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Modeling neuron growth using 
isogeometric collocation based 
phase field method
Kuanren Qian1,6, Aishwarya Pawar2,6, Ashlee Liao1, Cosmin Anitescu5, 
Victoria Webster‑Wood1,3, Adam W. Feinberg3,4, Timon Rabczuk5 & Yongjie Jessica Zhang1,3*

We present a new computational framework of neuron growth based on the phase field method and 
develop an open-source software package called “NeuronGrowth_IGAcollocation”. Neurons consist 
of a cell body, dendrites, and axons. Axons and dendrites are long processes extending from the cell 
body and enabling information transfer to and from other neurons. There is high variation in neuron 
morphology based on their location and function, thus increasing the complexity in mathematical 
modeling of neuron growth. In this paper, we propose a novel phase field model with isogeometric 
collocation to simulate different stages of neuron growth by considering the effect of tubulin. The 
stages modeled include lamellipodia formation, initial neurite outgrowth, axon differentiation, and 
dendrite formation considering the effect of intracellular transport of tubulin on neurite outgrowth. 
Through comparison with experimental observations, we can demonstrate qualitatively and 
quantitatively similar reproduction of neuron morphologies at different stages of growth and allow 
extension towards the formation of neurite networks.

Neuron growth is a complex phenomenon which consists of different stages of development (see Fig. 1A,C–F). In 
stage 1, there is lamellipodia formation from an initial spherical cell. The lamellipodia result into several neurites 
of approximately similar lengths in stage 2. Next, the longest neurite differentiates into an axon in stage 3 after 
which the remaining neurites start to grow leading to dendrite formation in stage 4. Finally, in stage 5 the neuron 
maturation occurs. The entire process takes several days1–4. Mathematical modeling of the early stages (stages 
1–3) such as lamellipodia formation, initial neurite outgrowth and axon differentiation have been proposed4–6. 
Starting with a spherical cell, there is an influx of sodium and calcium ions through the cell membrane2,5,7. There 
is an increase in the influx of calcium ions due to bulges on the surface, leading to lamellipodia formation and 
initial neurite outgrowth. After the initiation process the further outgrowth of neurites is assumed to be carried 
out by the transport of a chemical produced in the cell body to the neurite ends4. The longest neurite has higher 
consumption of the chemical, resulting in its higher growth rate as compared to the other neurites. This stage is 
referred to as axon differentiation. During stages 4 and 5, there is further elongation and branching of neurites 
leading to dendrite formation7. The construction of cytoskeleton, which is an integral part of the cell, leads to 
neurite elongation8,9. A schematic representation of neurite elongation, which takes place during stages 2–5 
through cytoskeleton construction, is shown in Fig. 1B. The extension of the cytoskeleton takes place through 
microtubule assembly at the neurite ends. Microtubules are transported from the cell body and assembled at 
the neurite ends. Thus, the assembly rate of microtubules is a function of the amount of tubulin present at the 
growing tip of the neurite7,10,11. Equations to model tubulin concentration along the length of single unbranched 
axon were proposed10,12. These equations consider the active transport and diffusion of tubulin from the cell 
body to the neurite tip. During the maturation stage (stage 5), the creation of the dendritic structures for differ-
ent neuron types11,13,14 is considered.

