expression levels were detected in different tissues and fluids
in these studies, such as brain tissue, serum, and PBMCs.
The variation in the results for these samples suggested the
diverse roles of Syncytin-1 in the development of schizophrenia.
Last, the patients with schizophrenia in the studies were at
different stages of the disease. In the early and late stages of
schizophrenia, pathogenic factors are involved in the promotion
and exacerbation of schizophrenia. Therefore, Syncytin-1 can
potentially perform different functions in the development of
schizophrenia.

Syncytin-1 and MS
Multiple sclerosis (MS) is a demyelinating disease with
chronic inflammation. Patients with MS generally harbor
the damaged insulating covers of nerve cells in the brain
and spinal cord, disrupting the communication of parts
of the nervous system. Consequently, signs and symptoms
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FIGURE 2 | Structure of HERV and Syncytin-1. HERV contains 5′LTR, gag, pol, env, 3′LTR. The env gene, also named Syncytin-1, included signal peptide (1–20

amino acid), SU/gp50 (21–317 amino acid), TM/gp24 (318–538 amino acid). “gp” means glycoprotein.

manifest, including mental, physical, and psychiatric disorders
(26). The pathogenesis of MS remains unclear; however, its
underlying mechanism involves the destruction of the immune
system and the deficiency of myelin-producing cells (27).
Potential causes have been identified, which include complex
interactions between genetic susceptibility and environmental
factors. Viral infection is considered a potential environmental
factor (28).

A growing number of studies indicate that Syncytin-1 plays
an important role in MS. In 2004, Antony et al. reported that
Syncytin-1 was elevated in glial cells in patients with acute
demyelination MS. In the aforementioned study, the Syncytin-
1 gene was inserted into a virus that could infect astrocytes,
and the modified virus was injected into the brains of healthy
mice. Overexpression of Syncytin-1 in astrocytes promoted the
release of redox reactants cytotoxic to oligodendrocytes. Two
weeks post-injection, the mice developed MS-like symptoms,
and numerous deformed and dead oligodendrocytes were found
during autopsy (29). Perron et al. also found the physiologic
expression of HERV-W in gray matter and white matter
microglia as well as in central vascular endothelial cells in
patients with MS (30). In 2007, Giuseppe et al. demonstrated
that HERV-W env (Syncytin-1) and pol genes were highly
expressed in the brain and PMBCs of individuals with MS
by polymerase chain reaction and reverse transcription–PCR.
Immunohistochemical analysis showed that the protein level of
Syncytin-1 was only expressed in the glial cells of patients with
MS exhibiting hyperplastic damage and was mainly distributed
in the margins of microglia and astrocytes (31). In 2010,
MSRV was observed in the cerebrospinal fluid of patients
with early MS and contributed to the secondary progressive
phase of MS (32). Given the role of Syncytin-1 in MS has
been widely acknowledged; thus, the study of Syncytin-1 may
provide new ideas for defining the neuropathic mechanisms
of MS as well as its diagnosis, prognosis, and treatment (33,
34).

INFLAMMATORY ABNORMALITIES IN
NEUROPSYCHOLOGICAL DISEASES

Inflammation is a series of complex biological reactions of
an organism in response to harmful stimuli (35). Various
inflammatory cytokines, which play a role in initiating
the inflammatory response, are essential for regulating
inflammation (36). In the central nervous system (CNS),
the inflammatory cytokines produced by neuronal and glial
cells affect the brain cortical neuronal development (37–39).
Inflammatory abnormalities are involved in a wide range of
human diseases and are regarded as the potential pathogenesis of
neuropsychological diseases such as schizophrenia (40) and MS
(41).

Inflammation and Schizophrenia
Inflammatory abnormalities have been repeatedly linked to
schizophrenia in recent research (42–44). In either the early
pivotal stage of brain development or the adult acute disease
state, inflammation significantly affects the development of
schizophrenia (36).