In the computational modeling for different stages of neuron growth, most models focus on certain stages 
such as neurite initiation5, axon growth17–20, or growth cone locomotion21. These models help in gaining a better 
understanding of specific stages of neuron growth. However, they can only model one stage at a time. In addi-
tion, most of the composite models are limited to one-dimensional geometry22. Computational models using 
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the phase field method have been applied to study certain stages of neuron growth15,22,23. For example, phase 
field methods have been extensively used to study moving boundary and sharp interface problems24,25. These 
methods have also been implemented to study different biological phenomena26–28. A phase field model for 2D 
axon extension was proposed23. This model described a good preliminary study for neuron growth through the 
application of a modified Kobayashi-Warren-Carter (KWC) model29–33. The computational model was divided 
into three stages: initial outgrowth of numerous neurites of almost equivalent lengths, decrease in the number 
of neurites extending and neurite retraction in a transition model, and single axon extension. While the model 
could capture the axon extension in the presence of nerve growth factor in the extracellular medium, it does not 
consider intracellular factors such as the active transport and diffusion of tubulin to model axon elongation and 
differentiation. Moreover, it also manually applies constraints to simulate axon differentiation. This process is not 
automatic as it fails to consider the intrinsic factors one of which being the rate-limited consumption of tubulin.

High-fidelity geometric modeling for complex neuron structures has been an ongoing challenge in the field of 
computational biology34,35. Various spline-based neuron image segmentation techniques have been proposed36,37. 
Conventional finite element analysis (FEA) lacks the ability to handle complex neuron geometry effectively with-
out extensive discretizations. Isogeometric analysis (IGA) was introduced to bridge the gap between geometry 
and analysis38. IGA directly utilizes smooth high-order spline geometry to produce accurate analysis results while 
significantly lowering the number of degrees of freedom (DOF). In addition, isogeometric collocation method 
is shown to significantly speed up simulations39, and successfully combine geometrical flexibility, accuracy, and 
simplicity40.

In our proposed work, we define the phase field formulation of neuron morphogenesis based on dendritic 
solidification23,41 to model the lamellipodia formation and initial neurite outgrowth stages. We incorporate the 
effect of intrinsic factors such as the effect of tubulin concentration in order to model the axon differentiation 
stage automatically. The proposed model can also capture the dendrite formation stage. The main contributions 
of the proposed mathematical model include:

•	 Development of a novel phase field model that describes primarily stages 1 to 4 of neuron growth in the 
presence of intracellular tubulin concentration, including lamellipodia formation, initial neurite outgrowth, 
axon differentiation, and dendrite formation.

•	 Development of a neuron growth simulation model based on phase-field method using multi-resolution 
isogeometric collocation method.

•	 Comparison of different metrics such as segment length and turning angle of each segment with experimental 
images of rat hippocampal neurons is demonstrated to show a similar reproduction of end-stage neuron 
morphology.

•	 Extension of the phase field model to carry out the growth of neural circuits, where growth of neurons 
towards each other is observed, leading to neurite interaction and complex neural networks.

Figure 1.   Five stages of neuron growth from initiation to maturation and adapted schematic diagram15,16 
showing the neurite elongation (stages 2–5) in the presence of attractive cues. (A) The stages observed are 
lamellipodia formation (few hours), initial outgrowth of neurites ( ≈  1 day), axon differentiation ( ≈ 1.5 days), 
dendrite formation ( ≈ 4 days) and neuron maturation ( � 7 days)1. (B) Tubulin is produced at the cell body and 
transported via active transport and diffusion to the neurite ends10. The assembly of tubulin at the neurite tips 
leads to neurite elongation. (C–F) Experimental images of neuron culture corresponding to growth stages 2 to 5.
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Results
Simulations of single and multiple neuron configurations.  We show the results of single neuron cell 
growth obtained from the presented neuron growth model in Fig. 2A–E. Through IGA collocation, we compute 
the gradient of φ accurately using C2 continuous B-spline basis functions. Starting from a circular cell, multiple 
neurites emerge spontaneously from the cell surface. This corresponds to the lamellipodia formation stage (stage 
1). Similar results can be seen for the non-constraint model23. Figure 2F–M shows four single neuron growth 
cases where stages 1–4 are captured along with corresponding tubulin concentration distribution. The diffusion 
of tubulin from the cell body to the neurite tips is shown. In the absence of competitive effects, all the neurites 
grow at uniform rates to similar lengths. The growth rate depends on the concentration of tubulin and the degree 
of anisotropy. Thus, we observe a direct correlation between neuron growth with intracellular factors. To achieve 
the axon differentiation stage (stage 3), the longest neurite is detected, and the E value in the energy activation 
zone for all the other neurites other than the longest one is set as 0. In Fig. 3, we demonstrate the flexibility of 
phase-field model to study neuron growth of multiple neuron networks with neurons arranged in multiple con-
figurations. Each neuron exhibits differential growth of the axon, dendritic branching and interactions between 
neurites.

Comparison of experimental culture image and neuron growth model results.  In order to draw 
a comparison of the proposed phase field model results with experimental observations of growing neurons, 
primary embryonic day 18 (E18) rat hippocampal neurons were cultured and imaged over 20 days in  vitro 
(DIV). Individual neurites from after 20 DIV were then analyzed to extract length and angle information for the 
comparison.

Figure 2.   Multi-stage neuron growth phase field result and four single neuron growth results. The phase field 
variable field φ , is shown in (A–I). (A) Initial circular cell at the center of the domain of grid size 380× 380 
(0 iteration). (B) Stage 1 lamellipodia formation (500 iterations) and (C) Stage 2 initial outgrowth of neurites 
(10,500 iterations) where the neurites grow to similar length with no constraints applied. (D) The longest 
neurite grows out further than the rest of the neurites using an extracellular cue-based energy activation zone 
approach, leading to stage 3 axon differentiation (28,500 iterations). (E) Stage 4 dendrite formation (35,000 
iterations) is observed by allowing the neurite extension and branching for more iterations. (F–I) shows four 
phase field model results of single neuron growth using different θ initializations using grid size of 383× 383 , 
303× 303 , 363× 363 , and 343× 343 respectively. Each case exhibits growth behavior from stage 1 lamellipodia 
formation to stage 4 dendrite formation with observable stage 3 axon differentiation. The axon growth exhibits 
similar angle changes with experimental data-based extracellular cue placement. (J–M) Intracellular tubulin 
concentration field is shown for the corresponding phase field results.
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Neuron cell culture.  Primary rat hippocampal neurons (RHiN) were cultured per manufacturer’s protocol42 
and imaged regularly from 0-20 DIV. Briefly, cryopreserved primary RHiN (A36513, Gibco, USA) were thawed, 
plated, and maintained on a cell-culture-treated 48-well plate (150687, Nunc, USA). To promote cell adhesion 
the culture surfaces were coated with a poly-d-lysine (A3890401, Gibco, USA) solution diluted in 0.5 M borate 
buffer (PI28341, ThermoScientific, USA) to a concentration of 50 g/µL , as per the manufacturer’s protocol42. 
Plates were incubated at room temperature for one hour during coating, after which the solution was removed 
and each well was rinsed with Dulbecco’s phosphate-buffered saline (14190144, Gibco, USA)42. The well plate 
was then allowed to dry under sterile conditions at room temperature for two hours. Prior to culture, plates were 
wrapped with Parafilm (Bemis, PM999, USA) and stored overnight at 6 ◦42.

For culture, cryopreserved RHiNs were thawed rapidly at 37◦ and aliquoted into sterile tubes containing B-27 
Plus Neuronal Culture System media (A3653401, Gibco, USA)42 for dilution to the appropriate plating densities. 
Images for comparison in this study come from samples plated at low densities (10,000 and 20,000 cells/cm2 ). 
Following initial seeding, cells were cultured for 24 hours at 37◦ after which the media was removed and replaced. 
Subsequently, 20% media changes were performed every three days. Samples were imaged over 20 DIV using 
phase-contrast microscopy (Echo Revolve 4, inverted, Discover Echo, Inc, USA) at 20X and 40X magnification.