A confluence of evidence has demonstrated an association
between prenatal inflammation induced by bacterial or viral
agent infections and increased risk of schizophrenia in the
offspring during adulthood (36, 45, 46). Studies on rodents
have indicated that an immune disorder during pregnancy can
result in mimic clinical symptoms of schizophrenia in the adult
offspring, including brain dysfunction and behavioral changes
(47). The correlation between inflammation and schizophrenia
developed in adulthood has been investigated, in addition to that
in prenatal and perinatal inflammation (48–51). Inflammatory
response in the development of schizophrenia is a chronic low-
grade response rather than an acute and short-term status (51,
52). Acute inflammation is a quick response and often benefits
tissue repair and recovery (53, 54), whereas chronic inflammation
has long-term consequences that are often detrimental, inducing
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immune system perturbations (55, 56). This finding may be
one of the reasons that high rates of chronic inflammation
are reported in patients with schizophrenia. Numerous studies
have revealed increased concentrations of several inflammatory
cytokines in the patients with schizophrenia (57). Increased
levels of nterleukin (IL) 1-β, IL-2, IL-6, IL-8, IL-12, transforming
growth factor-beta (TGF-β), and tumor necrosis factor-alpha
(TNF-α) were detected in patients with schizophrenia than
in controls (52, 58–60). C-reactive protein (CRP), another
pro-inflammatory molecule, has recently been found to be
sufficiently increased in patients with schizophrenia (36, 61–
63). An underlying mechanism of inflammatory cytokine
contributing to schizophrenia is apoptosis, which can induce
neuronal injury or death (64, 65). Researchers have demonstrated
that the alteration in the apoptotic cascade can potentially
lessen the viability of neuron and glia at different stages
of neurodevelopment, inducing the deficits in brain volume
and function in schizophrenia (66–68). Another mechanism
is that chronic inflammation may induce the damage of the
brain microvascular system and disruption of the blood–
brain barrier and cerebral blood flow, which may lead to
the development of clinical symptoms of schizophrenia (69–
71).Thus, inflammation plays a critical role in the development
of schizophrenia.

Inflammation and MS
MS is a chronic inflammatory demyelinating disorder.
Inflammatory disorders play a pivotal role in MS. Richard
et al. found significantly increased secretions of inflammatory
cytokines IL-1β and TNF-α in the monocytes of patients with
MS relative to those of the controls (72). Meanwhile, Celia
et al. performed immunohistochemistry to detect the expression
and distribution of pro-inflammatory and regulatory cytokines
in different MS lesions and compared the inflammatory or
non-inflammatory components of CNS tissues with other
neurological diseases. Results showed a widespread distribution
of cytokines in perivascular inflammatory cells and glial cells in
all inflammatory lesions. No apparent pattern of these cytokines
in MS lesions were observed; however, pro-inflammatory
cytokines were rarely detectable under normal and non-
inflammatory conditions, and regulatory cytokines were easily
detected in MS (73). Moreover, Josa et al. observed the robust
brain inflammation response in the relapsing–remitting MS
(RRMS), secondary progressive MS (SPMS), and primary
progressive MS(PPMS). An evidently significant correlation
between inflammation and axonal injury was observed in
both the global MS population and progressive MS alone (74).
These results indicate that inflammation is associated with
MS and depict a potential process of inflammation triggered
in MS. During the inflammatory reaction, encephalitogenic
lymphocytes, which are activated peripherally, bind to receptors
of endothelial cells within the CNS and then cross the blood–
brain barrier, pass into the interstitial matrix, and trigger and
amplify the inflammatory disorders in the brain. Inflammatory
abnormalities may further induce neurodegeneration in MS
(75).

SYNCYTIN-1 COULD CAUSE
INFLAMMATORY ABNORMALITIES IN
NEUROPSYCHOLOGICAL DISEASES

Recent research has linked HERVs to the inflammatory condition
in neuropsychological diseases. HERV-K, another most studied
HERV, was found to have a robust expression in the brain
of subjects with amyotrophic lateral sclerosis (ALS) (76, 77).
In addition, the inflammatory transcription factors interferon
regulatory factor 1 (IRF1) and NF-κB could trigger the HERV-
K expression via its interferon-stimulated response elements in
neurons of the motor cortex in ALS (78), suggesting the potential
role of HERVs in mediating inflammation in neuropsychological
diseases.