Neurite image analysis.  For the comparison between in vitro neurons and the growth model, neurites from 
the 20 DIV culture images (Fig. 4B–E,G–J were traced and segmented using the change point test algorithm 
(CPT)43,44. The turning angles of the neurites was measured and compared with the geometry of the neur-
ites from the neuron growth model. Neurites were selected for tracing and subsequent analysis if they did not 
overlap with neighboring projections, were sufficiently long (greater than one soma diameter), and protruded 
from broad, flat somas with distinct boundaries. Once identified, the neurites were manually traced (Fig. 4A). 
The (X,Y) coordinates from each tracing were used to identify turns using CPT, which determined locations of 
significant direction changes by assessing the collinearity of vectors between consecutive pixel coordinates along 
the tracing. For each neurite, the CPT used a significance level ( α ) of 0.05 and was run 10 times in R with the 

Figure 3.   Phase field model results of multiple neurons with all 4 growth stages using different random θ 
initializations with the grid size of 560× 560 . Neuron growth simulation with neurite interaction is shown for 
(A–C) 2 neurons ( 453× 453 , 393× 393 , 383× 383 ), (D) 3 neurons ( 353× 353 ), (E,F) 4 neurons ( 493× 493 , 
463× 463 ), (G,H) 5 neurons ( 523× 523 , 533× 533 ), (I,J) 6 neurons ( 533× 533 , 493× 493 ), and (K,L) 7 
neurons ( 553× 553 , 543× 543 ). Using self-intersection check, multiple neurons exhibit neurite interactions 
with each other while preventing interactions between neurites belonging to the same neuron, demonstrating 
that the model can handle multi-neuron interactions during simulation. Simulations are plotted using the same 
domain size and scale bars are calculated based on cell body diameter observed in experimental images shown 
in Fig. 4.
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number of vectors, q, prior to a change point varying from 1 to 10. The lowest q value that resulted in the most 
change points was ultimately selected for analyzing the particular neurite. The neurite tracing was subsequently 
segmented based on the change points identified (Fig. 4F), and the length of the segments and the angle of each 
segment relative to the previous segment were calculated. In Fig. 4, neurites from the phase field model were 
also traced and then analyzed using the same CPT, and their segment lengths and turning change angles were 
compared with the experimental results.

The segment lengths of individual neurites and the turning angle of each segment relative to the previous 
segment were measured for each neurite (as shown in Fig. 4F). Table 1 shows the absolute turning angle distri-
bution obtained for all the neurites in Fig. 4B–E,G–J. The absolute turning angle value is used for comparison 
with experiments because it is consistent across different time points in experiments45, and we can validate the 
effectiveness of the extracellular cue position placement to simulate neurite growth in the direction of the selected 
turning angle. For the 20 DIV culture images, the turning angle has a median of 32.250° with a 1st quartile 
(25%) of 17.206° and 3rd quartile (75%) of 56.905°. For the phase field model results, the turning angle has a 
median of 41.317° with a 1st quartile of 25.167° and 3rd quartile of 66.570°. Mann-Whitney analysis shows that 
the estimation of the median difference between culture images and phase field model results is 7.1654 with a 
95.15% confidence interval for the difference between (− 9.8414, 23.4734) and a p-value of 0.336. This indicates 
that the turning angles are not statistically different between the 20 DIV neurons and the neuron growth model. 
Therefore CPT statistics show that the neuron growth model can reproduce similar neurite turning angle. The 
median segment length between each change point is 54.979 μm with an interquartile range of 70.029 μm for 
neuron culture image and 52.050 μm with a standard deviation of 53.425 μm for neuron growth model results.

We show the comparison between the computational model using an extracellular cue-based energy activa-
tion zone method to guide neurite extensions and experimental results from the rat hippocampal neuron culture 
after 20 DIV. In Fig. 4G–J, we place cues around neurons to guide neurite growth based on experimental images 
of neuron culture. This method can also be used to simulate multi-neuron cases with neurite interaction, as 
shown in Fig. 4J.