Syncytin-1, functioning as an immunotoxin, can induce
inflammation with superantigen-like effects, thereby activating
the innate immune system (79). Studies indicate that
specific infections can activate HERV-W elements, leading
to the production of Syncytin-1, which then stimulates
pro-inflammatory and neurotoxic cascades (21). Murphy
demonstrated that overexpression of Syncytin-1 upregulated
the expression of proinflammatory factors, such as IL-1β
and IL-6 (80). Moreover, Syncytin-1 overexpression in glial
cells can trigger endoplasmic reticulum stress, leading to
neuroinflammation and the production of free radicals to
destroy proximate cells (34). Given the regulatory role of
Syncytin-1 in inflammation, abnormal expression of Syncytin-
1 may result in cell death or tissue damage (81). An in
vitro study indicates indirect cytotoxicity of Syncytin-1 to
oligodendrocytes, and murine models show that Syncytin-1
overexpression can lead to demyelination (17, 29, 31, 82). In a
study by Perron, Syncytin-1 not only induced proinflammatory
reaction but also exhibited the ability to trigger experimental
autoimmune encephalomyelitis (EAE) in mice (83). Owing to its
potential to elicit immunosuppressive and neuroinflammatory
effects, Syncytin-1 has been linked to some neurological and
neuropsychiatric disorders (29, 84). For instance, Syncytin-1 has
been regarded as an important regulator in the development
of MS and schizophrenia because of its capacity to induce
neuroinflammation and cytotoxicity. In the present study, we
introduce several potential mechanisms of Syncytin-1 involved
in neuroinflammation.

Syncytin-1 Increases Nitric Oxide in Glial
Cells
Schizophrenia and MS are neurological diseases with an
inflammatory response in the the CNS (85). Glial cells,
including astrocytes, microglia, and oligodendroglial cell, are
widespread in the CNS and are necessary for regulating brain
inflammation (86). Nitric Oxide (NO) plays regulatory roles in
the inflammatory condition of the brain and the function of
neuronal cells and participates in the pathogenesis of various
neuropsychological diseases (87, 88). Antony et al. indicated
that Syncytin-1 could activate the inducible NO synthase
in astrocytes to initiate an old astrocyte specifically induced
substance (OASIS)-mediated suppression of ASCT1 (17). In
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addition, Antony et al. observed that the overexpression of
Syncytin-1 in astrocytes also induced the release of the oxidation–
reduction reaction product and NO, which exhibited cytotoxicity
to oligodendrocytes (29). In our recent research, we found
that overexpression of Syncytin-1 in microglia could induce the
expression of inducible NO synthase to increase NO production
and promote the migration of microglia (89). This combination
allows Syncytin-1 to contribute to neuroinflammation by
inducing the production of NO in glial cells.

Syncytin-1 Induces Proinflammatory
Cytokines via CD14 and TLR4 in Human
Monocytes
Toll-like receptor 4 (TLR4) is a transmembrane protein
belonging to the TLR family. It can recognize lipopolysaccharide
and lead to the activation of the NF-κB signal transduction
pathway and the production of inflammatory cytokines. TLR4
mainly participates in activating the innate immune system.
Meanwhile, CD14 is a glycosylphosphatidylinositol-anchored
membrane protein, which functions as a pattern recognition
receptor with the extracellular domain of TLR4. A referenced
article focused on the inflammatory response induced by
Syncytin-1 and CD14-TLR4. In human monocytes, activation
of Syncytin-1 could induce the proinflammatory cytokines IL-6,
IL-1β, and TNF-α; however, the incubation of the neutralizing
antibodies of CD14 and TLR4 effectively blocked the secretion
of these cytokines (90). The signaling pathways of CD14
and TLR4 in glial cells have not been confirmed; regardless,
increased TLR4 has been identified in the oligodendroglial
cell of MS, inducing brain inflammation (29). Moreover,
the proinflammatory cytokines IL6, IL-1β, and TNF-α are
important for regulating the inflammation status in the CNS
and brain development (39, 91, 92). Given these findings, we
consider that CD14/TLR4 potentially mediates Syncytin-1 in the
CNS to induce proinflammatory cytokines and participates in
neuropsychological diseases, such as schizophrenia and MS.