Discussion
In this study, we demonstrate multiple stages of neuron growth considering the intracellular transport of tubulin. 
Following are our observations based on the results of the model:

Figure 4.   Comparison of the phase field model results of neuron growth with experimental results based on 
extracellular attractive cue-guided growth. (A) Traced neurite (red line) from a neuron cell culture at 5 DIV. 
(F) Change points (black dots) found along the neurite tracing (red line) in (B) using CPT algorithm with α 
of 0.05 and q of 2. (B–E) Experimental images of primary rat hippocampal neurons observed at 20 DIV. (G–J) 
Corresponding simulation results of phase field model using attractive cue-guided neuron growth on grid sizes 
of 443 Œ 443, 513 Œ 513, 483 × 483, and 483 Œ 483. One extracellular cue is placed at the boundary for each 
neurite. Bifurcation is achieved by adding more than one extracellular cue at the corresponding growth stage. 
The simulation results show a similar reproduction of the growth pattern. By measuring the soma diameter 
in experimental images with respect to their scale bars, we can evaluate scale bar units for neuron growth 
simulation results.

Table 1.   Absolute turning angle of comparison cases in Fig. 4.

Parameter θ σ Minimum 1st quartile (25%) Median 3rd quartile (75%) Maximum

Experiment ( ◦) 41.673 32.007 6.431 17.206 32.250 56.905 154.555

Simulation ( ◦) 46.395 27.780 3.152 25.167 41.317 66.570 107.502
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•	 We present a new formulation of the phase field method that considers intracellular factors to model primarily 
stages 1 to 4 of neuron growth. In stages 1 and 2, lamellipodia formation and initial neurite outgrowth are 
captured in the initial few iterations followed by uniform growth of neurites. Axon differentiation (stage 3) 
is captured where one of the neurites differentiates into an axon with much higher growth rate as compared 
to the rest of the neurites. Neurites and the axon continue to grow and branch, with neurites maturing into 
dendrites and interacting with neighboring neurites in dendrite formation (stage 4).

•	 We solve the partial differential equations using the IGA collocation method. This increases the computational 
efficiency of the simulation while preserving accuracy.

•	 By adjusting the rates of assembly and disassembly of tubulin, the elongation rate of each neurite can be mod-
eled. Thus by setting the parameters, we can automatically capture the selective growth of certain neurites 
leading to axon differentiation. Consumption of tubulin is enhanced further by the longest neurite due to 
the higher rate of assembly of free tubulin at the growing tip of the neurite. This leads to a higher elongation 
rate of the axon, subsequently leading to its differentiation and preventing the growth of other neurites.

•	 We can capture similar growth angle change of the neurites by comparing with experimental images obtained 
at different stages of growth by adjusting parameters based on experimental results, and easily extend the 
phase field method for modeling neuron networks. The growth of neurites towards each other and neurite 
interaction are observed. However, the model still needs to include the effect of neighboring neurons to 
predict accurate movement of neurites during neurite interaction and synapse formation.

There are some interesting future directions that can be included in the presented phase field model. The current 
model can capture different stages of neuron growth, including lamellipodia formation, initial neurite outgrowth, 
axon differentiation, and dendrite formation. However, in the current model, we still cannot capture the matura-
tion stage (stage 5), where growth cone bifurcation dynamics and the formation of complex dendritic branching 
patterns are observed based on competitive growth. These patterns need to consider specific neuron types and 
their characteristic branching patterns. The model also lacks the ability to automatically capture growth stage 
transitions, requiring the specification of number of iterations for each stage based on experimental observations. 
This transition between the growth stages depends on both intra- and extra-cellular factors, in conjunction with 
neuron characteristics. As we work towards a more generalized mathematical model, we will focus on modeling 
this stage transition in the future for a particular type of neuron with a characteristic branching pattern. In the 
case of networks of neurons, axons move in the direction of the chemical cue, which takes place via the diffu-
sion of chemoattractant molecules in the domain4. The inclusion of chemoattractant molecule-based cues into 
the phase field model can help in improving the accuracy of the angular variation of each neurite as compared 
to the current model. To improve model efficiency, we aim to carry out local refinement using truncated hier-
archical B-splines to reduce computational cost while preserving geometry smoothness46. We plan to simulate 
material transport47 and study traffic jam48,49 during neuron growth in order to better model and understand 
neurodegenerative diseases. We also plan to investigate efficient prediction of neuron growth using data-driven 
approaches50,51.

Methods
Mathematical model and numerical method.  In the proposed phase field model, we model the effect 
of intracellular factors such as tubulin to simulate neuronal development. The diffusion and active transport of 
tubulin from the cell body to the neurite tips as a driving force for neurite elongation is considered. We demon-
strate the different stages of neuron growth by controlling the parameter values to achieve lamellipodia forma-
tion (stage 1), initial neurite outgrowth (stage 2), axon differentiation (stage 3), and dendrite formation (stage 4). 
For the maturation stage (stage 5), the proposed model cannot capture the biophysics of the complex dendritic 
tree formation that is observed in matured neurons based on different neuronal types11,13,14. However, the model 
can produce final neural geometries comparable to mature experimental neurons when driven by extracellular 
cues. Hence, in this paper we focus primarily on modeling stages 1–4.

Lamellipodia formation and initial neurite outgrowth (stages 1–2).  We formulate the phase field model based 
on an axonal extension model23,41. The phase field variable ( φ ) is defined in the two-dimensional domain, where 
the value of φ is equal to 1 inside the cell and 0 in the extracellular medium. The intracellular driving factor is 
the tubulin concentration ( ctub ) that controls neurite elongation. The phase field equation to model the initia-
tion (stage 1) and elongation (stages 2) stages of neuron growth based on the phase field model23,41,52 is given as

where a(�) is the gradient coefficient that models anisotropy53. Mφ is the the mobility coefficient for the phase 
field variable. E is the driving force term for phase field growth. H is a constant value52. θ indicates the change in 
direction of the extending neurites. We set the orientation field θ as a random value between [0, 1] in the domain, 
which remains fixed during the evolution of φ.

We introduce intracellular concentration field ctub to evaluate neurite elongation based on tubulin concentra-
tion. Tubulin is produced inside the cell body and transported to the neurite tips by active transport and diffusion. 
A continuum model to simulate tubulin concentration within the growing neuron has been proposed10,54. A 
one-dimensional model is considered where the tubulin concentration can be evaluated as a continuous vari-
able along the length of the neurite, unlike the competition model11, where the concentration of tubulin is only 
evaluated at the neurite tip. The continuum model10 cannot be directly extended to a 2D domain using phase 
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field, since the phase field variable φ is defined in both intracellular and extracellular space. To ensure that ctub is 
only valid inside the growing cell, we couple the equations in the continuum model10 with φ55. Thus for a moving 
boundary problem in 2D, we propose a new formulation to evaluate ctub as

here αt , δt and βt are the active transport, diffusion and decay coefficients, respectively. We introduce a new 
source term to include the constant production of tubulin in the cell body as ε0 |▽(φ0)|

2
∫

|▽(φ0)|2 d�
 , where φ0 is the phase 

field variable corresponding to the initial circular cell. ε0 is the dimensionless production coefficient term. We 
modify the definition of E in Eq. (1) from the axonal extension model23 to include the effect of change rate due 
to tubulin concentration. This is given as E =

α
π
tan−1(Hε(

dL
dt )γ�T) , which is the driving force for cell growth. 

dL
dt = rg ctub − sg is the extension rate of neurites due to tubulin assembly where rg and sg are the rate constants 
of assembly and disassembly of tubulin11. γ is the interfacial energy constant and �T is the undercooling tem-
perature evolved in time41. Figure 5A shows the values of parameters used for the simulations. The parameter 
values are set empirically to capture realistic neuron geometry but can be adjusted to reflect realistic biological 
conditions.