Syncytin-1 Induces CRP Activation via
TLR3 in Glial Cells
C-reaction protein (CRP), an inflammatory marker, is associated
with several neuropsychological diseases. For instance, CRP
was elevated in the serum of patients with schizophrenia (93)
and MS (94). Recent research indicated that the expression
of several TLRs, including TLR3, was highly increased in the
blood of individuals with schizophrenia (95). A member of
the TLR family, TLR3 mainly recognizes the virus dsDNA
and activates the innate immune system. Activation of TLR3
can induce the production of proinflammatory cytokines as
diverse as IL-6, IL-1β, and TNF-α (96, 97). In our recent study,
we reported that Syncytin-1 exhibited a positive correlation
and marked consistency with the expression levels of CRP in
individuals with schizophrenia. We also found that Syncytin-
1 could trigger the activation of CRP via the TLR3-IL-6 signal
pathway in glial cells, the deficiency of TLR3 could significantly
impair Syncytin-1-induced CRP and IL-6 expression (22). Direct
interaction and cellular colocalization between Syncytin-1 and

TLR3 were observed by confocal microscopy (22). Thus, TLR3
can potentially function as a Syncytin-1 mediator to induce
inflammatory abnormalities in the glial cell.

HLA-A∗0201+-Restricted Epitopes of
Syncytin-1 Could Induce Cytotoxic T
Lymphocytes
HLA-A∗0201+ is a human leukemia antigen. HLA restriction is
involved in the immune response to neuropsychiatric diseases.
The epitopes derived from Syncytin-1 were the HLA-A∗0201
restriction and potential for adoptive immunotherapy. In the
study, we predicted and synthesized five peptides that displayed
HLA-A∗0201-binding motifs of Syncytin-1. Among the peptides,
peptides W, Q and T could promote the proliferation of
lymphocytes. The stimulation of these peptides on PBMSs from
HLA-A∗0201+ donors could induce peptide-specific CD8+ T
cells. Abundant interferon-γ-secreting T cells were also detected
after stimulation of these peptides for several weeks. These
data demonstrate that Syncytin-1 peptides (such as W, Q, and
T peptides) can induce HLA-A2.1-restricted CD8+ CTL and
could be a potential target for astrocytoma immunotherapy (98).
On the other hand, the cytotoxic T lymphocytes induced by
Syncytin-1 could be a potential mechanism for inflammatory
abnormalities in the CNS.

COMMENTS

Recent clinical reports have indicated the importance of
Syncytin-1 in neuropsychological diseases; regardless, these
studies have several limitations. First, the sample sizes
of these clinical studies are relatively small. The sample
size is crucial because an insufficient sample size may
render testing and reproduction for statistical significance
difficult. An increasing sample size is necessary for verifying
the role of Syncytin-1 in these diseases. Second, other
psychiatric control groups in a clinical study can benefit
from the enhancement of the potential implications of the
findings.

A notable finding from the previous observations is that the
abnormal expression levels of Syncytin-1 in neuropsychological
diseases seem ubiquitous. For instance, elevated Syncytin-1
expression in MS was detected in different tissues or fluids,
including the serum, PBMCs, glial cells, and brain tissues
from patients with MS (31, 32, 99, 100). This elevation
presents a challenge for clearly elaborating on the pathogenic
mechanism of Syncytin-1 in neuropsychological diseases. It
also suggests that Syncytin-1 can execute multiple functions in
the development of diseases. The evidence in relation to the
association between Syncytin-1 and inflammation demonstrates
that the change in Syncytin-1 in neuropsychological diseases
seems not to be an incidental phenomenon. In view of
the brain damage in neuropsychological diseases, increased
Syncytin-1 in the cerebrospinal fluid or neurogliacyte may be
associated with neuroinflammation, leading to brain injury.
Our previous data supported this possibility. Our study found
that Syncytin-1 could trigger the production of inflammatory
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cytokines CRP and IL-6 in microglial and astroglial cells
(22). Another study also suggested that Syncytin-1 can induce
inflammation by promoting the secretion of IL-6, IL-1β, and
TNF-α in human monocytes (90). Owing to the association
between Syncytin-1 and inflammation, abnormal Syncytin-1
expression in PBMCs indicates that Syncytin-1 may promote
the inflammatory stage of immune cells in blood, enhancing
inflammation in the brain of individuals with neuropsychological
diseases. Therefore, the role of Syncytin-1 in neuropsychological
diseases may be complex, and more clinical studies and cells
experiments are necessary to verify the specific functions of
Syncytin-1 in different tissues or fluids in neuropsychological
diseases.