In order to capture neurite morphology, we carry out “growth-cone” like activation of the driving force term 
E at the neurite tips. As shown in Fig. 5B, we consider φ field, where neurites are automatically detected using 
connected component analysis in MATLAB. Neurites are labeled based on the neuron to which they belong. The 
neurite tips are detected as points corresponding to the centroids of regional maximal φ value and having fewest 
neighboring points with non-zero values of φ . E is evaluated in an energy activation zone of size 6× 6 points 
centered at each neurite tip to allow neurite extension while setting as 0 elsewhere. We carry out self-intersection 
checks, where neurites corresponding to the same neuron are not allowed to intersect whereas neurite interac-
tion between different neurons is allowed. While approaching each other, neurites having the same label are not 
allowed to intersect. Likewise, neurites from different neurons having different labels are allowed to intersect. 
As the initial condition, the cell is initialized as a circle, where we consider φ0 = 1 in the cell and φ0 = 0 in 
the medium (see Fig. 2A). Knot spacing in the parametric domain is set as 1, and the radius of the cell is set as 
r0 = 20 . The simulation time step � is set as 0.01 . The initial normalized tubulin concentration in the cell is set 
using the equation ctub = 1

2 (1+ tanh((r0 − r)/2)).
Note that our neural growth model is grid-dependent. In the 6H|▽θ | term of Eq. (1), the θ field is initialized 

differently as the resolution increases and thus introduces different values into the model, resulting in different 
neurite growth patterns. Because many conventional parameters used for the phase field model do not have 
direct physical meaning in the context of neuron growth, we followed the parameters used in the non-constraint 
model23 to develop our model. For the phase field model, because the phase transition happens in the interface 
region, the solution is dependent on the thickness of the interface δ , which is nondimensionalized and directly 
defined based on the knot spacing �x , of the parametric domain. As a result, a change in grid size will inherently 
change the neurite behavior in our model.

Axon differentiation (stage 3).  In the axon differentiation stage, competitive effects lead to a higher elongation 
rate of the longest neurite as compared to the other neurites11. The polymerization of tubulin at the ends of the 
neurites leads to neurite elongation. The competitive effect comes into play due to the higher consumption of 
tubulin by the longest neurite leading to its higher elongation rate. In the axonal extension model23, the modeling 
of the axon differentiation stage is carried out manually by setting physical constraints on the numerical model 
allowing only a small number of neurites to elongate and grow. This model does not consider the intrinsic factors 
such as tubulin concentration, thus cannot automatically constrain the growth of certain neurites. The driving 
force energy E is set as 0 for all the remaining neurites except for the axon, the longest neurite.

(2)
∂(φ ctub)