In the molecular mechanisms of Syncytin-1 regulating
inflammation in neuropsychological diseases, TLRs may be
the essential factors. Once activated, TLR3 and TLR4 can
trigger the innate immune reaction. We found that TLR3 could
mediate the inflammatory effect of Syncytin-1 in microglial and
astroglial cells (22). Meanwhile, the neutralizing antibodies of
TLR4 could effectively impair the inflammation induced by
Syncytin-1 in human monocytes (90). Therefore, different TLRs
may function as mediators to induce inflammation reaction in
response to Syncytin-1 in different tissues or fluids. Regardless,
the existing data in the literature remain inconclusive. The
mechanism of Syncytin-1 regulation of neuroinflammation in

neuropsychological diseases has yet to be elucidated. Further
research on the role of Syncytin-1 in neuropsychological diseases
has to be conducted. Mouse models should also be used in these
studies.

CONCLUSION

An increasing number of findings suggest that
neuropsychological diseases result from both genetic and
environmental factors. In addition to genetic factors,
environmental factors play an essential role in disease
development, particularly in the early phases of brain
neurodevelopment (18, 19). Syncytin-1 may link environmental
and genetic factors. Accumulating evidence indicates
that Syncytin-1 is closely involved in the development
of neuropsychological diseases. Environmental factors,
such as specific viral infections, drug application, and
exposure to ultraviolet rays (22), can induce Syncytin-1.
The elevated Syncytin-1 in the brain has been associated with
abnormal inflammation, contributing to the development of
neuropsychological diseases. Many studies reveal the potential
role of Syncytin-1 in neuroinflammation, but the potential
mechanisms of HERV pathogenicity have yet to be elucidated. In
this study, we described several activated signaling networks in
response to Syncytin-1 that may lead to abnormal inflammation

FIGURE 3 | Hypothesis that Syncytin-1 contributes to inflammatory abnormalities, which lead to neuropsychological diseases. Environmental factors (e.g., ultraviolet

rays), infectious agents (e.g., viruses), drug application (e.g., caffeine, aspirin, etc.), and genetic variation could trigger the expression of Syncytin-1 in glial cells. The

expression of Syncytin-1 induced the release of nitric oxide in microglia and astrocytes and activated the TLR signaling pathways (e.g., TLR3 and TLR4) to induce the

production of inflammatory cytokines. In addition, Syncytin-1-derived cytotoxic T lymphocytes could also secrete inflammatory cytokines. The production of these

inflammatory cytokines led to the inflammatory abnormalities in the CNS and contributed to the development of neuropsychological diseases.
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in neuropsychological diseases: Syncytin-1 may induce the
inflammatory abnormalities via four routes: (1) release of NO;
(2) activation of the TLR4/CD4 pathway; (3) activation of the
TLR3 signal pathway; (4) induction of CTL. These inflammatory
abnormalities could lead to neuronal damage and apoptosis
of neuron cells, which play crucial roles in neuropsychological
diseases such as schizophrenia and MS (Figure 3).

We summarize the relationship between increased Syncytin-
1 and abnormal inflammation and elucidate the potential
mechanisms of inflammation induced by Syncytin-1 in
neuropsychological disorders. This review also presents a new
insight into the diagnosis and treatment of neuropsychological
diseases.
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