∂t
= δt▽ · (φ▽ctub)− αt · ▽(φ ctub)− βt(φ ctub)+ ε0

|▽(φ0)|
2

∫
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,

Figure 5.   Parameter settings and simulation result showing how the phase field model is capturing neuron 
growth stages 1–4 using growth-cone-like activation of E. (A) Parameter settings for the phase field model. (B) φ 
overlaid with energy variable to highlighted energy activation zones.
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In order to model the axon differentiation stage, we need to incorporate the competitive effect between 
neurites during the tubulin assembly and disassembly process. We modify the formulation of E to depend on an 
extracellular cue-based tip selection and the length change rate of each neurite based on the tubulin concentra-
tion. The growth of certain neurites is automatically constrained to allow the extension of the axon. In the initial 
neurite outgrowth stage, we set the constant values of the parameters rg and sg in the entire domain such that all 
the neurites grow to similar lengths. For the axon differentiation stage, we need to consider different values for 
each neurite of rg and sg parameters to include the competitive effects11. The parameters rg and sg are set for each 
neurite at the beginning of the differentiation stage, and the selective growth of the axon is determined auto-
matically through E. To achieve the axon differentiation, the longest neurite is identified and allowed to extend 
further by changing the values of rg and sg at the neurite tip. In order to identify the longest neurite, geodesic 
distance is measured from the cell center to the tip along the neurite where φ > 0 . Turning angles are measured 
for each segment of individual neurites from experimental images using the Change-Point Test (CPT)43,44 algo-
rithm. A random turning angle value is selected from the normal distribution obtained using the mean turning 
angle θ  and the standard deviation σ56. The extracellular cue position is set at a fixed distance from the neurite 
tip in the direction of the selected turning angle. The energy activation zone is placed closest to the cue and rtipg  
value is set such that rtipg ctub > sg , to reflect extension of the neurite thus resulting in E > 0 . We obtain E = 0 
when rtipg ctub < sg , inhibiting the growth of the neurite. Thus, the axon extension process is made automatic by 
incorporating the intrinsic factor of tubulin concentration. As shown in Fig. 2B,C, in the initial few iterations, 
we can capture the stages of lamellipodia formation (stage 1) and initial neurite outgrowth (stage 2). We capture 
similar lengths of neurites in the initial number of iterations till the initiation stage is complete. By specifying 
different parameter values of rg and sg in different regions, we show the axon differentiation (stage 3) of neuron 
growth by including the competitive effects of neurite elongation based on tubulin concentration; see Fig. 2D.

Dendrite formation (stages 4).  The formation of spontaneous dendrite formation (stage 4) can also be modeled 
by Eqs. (1)–(2); see Fig. 2E. To capture this stage, we apply the growth-cone activation regions at the neurite tips, 
allowing for multiple branching geometry in neurites. Due to the flexibility of the phase field model, this method 
can be extended towards the simulation of neurite networks and studying the simultaneous growth of multiple 
neuron cells. The proposed model could be extended to capture the maturation stage of the neuron (stage 5), but 
it requires additional parameter tuning based on the biophysics of specific neuron type.

Isogeometric collocation method.  We utilize the isogeometric collocation method to solve the phase 
field equations. We solve Eqs. (1)–(2) using the multi-resolution grid approach to increase the efficiency of the 
collocation method. In the multi-resolution method, the domain is automatically extended by width of 10 grid 
points in each direction when a neurite is detected to be near the boundary of the domain. Isogeometric colloca-
tion methods directly solve the strong form of partial differential equations unlike the standard finite element 
approaches. They have demonstrated an overall improvement in terms of computational efficiency while still 
demonstrating higher order convergence57–60. We consider a univariate B-spline of degree p defined on the open 
knot vector U = {u1, u2, . . . un+p+1} , where n is the number of basis functions. For a two-dimensional domain, 
the bivariate basis function is the tensor product of two univariate B-splines. For all the numerical examples, we 
set p = 3 . We choose Greville Abscissae61 as the collocation points. Each collocation point φ̂ = {φ̂u, φ̂v} can be 
written as

where φ̂u and φ̂v are the components along each parametric direction of the collocation point φ̂ . Equation (1) 
can be solved using isogeometric collocation as follows:

Following the same approach, we can obtain collocated equation of Eq. (2). Directly solving the strong form 
of the partial differential equations reduces computational cost while maintaining the same order of accuracy 
and smoothness. We utilize implicit Euler time integration scheme to allow for higher time step value. We use 
Newton-Raphson method with a tolerance value of 1e − 4 to solve the nonlinear equations.

Data availability
The code and datasets generated and analysed during the current study are available in the “NeuronGrowth_IGA-
collocation” repository, https://​github.​com/​CMU-​CBML/​Neuro​nGrow​th_​IGAco​lloca​tion (https://​doi.​org/​10.​
5281/​zenodo.​58185​09). Correspondence and requests for code and data should be addressed to K.Q. or Y.J.Z.
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